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Abstract. We consider the bifurcation set of the Gauss map of an immersed n-dimensional
manifold Mn in nþ k-dimensional Euclidean space. We focus specifically on the case of a
surface immersed in 4-space, where the bifurcation set is the binormal surface contained in S3.
Conditions for singularities on this surface are listed, stressing conditions that lead to easy
computations of examples. The binormal surface is then related to the evolute for surfaces in
3-space. This relation allows us to generalize many classical results of surface theory. In par-
ticular, we show that when the normal curvature is zero, asymptotic curves on the original
surface lift to geodesics on the binormal surface.

1 Introduction

In this paper, we consider the singularities of the Gauss map of an immersed n-
dimensional manifold Mn in nþ k-dimensional Euclidean space. These singularities
are directly related to singularities of height functions on M, and also related to the
contact between M and hyperplanes. Singularities will occur at normal vectors called
binormal vectors.

In particular, we will focus on the case of an immersed surface in R4. In this situ-
ation, the set of binormal vectors will form a surface, called the binormal surface. If
we consider this as a subset of S3, we can study the singularities of the surface and see
how they connect to the local geometry of M.

In Section 5, we show a connection between the evolute of surfaces in R3 and the
binormal surface for surfaces in R4. Specifically, for a surface M in S3, the sin-
gularities of the binormal surface are in direct correlation with the singularities of
the evolute of the stereographic projection of M. We find a connection between the
plane evolute of a surface in S3 and its binormal surface, and then use this to find the
evolute in a limiting process of surfaces.

Establishing a connection between evolutes and binormal surfaces allows us to
ask questions about binormals that we typically ask about evolutes. As a particular
example, we study the configuration of asymptotic lines on surfaces in R4. In partic-
ular, when the normal curvature is zero, then asymptotic lines on the surface lift to
geodesics on the binormal surface.



2 Local geometry of surfaces in R4

For the preliminary material, we will follow the results of [9], [11], and [12]. Let M be
a closed surface without boundary immersed in R4, with s : M ! R4 the immersion.
Let p be a point of M, and n a unit normal vector at p. As a general rule of notation,
bold face will be used for vectors and maps when we want to emphasize that they lie
in R4, while normal font will be used for points on manifolds and vectors not in R4

(this notation is partially adopted from [13]). The second fundamental form with re-
spect to n at p is the quadratic form IIn : TpM � TpM ! R defined by IIn ¼ n � d 2s.
We can define the vector valued second fundamental form II : TpM � TpM ! NpM

as the projection of d 2s into the normal plane. This quadratic form will map the unit
tangent circle at p to an ellipse in the normal plane. This ellipse is called the curvature
ellipse.

We characterize the points of a manifold by the relation between the curvature
ellipse and the origin of the normal plane ([9]):

. p is elliptic if the origin is inside the curvature ellipse.

. p is hyperbolic if the origin lies outside the curvature ellipse.

. p is parabolic if the curvature ellipse is not a line segment and it passes through the
origin.

. p is an imaginary inflection if the curvature ellipse is a radial line segment not
containing the origin.

. p is a real inflection if the curvature ellipse is a radial line segment containing the
origin, but does not have the origin as an endpoint.

. p is a flat inflection if the curvature ellipse is a radial line segment with the origin as
one of its endpoints.

A normal vector is a binormal vector at p if the second fundamental form IIn is
parabolic. A parabolic form will only have one root, and this direction in the tangent
plane is called an asymptotic direction. The above classification by the curvature
ellipse can be reworded into a classification by binormal vectors:

Proposition 2.1. Let M be an manifold immersed in R4, and p a point on M.

. p is elliptic if there are no binormal vectors at p.

. p is hyperbolic if there are exactly two binormal vectors at p (and hence two

asymptotic directions).

. p is parabolic if there is exactly one binormal vector at p (and hence one asymptotic

direction).

. p is an imaginary inflection if IIn ¼ 0 for some n (hence n is a binormal vector, with
all tangent directions asymptotic), and IIm is elliptic for some m (and hence there are

no other binormal vectors).

Daniel Dreibelbis454



. p is a real inflection if IIn ¼ 0 for some n (hence n is a binormal vector, with all

tangent directions asymptotic), and IIm is hyperbolic for all m0 n (and hence there

are no other binormal vectors).

