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A class of complete arcs in multiply derived planes
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Abstract. We prove that unital-derived ðq2 � qþ 1Þ-arcs of PGð2; q2Þ still yield complete arcs
after multiple derivation with respect to disjoint derivation sets on a given line.

1 Introduction

There is currently limited knowledge of complete arcs in non-desarguesian planes.
Excluding ovals and hyperovals, few constructions are known for ‘‘infinite’’ families
of planes. Many constructions for non-desarguesian planes involve suitable replace-
ment of some desarguesian lines. For any given arc in the original desarguesian plane
the question arises whether it remains an arc in the new plane. For a complete arc of
the original plane which remains an arc after line replacement the additional question
is whether completeness is also maintained in the new plane: we refer to the intro-
duction of the paper [13] for an account of results in this area.

The so called ‘‘unital-derived’’ arcs of PGð2; q2Þ were first constructed by B.
Kestenband [9] and were then studied by various authors from di¤erent points of
view [10], [2], [5], [4]. They are complete ðq2 � qþ 1Þ-arcs in PGð2; q2Þ and it was
proved in [11] that they yield arcs in the Hall plane of the same order. Their com-
pleteness in the Hall plane is guaranteed whenever q2 > 9; in the Hall plane of order
9 these arcs can be completed by the adjunction of at most one point, see [12].

A Hall plane can be viewed as obtained from the corresponding desarguesian plane
by a single derivation. From this standpoint we can say that we control the behaviour
of unital-derived arcs under single derivation. It seems quite natural to try to see what
happens if we derive more than once. It is the purpose of the present paper to prove
that the unital-derived arcs of PGð2; q2Þ remain complete arcs when multiple deriva-
tion is performed with respect to disjoint derivation sets on a given line.

How large are these arcs in comparison with other complete arcs in these or other
planes? We do not address this problem here.

2 Background results

For a prime power q denote by p the desarguesian projective plane PGð2; q2Þ.
We denote by tX ¼ ðx; y; zÞ a point of p. For an arbitrary matrix M with entries



in GFðq2Þ we denote by M the matrix obtained from M by raising each entry to the
q-th power.

For each non-degenerate 3� 3 hermitian matrix H over GFðq2Þ, the q3 þ 1
points X satisfying the equation tXHX ¼ 0 are the points of a hermitian unital which
is embedded in p. We shall denote this classical unital by fHg and we shall often
identify fHg with its point-set.

Fix a line at infinity ly in p and let S1; . . . ;Sr, rc q� 1, be disjoint derivation sets
for p on ly. Since all derivation sets S1; . . . ;Sr lie on a given line, deriving p with
respect to S1; . . . ;Sr one obtains a plane pS 1;...;S r of order q2, which is an André
plane, [7, Theorem 10.12]. The a‰ne points of this new plane are the a‰ne points of
p and the a‰ne lines are the lines of p not meeting S1 U � � �USr, together with the
Baer subplanes of p which contain S i for some index i ¼ 1; . . . ; r. Furthermore, the
derived plane pS i is a Hall plane [7, corollary to Theorem 10.13].

Let U be a hermitian unital of p. Theorem 1.1 in [1] shows that there are five
possible relationships between U and a derivation set S i. More precisely:

(a) U V ly ¼ S i, then the point set of U yields a Buekenhout unital U 0 in pS i , [6].

(b) U is secant to ly and S i VU ¼ q, then the point set of U yields a Buekenhout
unital U 0 in pS i .

(c) U is secant to ly with 0 < jS i VU j < qþ 1, then the point-set of U does not
yield a unital in pS i .

(d) U is tangent to ly with U V ly JSi, then the point-set of U does not yield a
unital in pS i .

(e) U is tangent to ly and U V lyUS i, then the point-set of U yields a Buekenhout–
Metz unital U 0 in pS i .

Each line of the multiply derived plane pS 1;...;S r is a line of pS i for some S i. A unital
U of p yields a unital U 0 in the multiply derived plane pS 1;...;S r precisely when one of
the following holds:

(i) U is secant to ly and Si ¼ U V ly, for some index i ¼ 1; . . . ; r.

