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16-dimensional compact projective planes with 3 fixed points
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Let P ¼ ðP;LÞ be a topological projective plane with a compact point set P of finite
(covering) dimension d ¼ dimP > 0. A systematic treatment of such planes can be
found in the book Compact Projective Planes [15]. Each line L A L is homotopy
equivalent to a sphere Sl with l j 8, and d ¼ 2l, see [15] (54.11). In all known exam-
ples, L is in fact homeomorphic to Sl. Taken with the compact-open topology, the
automorphism group S ¼ AutP (of all continuous collineations) is a locally compact
transformation group of P with a countable basis, the dimension dimS is finite [15]
(44.3 and 83.2).

The classical examples are the planes PK over the three locally compact, connected
fields K with l ¼ dimK and the 16-dimensional Moufang plane O ¼ PO over the
octonion algebra O. If P is a classical plane, then AutP is an almost simple Lie
group of dimension Cl, where C1 ¼ 8, C2 ¼ 16, C4 ¼ 35, and C8 ¼ 78.

In all other cases, dimSc 1
2Cl þ 1c 5l. Planes with a group of dimension su‰-

ciently close to 1
2Cl can be described explicitly. More precisely,

the classification program seeks to determine all pairs ðP;DÞ, where D is a connected

closed subgroup of AutP and bl c dimDc 5l for a suitable bound bl d 4l� 1.
This has been accomplished for lc 2 and also for b4 ¼ 17. Here, the case l ¼ 8

will be studied; the value of bl varies with the configuration of the fixed elements
of D.

Most theorems that have been obtained so far require additional assumptions on
the structure of D. If dimDd 27, then D is always a Lie group [12].

By the structure theory of Lie groups, there are 3 possibilities: (i) D is semi-simple,
or (ii) D contains a central torus subgroup, or (iii) D has a minimal normal vector
subgroup, cf. [15] (94.26). The first two cases are understood fairly well:

(a) If D is semi-simple and dimD > 28, then DG SL3H and P is a Hughes plane

(as described in [15] §86), or DG Spin9ðR; rÞ with rc 1, or PGO, see [10], [11].

(b) If D contains a central torus, and if dimD > 30, then D 0 G SL3H, see [13].

A group D of type (iii) fixes a point or a line, cf. [3] (XI.10.19). Hence (a) and (b)
imply



(c) If dimD > 30 and D has no fixed element, then P is a Hughes plane or

PGO.

The case that D fixes exactly one element has been treated in [14]:

(d) If dimDd 35 and if D fixes one line and no point, then P is a translation plane.

All such planes have been determined in [6], [7], [9]. Either PGO or dimD ¼ 35.
Little progress has been made in the cases where D fixes exactly two elements,

necessarily a point and a line. If dimDd 40, then P and its dual are translation
planes [15] (87.7). All translation planes with dimDd 38 are described in [15] (82.28).

(e) If dimDd 34 and D fixes exactly 2 points and only one line, then D contains a

translation group of dimension at least 15.

(f ) If dimDd 33 and D fixes 2 points and 2 lines, then D contains a translation group

TGR8 and a compact subgroup FG Spin8R.

A method to construct all planes with exactly 2 fixed points have been given in [8].
A smaller dimension of D su‰ces if D fixes more than two points (the last case to

be considered):

Theorem. If dimDd 32 and D has (at least) 3 fixed points, then D contains a transitive

translation group T. Either dimD ¼ 32 and a maximal semi-simple subgroup C of D is

isomorphic to SU4C, or dimDd 37 and PGO.

Translation planes with a group CG SU4C have already been studied in [5].
Examples of proper translation planes such that TC has a fixed point set SAS2 are
given in [6].

According to the sti¤ness result [15] (83.23), the stabilizer L of a non-degenerate
quadrangle satisfies dimLc 14. The proof of the theorem depends decisively on
Bödi’s improvement [1] of the sti¤ness theorem:

(j) If the fixed elements of the connected Lie group L form a connected subplane

E, then L is isomorphic to the 14-dimensional compact group G2 or its subgroup

SU3C or dimL < 8. If E is a Baer subplane (dimE ¼ 8), then L is a subgroup of

SU2C.

Corollary. From dimL > 8 it follows that dimE ¼ 2.

Proof. Assume that dimE ¼ 4. If L is any line of E and if c A LnE, then dimLc > 0
and the fixed elements of Lc form a Baer subplane hE; ci. Hence dimLc c 3 and
dimLc 11. An alternative proof is given by [15] (96.35). r

Proof of the Theorem. 1) For any closed subgroup GcD and any point x the
dimension formula dimG ¼ dimGx þ dim xG holds, see [15] (96.10). This fact will be
used repeatedly without mention.

2) By the sti¤ness theorem, the stabilizer ‘ of a triangle satisfies dim‘c 30. Hence
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all fixed points of D are incident with the same line W . There are at least 3 fixed
points u; v;w A W and the sti¤ness theorem implies dimDc 38.

3) Because of results (a) and (b), the group D has a minimal normal subgroup
YGRt. Choose a B W and % A PcY such that PGR and a% 0 a. Since D acts
linearly on Y, the centralizer Cs % is also the centralizer of P, and the dimension
formula gives dimCsPd 32� t. The connected component L of Da VCsP fixes the
orbit aP pointwise, and the fixed elements of L form a connected subplane E, see [15]
(42.1). By (j) we have dimDa � tc dimLc 14 and td 2; moreover, dimL ¼ 14
or dimLc 8.