. p is a flat inflection if IIn ¼ 0 for some normal vector n, and IIm is parabolic for all

m0 n.

Proof. The image of the unit tangent circle by the map IIn can be characterized by
projecting the curvature ellipse into the line spanned by n. In particular, IIn will have
2, 1, or 0 roots if the curvature ellipse hits the origin twice, once (meaning the pro-
jection ends at the origin), or zero times. The proposition is now implied by the
configuration of the curvature ellipse and the origin for each type of point. r

We now want to characterize these points for a generic immersion:

Theorem 2.2. For a generic immersion s : M ! R4, we have the following results:

. The set of hyperbolic points is a two-dimensional open subset of M.

. The set of elliptic points is also a two-dimensional open subset of M.

. The set of parabolic points is a one-dimensional open subset of M separating the

elliptic points from the hyperbolic points.

. There are a finite number of imaginary inflections, all of which lie in the elliptic

region.

. There are a finite number of real inflections, all of which are boundary points of the

parabolic curve. Near a real inflection, the closure of the parabolic curve looks like a
transversal crossing of two curves, with the real inflection at the point of intersection.

. There are no flat inflections.

For a proof, see [9] or [11].

3 Singularities of the Gauss map

Let Mn be a (closed) manifold immersed in Rnþk. The Gauss map is defined as the
map on the unit normal bundle UNM by G : UNM ! Snþk�1,

Gðp; nÞ ¼ n:

Note that there are several other ways to consider the Gauss map, most notably
considering it as a map to the Grassmannian Gðn; nþ kÞ (for instance [8] and [17]).
Our interpretation relates closely to the standard idea of a Gauss map in R3 ([1]), and
is the best interpretation for visual geometry. Let CHUNM be the critical set of G.
We say that n is a binormal vector of M at p if ðp; nÞ A C. Further, we define the
binormal set B to be the image GðCÞHS nþk�1.

We can characterize binormal vectors by the second order properties of the
immersion:
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Proposition 3.1. A vector n is a binormal vector at p A M i¤ IIn is singular. In partic-

ular, if M is two-dimensional, n is a binormal vector i¤ IIn is a parabolic quadratic

form.

Proof. Let sðx1; x2; . . . ; xnÞ be a local parameterization of M, and locally parame-
terize UNM by

Gðx1; x2; . . . ; xn; y1; y2; . . . ; yn�1Þ

¼ ðsðx1; x2; . . . ; xnÞ; nðx1; x2; . . . ; xn; y1; y2; . . . ; yn�1ÞÞ:

Note that for this to be a parameterization, the partials qn=qy1; . . . ; qn=qyn�1 must be
linearly independent.

The Gauss map is singular if there exists a nonzero a A R2n�1 such that dGa ¼ 0.
Write a ¼ ða1; a2Þ, where a1 A Rn, a2 A Rn�1.

Since G � ds1 0, we can di¤erentiate to get

dG � ds1�G � d 2s:

If G is singular at a point ðp; nÞ, then the left hand side of this equation is zero when
evaluated at a, and so the right hand side is zero when evaluated at a1. This implies
n � d 2sa1 ¼ 0, i.e., IIn is parabolic.

Now assume G � d 2sa1 ¼ 0 for some a1 A Rn. Then dGða1; �Þ can be considered as a
system of n� 1 linear equations in n� 1 unknowns. This system is nonsingular, since
fny1 ; ny2 ; . . . ; nyn�1

g is linearly independent, and therefore this system has a solution
a2 A Rn�1, and so dGða1; a2Þ ¼ dGa ¼ 0. r

We can also characterize binormal vectors using height functions and contact with
hyperplanes:

Corollary 3.2. A vector n is a binormal vector at p A M i¤ the height function

fn : M ! R, fnðxÞ ¼ x � n, has a degenerate (non-Morse) singularity at p.

Proof. Again, let s be a local parameterization of M. We have a singularity when

0 ¼ dð fn � sÞ ¼ n � ds

which means n is a normal vector. We have a degenerate singularity when
d 2ð fn � sÞ ¼ n � d 2s is singular, which is the condition for n to be a binormal vector.

r

Corollary 3.3. Given a normal vector n at a point p, let A be the a‰ne hyperplane

perpendicular to n and containing p. The vector n is a binormal vector at p i¤ A has A2

or worse contact with M at p.