(ii) U is secant to ly and Si VU ¼ q, for every index i ¼ 1; . . . ; r.

(iii) U is tangent to ly and U V ly US1 U � � �USr.

In fact since U consists of q3 þ 1 points of p, it also yields as many points in
pS 1;...;S r . It is then su‰cient to observe that, if the line joining two given points of U
in pS 1;...;S r meets some derivation set S i, then it is a line of the Hall plane pS i and then
apply (a), (b) to obtain that this line intersects U in qþ 1 points; if it meets no such
derivation set, then this desarguesian line remains unaltered in the derivation process
and so it intersects U in qþ 1 points.

Considering the common intersection of qþ 1 suitably chosen hermitian unitals of
p, a class of ðq2 � qþ 1Þ-arcs of p was constructed by B. C. Kestenband, [9]. These
arcs are referred to as unital-derived arcs and their completeness in p was proved with
di¤erent methods, [2], [4], [5].
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It was proved in [11] that the unital-derived arcs of p remain arcs in the Hall plane
pS i of the same order, provided that the derivation set is suitably chosen. Further-
more, their completeness in the Hall plane was proved whenever q2 > 9. The case of
the Hall plane of order 9 is considered in detail in [12]: in this case the arcs are either
complete or can be completed by adding exactly one point.

The proof of these results requires some properties of the unital-derived arcs of p,
some of which are briefly summarized here. Let H be a non-degenerate 3� 3 hermi-
tian matrix over GFðq2Þ whose characteristic polynomial is irreducible over GFðq2Þ,
or, which is the same, over GFðqÞ. If l A GFðqÞ and r, s are distinct indices in
f0; 1; . . . ; q2 þ qg then Hs � lHr is itself a rank 3 hermitian matrix and the point-set
fHrgV fHsg is a complete unital-derived arc obtained as the common intersection of
the qþ 1 hermitian unitals fHrg, fHs � lHrg, l A GFðqÞ.

Furthermore, the plane p is the disjoint union of q2 þ qþ 1 unital-derived arcs
and each such arc is the point-orbit of a subgroup of a Singer cycle of p, [4], [10], [8].
It is also proved in [10], [8], that the unitals under consideration and their intersec-
tions can be viewed as the lines and points of a projective plane PGð2; qÞ.

3 Arcs in multiply derived planes

Let gðxÞ ¼ �x3 þ sx2 þ nxþ p A GFðqÞ½x� be a cubic polynomial which is irreduc-
ible over GFðqÞ and hence also over GFðq2Þ. Fix distinct elements a; b A GFðqÞ and
define c ¼ s� ðaþ bÞ. Determine e; f A GFðq2Þ satisfying the following equations:

eqþ1 þ f qþ1 ¼ nþ abþ acþ bc

�beqþ1 � af qþ1 ¼ p� abc

We observe incidentally that if the elements e, f satisfy the previous equations,
then so do the elements eq, f .

The matrices

H ¼
a 0 e

0 b f

eq f q c

1
CA; ĤH ¼

a 0 eq

0 b f

e f q c

1
CA

0
B@

0
B@

are easily seen to be rank 3 hermitian matrices with gðxÞ as characteristic polynomial.
Let A be the unital derived-arc of p obtained as the common intersection of the

qþ 1 unitals fIg, fH � lIg, l A GFðqÞ. Let ÂA be the unital derived-arc of p obtained
as the common intersection of the qþ 1 unitals fIg, fĤH � lIg, l A GFðqÞ.