Proof. The contact map between A and M is just fn, and so the corollary follows
directly from Corollary 3.2. r
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As a map between two ðnþ k � 1Þ-dimensional manifolds, the critical set C, and
hence its image B ¼ GðCÞ, will be in general an ðnþ k � 2Þ-dimensional set, which
will be locally a manifold except for a finite number of cone configurations (see [15]).
We can be even more precise about the structure of the binormal set, because we can
show that it is the bifurcation set of the family of height functions:

Theorem 3.4. Let F : M � Snþk�1 ! R be the ðnþ k � 1Þ-dimensional family of

height functions: Fðx; nÞ ¼ fnðxÞ. Then the bifurcation set of F is the binormal set

GðCÞ.

Proof. The bifurcation set is nothing more than the set of vectors n where
F ðp; nÞ ¼ fnðpÞ has a degenerate singularity for some p A M, which is precisely the
set of binormal vectors. r

The benefit of this is that if F versally unfolds fn (which it generically will), the
structure of C depends only on the singularity type of fn. We will use this fact heavily
in the next section.

Remark. We call these vectors binormal vectors to associate these concepts with
the binormal vector in the Frenet frame of space curves. Indeed, if you considered the
Gauss map G : UNM ! S2 of a space curve, then this map has a fold exactly at the
binormal vectors.

4 The binormal surface

We will now focus our attention on surfaces immersed in four-dimensional Euclidean
space. In this case, we will call the binormal set the binormal surface, even though
it technically is not a surface at its cone points. Some connections between the ge-
ometry of the surface and the critical points of height functions were established in
[11] and [5]. In particular, in [5] the authors study the bifurcation set of the family
of projections into 3-spaces, which by duality is the same as the binormal surface. In
light of Corollary 3.2, we have some connections between the geometry of a surface
and the binormal surface. The following theorem gives a di¤erent interpretation of
the geometry, depending only on the derivatives of the immersion and mirroring
classifications found in [14]. This is a convenient theorem for computing examples.

Theorem 4.1. Let BHS3 be the binormal surface of a surface M. Let s : M ! R4 be a

local parameterization of M about a point p. Then:

. A vector n is a binormal vector of M at p i¤ the second fundamental form IIn is

parabolic.

. B has a cuspidal edge (or worse) at n i¤ IIn is parabolic and n � d 3sa3 ¼ 0, where
a A TpM is the unique root (up to a scalar multiple) of IIn.

. B has a swallowtail (or worse) at n i¤, in addition to the above condition, there is also
a nonzero vector b A TpM such that n � d 4sa4 þ 3n � d 3sa2b ¼ 0.
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. B has an umbilic singularity at n i¤ IIn ¼ 0. The singularity is elliptic or hyperbolic

depending on whether the cubic form n � d 3s is elliptic or hyperbolic.

For a generic immersion, these are all the possible singularities of the binormal surface.

Proof. Since B is the bifurcation set of the unfolding F of fn, the singularity of B at
a certain vector n is determined by the singularity type of fn. Since F is a three-
dimensional unfolding, we will generically only get singularity types of codimension
three or less, namely A2, A3, A4 and D4. For a two-dimensional map, the probe struc-
ture (see [13] and [14]) for these singularities are the following:

A2: There exists a nonzero vector a A TpM such that d 2fna ¼ 0.

A3: There exists nonzero vectors a; b A TpM such that d 2fna ¼ 0 and
d 3fna

2 þ d 2fnb ¼ 0.

A4: There exists nonzero vectors a; b; c A TpM such that d 2fna ¼ 0, d 3fna
2 þ d 2fnb ¼

0, and d 4fna
3 þ 3d 3fnabþ d 2fnc ¼ 0.

D4: Probe structure is equivalent to d 2fn ¼ 0.

Note that the probe definition for the D4 singularity does not generalize if M has
dimension higher than two, but the definitions for the Ak singularities do generalize
for higher dimensions.

To complete the theorem, replace fnðpÞ with n � sðpÞ, and then evaluate the equa-
tions in the A3 and A4 definitions at a. r

We can now determine the following information about the structure of B:

Corollary 4.2. The binormal surface satisfies the following properties:

. There are no points on B associated to an elliptic point of M.