We define ly to be the line of p with equation z ¼ 0. Let t A GFðqÞ� and denote
by St the point-set on ly consisting of all points ð1;m; 0Þ with mqþ1 ¼ t. The set
St is a derivation-set for p on ly, [7, Theorem 10.11]. The unital fIg intersects ly
in S�1, while each unital fH � lIg (as well as each unital fĤH � lIg) with l0 a,
l0b intersects ly in Sðl�aÞ=ðb�lÞ. Finally, we have lyVfH � aIg ¼ lyVfĤH � aIg ¼
fð1; 0; 0Þg, ly V fH � bIg ¼ ly V fĤH � bIg ¼ fð0; 1; 0Þg and AV ly ¼ ÂAV ly ¼ q.
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We choose r distinct elements t1; . . . ; tr in GFðqÞ� ¼ f�1gU fðl� aÞ=ðb� lÞ :
l A GFðqÞ � fa; bgg. We denote by p1;...; r the multiply derived plane pSt1

;...;Str
and by

p̂p1;...; r the multiply derived plane corresponding to the derivation sets St where t varies
in GFðqÞ� � ft1; . . . ; trg.

Observe that this kind of multiple derivation is only meaningful for r < q� 1, since
deriving PGð2; q2Þ with respect to q� 1 pairwise disjoint derivation sets on ly gives
rise to a Desarguesian plane again, [7, Exercise 10.4].

Proposition 1. The set A is an arc in the multiply derived plane p1;...; r.

Proof. The previous section shows that the qþ 1 unitals mutually intersecting in A
are still unitals in p1;...; r and they cover the points of the plane. If a line meets A in
hd 2 points, the same line intersects each of the qþ 1 unitals in qþ 1� h points
outside A. Therefore ðqþ 1Þðqþ 1� hÞ þ h ¼ q2 þ 1, whence h ¼ 2. r

Proposition 2. If r < ðq� 1Þðq� 2Þ=ðqþ 1Þ then the arc A is complete in the multiply

derived plane p1;...; r.

Proof. We begin by proving the completeness of A on ly.
Let j be the involution on the points of p defined as follows: jðx; y; 1Þ ¼ ðxq; y; 1Þ;

jðx; y; 0Þ ¼ ðx; y; 0Þ. The point-set jðAÞ is precisely the unital-derived arc obtained
as the common intersection of fIg and fĤH � lIg, l A GFðqÞ.

Since AV ly ¼ q and A is a complete arc in the desarguesian plane p, when
considering a possible candidate for adjunction in the multiply derived plane we only
need to consider a point Py ¼ ð1;m; 0Þ, with Py A Sti , for some i A f1; . . . ; rg. The arc
jðAÞ is complete in the desarguesian plane p. We find thus an element v A GFðq2Þ
and a line l with equation y ¼ mxþ v having two points in common with jðAÞ.
Therefore, the set jðlÞ has 2 points in common with A. In the multiply derived plane,
the set jðlÞ is the point-set of the line with equation y ¼ mxq þ v which contains Py.
This proves the completeness of A on the line at infinity.

Now we prove the completeness on the a‰ne points of p1;...; r.
Let P be an a‰ne point and suppose AU fPg is still an arc of p1;...; r. Each line of

p1;...; r passing through P has thus either 0 or 1 point in A. The arc A is complete in p,
so each line of p which contains P and has 2 points in A must intersect ly at a point
of Sti , for some i. Consider all lines of p passing through P which are 2-secants of A.
Let KHA be the subset consisting of all points in A lying on one such line and
denote by k the cardinality of K, an even number.

The plane p is the disjoint union of q2 þ qþ 1 complete unital-derived arcs, [8],
one of which is A. Let B be the unital-derived arc containing the point P. Let T be
a fixed point of the set A�K. There are q2 þ 1 lines of p containing T . The con-
dition jAj ¼ q2 � qþ 1 implies that exactly q2 � q of these lines are 2-secants of A
and exactly qþ 1 lines of p are tangent to A at T ; these lines may or may not contain
points of B.