. For each hyperbolic point of M, there are four associated points on B (two antipodal

pairs of binormal vectors).

. For each parabolic point, there are two associated points on B (one antipodal pair of
binormal vectors).

. A point p is an inflection i¤ the associated points on B are umbilic singularities.

. The sheets of the binormal surface meet at parabolic points and inflection points.

Since we are dealing with surfaces in R4, the binormal surface is a subset of S3,
and so we can view it by stereographic projection.

Example 4.3. Perturbed (z, z3). Being a minimal surface, a complex function graph
will have a trivial binormal surface, consisting only of circles corresponding to flat
points. However, slight perturbations can break these flat points into patches of
hyperbolic points. For example, we can start with the complex function graph ðz; z3Þ,
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and then alter it by adding a quadratic term. Specifically, consider the map
s : R2 ! R4 defined by

sðu; vÞ ¼ ðu; v; eðu2 þ v2Þ þ u3 � 3uv2; 3u2v� v3Þ

A point ðu; vÞ is hyperbolic if 0 < u2 þ v2 < e=3, parabolic if u2 þ v2 ¼ e=3, and
elliptic if u2 þ v2 > e=3. The point ð0; 0Þ is an imaginary inflection. The vector
n ¼ ð0; 0; 0; 1Þ is the binormal at the origin, and the cubic n � d 3s at the origin is
3ðduÞ2 dv� ðdvÞ3. Since this cubic has three real roots, we expect three cuspidal edges
of the singularity set to converge at ð0; 0; 0; 1Þ. So each sheet of the binormal surface
should be a topological disk with three cuspidal edges converging together to an
umbilic singularity at the center of the disk, the boundary of the two sheets should be
the same, and their umbilic singularities should touch. We can see this behavior in
Figure 1. Note that in S3, all the components of the singularity set look the same. It
is only because of stereographic projection that some of the pieces are larger than
others, and some pieces are inside others. In S3, all four sheets of the binormal sur-
face have exactly the same shape.

5 Evolutes and the binormal surface

Since we can consider the binormal surface as a bifurcation set associated to a given
surface, there are reasons to search for connections between the ideas of a binormal
surface and evolutes of surfaces in R3. We will now explore this connection.

We begin with a surface M immersed in S3, and then look at this surface after
stereographic projection p : S3 ! R3. It is fairly easy to show the following:

Proposition 5.1. If MHS3, then the normal curvature of M is identically zero, and
every point of M is either a hyperbolic point or an imaginary inflection.

Figure 1. Binormal surface for the perturbed ðz; z3Þ
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Proof. Let s be a local parameterization of M. Since sðpÞ is the unit normal direction
to S3 at sðpÞ, it is also a normal vector to M at sðpÞ. Furthermore, since s � s1 1, the
second derivative implies s � d 2s ¼ �ds � ds, and so IIs 1�I. Therefore the image of
the unit tangent circle by IIs is the value �1, and so the curvature ellipse is a line
segment. Since N is proportional to the oriented area of the curvature ellipse ([9]),
N ¼ 0. r

In particular, every point of M contributes to the binormal surface. The structure
of the binormal surface will be the same as the structure of the evolute of pðMÞ:

Theorem 5.2. If MHS3, then the contact at a point p A M between a hyperplane and

M is the same as the contact between a sphere and pðMÞ.

Proof. Let a be a hyperplane, and consider its contact with M at a point p. Any

stereographic projection p is the restriction of an inversion map inv : R4
p ! R4

p ,

where R4
p means R4 minus the point p. In particular, inv is a di¤eomorphism, so the

contact between invðaÞ and invðMÞ is equivalent to the contact between a and M.
Now inversion will map a to a hypersphere. Since invðMÞ is contained entirely in R3,
the contact between invðaÞ and invðMÞ is solely determined by the contact between
invðMÞ ¼ pðMÞ and invðaÞVR3, which is a sphere. r

We can be even more explicit than this, describing the evolute as the limit of a
collection of binormal surfaces. To do this, we first look at the plane evolute P of a
surface M, i.e., the envelope of the family of a‰ne normal planes of M. In general,
the plane evolute will be a three-dimensional submanifold of R4. This manifold has
an interesting structure when M is immersed in a sphere:

Theorem 5.3. Let M be a surface immersed in S3ðcÞ, the 3-sphere of radius c centered

at the origin. Then the plane evolute of M is equal to the cone generated by the

binormal surface of M.

Proof. Let s be a local parameterization of M. Since MHS3ðcÞ, s is a normal vector.
Let n be the unit normal vector field which is perpendicular to s. Taking deriva-
tives of the relations s � s ¼ c2 and s � n ¼ 0, we can determine that ds � s ¼ 0 and
dn � s ¼ 0.

Parameterize the plane bundle as sþ xsþ yn. We are looking for values where
this map is singular. The condition reduces to finding values x0 and y0 such that
ð1þ x0Þdsþ y0dn is singular. Set m ¼ ð1þ x0Þsþ y0n, normalized to length one.
Note that the plane evolute is the cone generated by m. Since dma ¼ 0 for some
vector a, IIm is parabolic and m is a binormal vector. Since ð1þ xÞsþ yn span the
entire normal plane, all binormal vectors are in this set. r

In particular, this theorem requires a surface whose position vector is always a
normal vector, which of course requires the surface to be immersed in a sphere.

Now begin with a surface M immersed in R3, and let pc : SðcÞ ! R3 be stereo-
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graphic projection from the sphere of radius c, centered at ð0; 0; 0; cÞ. As c ! y,
p�1
c ðMÞ converges pointwise to M. However, the binormal surface of p�1

c ðMÞ con-
verges to two points (e4 and �e4) as c ! y. But with proper scaling, we can make
the binormal surface converge to the evolute.

Theorem 5.4. Let M be a surface immersed in R3, E its evolute, pc : S
3ðcÞ ! R3

stereographic projection, Bc the binormal surface of p�1
c ðMÞ and fc : S

3 ! S3ðcÞ the

map defined by f ðx; y; z;wÞ ¼ ðcx; cy; cz; cwþ cÞ. Then away from the parabolic

points of M:

lim
c!y

fcðGBcÞ ¼ E

where the convergence is considered pointwise and the sign is dependent on the sign of

the curvature at a point p on M.

The point of this result is that while the binormal surface may converge to a pair of
points, the shape of the binormal surface converges to the shape of the evolute. We
need to magnify Bc by a factor of c to keep the proper size.

We avoid parabolic points because there are no points on the evolute associated
with parabolic points (or we consider them as points at infinity). This means that if p
is parabolic, then the binormal vector associated with p�1

c ðpÞ converges to a point on
the equator of the sphere.

Theorem 5.4 follows primarily from the following lemma:

Lemma 5.5. Let Pc be the plane evolute of p�1
c ðMÞ. As c ! y, Pc approaches the

cylinder over E.

Proof. Since lim p�1
c ðMÞ ¼ M, the limit of Pc will be the plane evolute of M. This is

precisely the cylinder over E. r

Proof of Theorem 5.4. Since p�1
c ðMÞ is a surface immersed in a sphere, its plane

evolute Pc will be the cone generated by the binormal surface. If we translate the
plane evolute c units in the e4 direction, then the intersection between Pc and S3ðcÞ
will simply be fcðBcÞ. In the limiting process, Pc converges to the cylinder over E

(translation in the e4 no longer an issue), and so fcðBcÞ will converge to points on the
evolute.

However, each binormal vector has an antipodal pair; one of the two will converge
to a point in R3, while the other will diverge to infinity. Whichever vector converges
depends on the curvature of the surface at the associated point. r

6 Asymptotic curves and binormal curves

Now that we have established a connection between evolutes and binormal surfaces,
we can connect ideas related to evolutes to ideas about surfaces in R4. For example,
objects such as principal directions, lines of curvature, ridges, ribs, and subparabolic
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lines may have corresponding objects on surfaces in R4. We will use this to motivate
our study of liftings of asymptotic curves to the binormal surface.

Associated with each binormal vector n is a tangent direction a which is the unique
root of IIn. Since this direction is the one used in the probe structure definition of the
singularities, it corresponds to a principal curvature direction for surfaces in R3. We
define asymptotic curves to be the integral curves of the asymptotic directions. These
correspond to the lines of curvature for surfaces in R3.