Now, the lines which are tangent to A at T and contain points of B are at least
ðq2 � q� kÞ=2þ 1. In fact, the unital-derived arcs partitioning p are the orbits of
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a cyclic collineation group, generated by, say, y. Let S A A�K, S0T , and let
y iðSÞ ¼ T . We have y iðPÞ ¼ Q, where Q is also a point of B and the line QT is
tangent to A because so is the line PS. Observe that the line QT is either a tangent or

a 2-secant of B. Assume QT intersects B in Q and Q 0 and write y jðPÞ ¼ Q 0, y i 0 y j,
and y iðSÞ ¼ T , y jðS 0Þ ¼ T . As S varies in A�K, the line QT is counted twice.
Therefore, the number of lines which are tangent to A at T and contain points of B

is at least
jA�Kj

2

l m
and since jA�Kj ¼ q2 � qþ 1� k is odd, we see that this

number is at least ðq2 � q� kÞ=2þ 1.
Furthermore, A and B are contained in a unique unital U of p, hence the

tangent line to U at T is also tangent to A at T and this line has no points in com-
mon with B. Altogether, we have at least ðq2 � q� kÞ=2þ 2 lines that are tangent
to A at T . We know this number to be less than or equal to qþ 1 and the relation
ðq2 � q� kÞ=2þ 2c qþ 1 is equivalent to q2 � 3qþ 2c k.

Let K ¼ fPi j i ¼ 1; . . . ; kg. We are supposing AU fPg to be an arc in p1;...; r.
Therefore each line PPi of p contains a point of some derivation set Sti . Further-
more, the line of p1;...; r containing P and Pi is the unique Bear subplane of p con-
taining P, Pi and the derivation set Sti . This plane has no points in common with
AU fPg other than P and Pi. We obtain thus k distinct Bear subplanes which con-
tain P and have no other a‰ne point in common. These k Baer subplanes are lines of
p1;...; r corresponding to distinct points of ly. We obtain thus at most rðqþ 1Þ points
at infinity and we have the relation q2 � 3qþ 2c kc rðqþ 1Þ, contradicting r <
ðq� 1Þðq� 2Þ=ðqþ 1Þ. r

Proposition 3. If q > 3 the arc A is complete in the multiply derived plane p1;...; r.

Proof. We know by the previous proposition that if r < ðq� 1Þðq� 2Þ=ðqþ 1Þ then
the arc A is complete. We assume thus rd ðq� 1Þðq� 2Þ=ðqþ 1Þ. The mapping

ðx; yÞ 7! ðxq; yÞ; ðmÞ 7! ðmÞ; ðyÞ 7! ðyÞ

yields an isomorphism from the plane p1;...; r to the plane p̂p1;...; r, see [7, Exercise 10.4].
Furthermore, this isomorphism maps the point-set A of p1;...; r to the point-set ÂA of

p̂p1;...; r, and we already know that A and ÂA are arcs. We prove the completeness of A
in p1;...; r by proving the completeness of ÂA in p̂p1;...; r.

By Proposition 2 the arc ÂA will certainly be complete whenever the inequality
q� 1� r < ðq� 1Þðq� 2Þ=ðqþ 1Þ holds. It follows from rd ðq� 1Þðq� 2Þ=ðqþ 1Þ
that the inequality q� 1� rc 3ðq� 1Þ=ðqþ 1Þ also holds. If q > 5 then we have
3ðq� 1Þ=ðqþ 1Þ < ðq� 1Þðq� 2Þ=ðqþ 1Þ and the assertion follows in this case.
For q ¼ 4 or 5 and r ¼ 1 the completeness of A follows from Proposition 2. For
q ¼ 4 and r ¼ 2 we still have q� 1� r < ðq� 1Þðq� 2Þ=ðqþ 1Þ and the previous
argument still applies. For q ¼ 5 and r ¼ 3 the completeness of ÂA follows from
Proposition 2 and so we also have the completeness of A as above. For q ¼ 5 and
r ¼ 2 we may limit the choice of two derivation sets St1 and St2 to the cases
ðt1; t2Þ ¼ ð�1; 1Þ, ð�1; 2Þ and ð�1; 3Þ respectively. We performed calculations with
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the computer algebra system MAGMA [3] checking that the arc A is complete for all
such choices: source code is available from the authors. r

The request q > 3 in the previous proposition is no restriction, since only single
derivation is meaningful for q ¼ 3.
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