The generic structure of lines of curvature are well known: away from umbilics,
there are two lines of curvatures through any point on the surface. These two curves
will always be orthogonal. The only singularities in the configuration of the lines of
curvature occur at umbilics, where the curves have a lemon, monstar, or star singu-
larity ([2]).

The generic structure of asymptotic curves are similar, but there are extra compli-
cations. On the hyperbolic region, there will still be two curves through every point,
but they will not necessarily intersect orthogonally. On surfaces in S3, imaginary in-
flections correspond to umbilics, and so we expect the configuration of asymptotic
curves at imaginary inflections to be a lemon, monstar, or star again. The structure of
the asymptotic curves have been classified: partially in [7] and completely in [6].

Theorem 6.1 ([6]). On a generic surface, the asymptotic curves have the following

structure:

. At a hyperbolic point, the two asymptotic curves intersect transversally.

. At a parabolic point, the two asymptotic curves come together to form a cusp.

. At an imaginary inflection, the asymptotic curves will form a lemon, monstar, or star
configuration (see Figure 2).

. At a real inflection, the asymptotic curves will form one of the five structures: U1, U2,
U3, U4, or U5.

. At a parabolic A3 point (i.e., a parabolic point which is also an A3 singularity with

respect to one of its normal vectors), the asymptotic curves will have one of the three

structures: well-folded node, well-folded focus, or well-folded saddle.

For surfaces in R3, lines of curvature are lifted to their corresponding sheets of
the evolute, the resulting curves called focal curves. These curves are regular when the
evolute is regular. They have cusps when they cross a cuspidal edge, a kink when they
go through a swallowtail singularity, and they have the three basic configurations
(lemon, monstar, star) about an umbilic singularity.

Mirroring the idea, we can lift the asymptotic curves to their corresponding sheets
on the binormal surface. We will call these liftings the binormal curves. All the results
mentioned for focal curves will also be true for binormal curves. However, since dif-
ferent sheets of the binormal surface meet above the parabolic curve as well as above
the inflection points, we expect a few more interesting features than we get with focal
curves.
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Theorem 6.2. For a generic surface, let a be a lifting of an asymptotic curve to the

appropriate sheet of the binormal surface.

. The curve a has an ordinary cusp (a 0 ¼ 0 but a 00 0 0) when it passes through a cus-

pidal edge.

. a has an ordinary kink (a 0 ¼ 0 and a 00 ¼ 0 but a 000 0 0) when it passes through a

swallowtail point.

. About an umbilic singularity, the binormal curves will have the structure of one half

of a lemon, monstar, or star.

. Above the parabolic curve and away form A3 points, the binormal curves of one sheet

connect smoothly to the binormal curves of the other sheet.

. Above a parabolic A3 point, the binormal curves will be topologically equivalent to

a node, focus, or saddle (see Figure 2) depending on the corresponding topological

structure of the asymptotic curves. The singularity itself will sit on a cuspidal edge.

Proof. We begin with the cusp and the kink. If a is the lifting of an asymptotic curve,
then we can set a ¼ n � b, where b is a curve inR2 and s � b is a parametrization of the
asymptotic curve. Then by definition, we have n � d 2sb 0 1 0. Di¤erentiating this
equation once, we find that the condition for a cuspidal edge from Theorem 4.1
is equivalent to dnb 0 ¼ a 0 ¼ 0. Di¤erentiating the equation twice, we find that the
condition for a swallowtail from Theorem 4.1 is equivalent to dnb 0 ¼ a 0 ¼ 0 and
d 2nb 00 þ dnb 0 ¼ a 00 ¼ 0. Thus the first two parts of the theorem are proved.

Figure 2. Top: star, monstar, and lemon; Bottom: node, saddle, and focus
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The remaining three parts of the theorem are standard results of liftings of bi-
valued curves sets to double coverings. The tangent vectors of the two asymptotic
curves meeting at a parabolic point are parallel, so their liftings to a smooth surface
will give a regular curve (since it is a bifurcation set, we can be assured that the bi-
normal surface will be smooth above a parabolic point away from the A3 points, even
if two sheets of the surface meet there). The umbilic configurations will lift directly,
and as the names imply, the well-folded node, saddle, and focus will lift to a node,
saddle and focus. Finally, note that we have a node, saddle, or focus only when we are
above a parabolic A3 point, and so the singularity must sit on a cuspidal edge. r

The perturbed z3 provides a nice example of the asymptotic and binormal curves.
Half of its binormal surface is shown in Figure 3 along with its binormal curves. The
binormal curves have three focus configurations corresponding to the three A3 para-
bolic points, though the cuspidal edge passing through the focus makes the configu-
ration di‰cult to see. Note also that the binormal curves have cusps as they pass
through the cuspidal edge.

7 Surfaces with zero normal curvatures

We end by looking at the asymptotic curves and binormal curves of a special class
of surfaces: surfaces whose normal curvature is identically zero. (See [16] for more
information on these surfaces. In particular, Lemma 7.1 and Propositions 7.2 and 7.3
can be found in [16], though approached from a di¤erent direction.) While this is a
strong requirement, there are still some interesting examples that satisfy this condi-
tion: any tangent developable of a regular curve in R4, any surface immersed in a 3-
sphere or hyperplane, and any surface which is the cross product of two curves im-
mersed in orthogonal planes. The condition of zero normal curvature allows us
to reproduce a few extra features of lines of curvature and focal curves, including a
result about geodesics of the binormal surface.

There are several ways to characterize zero normal curvature. The normal curva-
ture is proportional to the area of the curvature ellipse, so zero normal curvature

Figure 3. Asymptotic, A3, and binormal curves for perturbed z3

Daniel Dreibelbis464



means the curvature ellipse is a straight line. In terms of equations, this is equivalent
to a normal vector n with IIn ¼ kI for some number k. Another expression of zero
normal curvature is dðdn �mÞ ¼ 0, where n and m are a local orthonormal frame field
of the normal bundle. Here, the outside d is the exterior derivative.

We begin by showing that some desirable features of the asymptotic directions are
satisfied when we have N ¼ 0. But first a general lemma:

Lemma 7.1. Let p be a hyperbolic point of M, and let v and w be the two asymptotic

directions at p. Then IInðv;wÞ ¼ 0 for any n A NpM.

Proof. Let n1 and n2 be the two binormal vectors corresponding to v and w. Any
other normal vector can be written as a linear combination of these two. Since
IIn1ðv; �Þ ¼ 0 and IIn2ðw; �Þ ¼ 0, we know that IIn1ðv;wÞ ¼ IIn2ðv;wÞ ¼ 0, and there-
fore any linear combination is also zero. r

Proposition 7.2. A hyperbolic point p A M has perpendicular asymptotic directions i¤

the normal curvature of M at p is zero.

Proof. If N ¼ 0, then there is some normal vector n such that IIn ¼ kI for some
nonzero constant k. Since IInðv;wÞ ¼ 0, we have Iðv;wÞ ¼ 0.

Now assume Iðv;wÞ ¼ 0. The set of quadratic forms A on TpM with Aðv;wÞ ¼ 0 is
two-dimensional, and it is spanned by IIn1 and IIn2 from Lemma 7.1. Hence I ¼ kIIn
for some unit normal vector n, and this implies N ¼ 0. r

So asymptotic curves are orthogonal i¤ N ¼ 0. In particular, since surfaces
immersed in a sphere have N1 0, their asymptotic curves are always orthogonal. We
already expected this, since they are also the images of lines of curvature through
inverse stereographic projection.

Points with zero normal curvature have the additional benefit of having the same
eigenvectors for all IIn:

Proposition 7.3. A hyperbolic point p A M has zero normal curvature i¤ there are two

linearly independent vectors v and w which are eigenvectors of IIn for all normal vectors

at p.

Proof. If N ¼ 0 at p, then there exists a normal vector n with IIn ¼ kI. In particular,
every vector is an eigenvector of IIn. If v is an eigenvector associated with another
normal vector m, then it is an eigenvector for any linear combination of n and m, and
hence an eigenvector of every second fundamental form.

Now assume there are two linearly independent vectors v and w which are
eigenvectors of all second fundamental forms. Take any two normal vectors m and
~mm, and say they have eigenvalues l1; l2 and k1; k2 respectively. Since they have the
same eigenvectors, the eigenvalues associated with amþ b ~mm will be al1 þ bk1 and
al2 þ bk2. We can always choose a and b to make these values equal, and so there
will be a vector n with IIn ¼ kI (keep in mind that all eigenvalues and vectors are
with respect to the first fundamental form). r
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In particular, for a surface with zero normal curvature, the asymptotic directions
(and hence asymptotic curves) can be defined using any second fundamental form,
not just the two parabolic forms.

Finally, a surprising theorem for surfaces in R3 is that away from the singularities
of the evolute, the lines of curvature lift to geodesics on the corresponding sheet of
the evolute. Unfortunately, this result does not generalize completely for surfaces in
R4, but it is true for surfaces with normal curvature zero.

Lemma 7.4. Let a be a parametrization of a binormal curve, and let b be the curve is R2

such that a ¼ n � b. If the binormal surface is regular at að0Þ, then the normal plane of

the surface n at the point aðtÞ is spanned by the vectors n � bð0Þ and dsb 0ð0Þ.

Proof. Di¤erentiating n � n1 1, it follows immediately that að0Þ is a normal vector to
n at að0Þ. Next, begin with the symmetric relation n � d 2sþ dn � ds1 0 and evaluate it
at b 0ðtÞ to get n � d 2sb 0ðtÞ þ dn � dsb 0ðtÞ1 0. Since b 0ðtÞ is an asymptotic direction,
the first term is zero, and so we find dsb 0ðtÞ is a normal vector. It is clear that dsb 0ðtÞ
and n are linearly independent. r

Theorem 7.5. Using the notation above, aðtÞ is a geodesic of n at t ¼ 0 i¤ a 0ð0Þ0 0 and

the normal curvature N is zero at s � bð0Þ.
In particular, if N1 0, then away from the singularities of n, the corresponding

asymptotic curves lift to geodesics on n.

Proof. A curve is a geodesic at a point if its second derivative lies in the span of the
first derivative and the normal plane, so we need to show that ðaÞ00ð0Þ is in the span of
the vectors ðaÞ0ð0Þ, að0Þ, and dsb 0ð0Þ.

The easiest way of doing this is to find a nonzero vector which is orthogonal to all
four vectors. Let dsv be the other corresponding asymptotic vector at s � bð0Þ. We
check for orthogonality:

. It is obvious that dsv is orthogonal to n.

. Since dnb 0ð0Þ � dsv ¼ �n � d 2svb 0ð0Þ ¼ 0, dsv is orthogonal to dnb 0ð0Þ.

. First, since dnb 0ðtÞ � dsb 0ðtÞ ¼ �n � d 2sb 0ðtÞ2 ¼ 0, we know that dnb 0ðtÞ ¼ a 0ðtÞ is
a normal vector at s � bðtÞ for all t. Next, di¤erentiate the relation ðaÞ0ðtÞ �
ds � bðtÞ1 0 with respect to t and evaluate at v to get a 00ðtÞ � dsvþ a 0ðtÞ �
d 2svb 0ðtÞ ¼ 0. From Proposition 7.1, the second term is zero, so the first term is
zero, and ðaÞ00ðtÞ is orthogonal to dsv. Since a 00ð0Þ � dsv ¼ ðd 2nðb 0ð0ÞÞ2 þ dnb 00ð0ÞÞ �
dsv.

. Finally, dsv � dsb 0ð0Þ ¼ Iðv; b 0ð0ÞÞ, which is zero i¤ N ¼ 0 (Proposition 7.2).
r

8 Conclusion and further directions of research

As mentioned at the beginning of Section 5, establishing connections between evolutes
and binormal surfaces leads to a number of interesting questions. Objects studied on
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surfaces in R3, such as ribs, ridges, principal curvatures, parabolic curves and sub-
parabolic lines have some corresponding objects on surfaces in R4. For some surfaces
(such as surfaces in S3), we expect most of the results from R3 to extend without
di‰culty. But when we allow ourselves the full freedom of R4, the results should be
even richer.

We can also extend the results of dynamic surfaces. For instance, the birth and
death of umbilics and parabolic curves have been studied ([10] and [3], [4], respec-
tively) for surfaces in R3. Again, the extra dimension will give dynamic surfaces in
R4 a more complicated and a more interesting structure. The transitions in the par-
abolic curve, A3 curve, inflections and asymptotic curves have been studied in [6], but
there is still much to study in this direction.

Acknowledgements. Special thanks to the reviewer for pointing out the connection of
the work in this article to the work in the papers [5] and [6].
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