4) Assume first that t < 8. Then LGG2 is compact. Remember that the action
of any compact or semi-simple Lie group on a real vector space is completely
reducible ([2] (35.4)). Each irreducible module of G2 on R16 has a dimension divisible
by 7, see [15] (95.10). Since PL ¼ P, it follows from tc 7 that the commutator
½L;Y� is trivial.

5) The last statement implies that the orbit aY is contained in E. Because Y is
commutative, Ya fixes each point of aY. Hence Ya acts trivially on the subplane E
generated by aP and u; v;w, and the connected component of Ya is contained in L,
but L is simple and LVY ¼ 1. Therefore, dimYa ¼ 0 and dim aY ¼ t ¼ 2.

6) Denote the connected component of Da by ‘. From steps 3) and 5) it follows that
dim‘ ¼ 16. Consequently, ‘ has a 2-dimensional radical P ¼

ffiffiffiffi

‘
p

, and ½L;P� ¼ 1.
Hence EP ¼ E. If c is a point of E and c A awnfa;wg, then dimPc > 0. On the other
hand, Pc acts trivially on the smallest closed subplane containing a; c; u; v, and this
subplane coincides with E by [15] (32.7); thus the connected component of Pc would
belong to the simple group L. This contradiction shows that td 8.

7) If t ¼ 8, then 16c dim‘ ¼ dim %‘ þ dimLc tþ 14 ¼ 22 and dimLd 8. Con-
sider the smallest closed subplane F containing aY and u; v;w, and assume that
P0F ¼ F‘. Then ‘ induces on F a group ‘=K of dimension c7, see [15] (83.17).
Hence dimKd 9 and K contains G2. The Corollary implies that dimF ¼ 2 and
then dim‘=Kc 1 and dimK > 14. This contradiction shows F ¼ P and Ya ¼ 1

(because Ya fixes F pointwise). By (j) there are two possibilities: either LGG2 for
some % A Y, or LG SU3C for each choice of %, and ‘ acts transitively on Ynf1g by
[15] (96.11). These cases will be treated separately.

8) Suppose that LGG2 and that L is contained in the maximal semi-simple sub-
group C of D. By minimality of Y and [15] (95.6b), the group C acts irreducibly on Y
and L < C. Cli¤ord’s Lemma [15] (95.5) implies that L cannot be contained in a
proper factor of C, hence C is almost simple. Inspection of the list [15] (95.10) of
representations shows that C is locally isomorphic to an orthogonal group. Because
each action of SO5R on a compact projective plane is trivial ([15] (55.40)), the group
C is simply connected and then C has a subgroup YG Spin7R. The central involu-
tion a A Y cannot be planar (or else Y would induce a group SO7R on the fixed plane
Fa). Hence a is a reflection with axis W and some center c. Because dimDc c 22, we
have dim cD d 10 and, therefore, dim aDad 10. It is well-known that aDa is con-
tained in the group T of translations with axis W and that a inverts each translation
in T. Consequently, Y acts faithfully on each invariant subgroup of T. There is only
one irreducible representation of Y in dimensionc16, viz. the natural one on R8. It
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follows that TGR16 is transitive and that dimTY ¼ 37. Finally, [4] Satz 3.6 or [15]
(81.17) shows that PGO.

9) Consider now the second case mentioned at the end of 7). By [15] (96.19), tran-
sitivity of ‘ on Ynf1g implies that a maximal compact subgroup F of ‘ is transitive
on the 7-sphere S consisting of all rays in Y. We know that SU3CGL < F and that
dimF < dim‘c dimLþ t ¼ 16. From [15] (96.20–22) we can conclude that the
commutator group F 0 is isomorphic to SU4C. Let o denote the central involution in
F 0 and note that F 0=hoiG SO6R. As in step 8), it follows that o is a reflection with
axis W , that the translation group T has dimension at least 10, and that T is the sum
of two 8-dimensional irreducible submodules; moreover, dimD ¼ dim‘þ dimT ¼
32, and the theorem is proved in the case tc 8.

10) For t > 8, the vector group Y contains a minimal normal subgroup HGRs of
the connected component G of Dav. Mutatis mutandis, the arguments in steps 3)–9)
can be applied to G and H instead of D and Y. Using the same notation as before, we
have

24c dimGc dim aG þ dim %‘ þ dimLc 8þ sþ dimL:

Hence (j) gives sd 2, moreover, LGG2 or sd 8.
11) Suppose that s < 8. As in step 4), it follows that ½L;H� ¼ 1. Choose a point c

in the 2-dimensional subplane E with c A avnfa; vg. Then dim cH c 1 and Hc VL has
positive dimension, but L is simple. Therefore, sd 8. If s ¼ 8, the Theorem is true by
the arguments 7)–9).

12) To finish the proof, let s > 8 and consider the smallest closed subplane H
containing aH and u; v;w. If k is the dimension of a line of H, then k j 8. Note
that aH J av and that Ha induces the identity on H. It follows that dimHa > 0,
hence H0P and kc 4. Since H has no compact subgroups other than 1, the sti¤-
ness theorem (j) shows that dimHa < 8, moreover, dimHa > 3 implies kc 2.
Only the possibility k ¼ 2 remains. By [15] (55.4), each closed subplane of H is
connected, and H‘ ¼ H because H is normal in G. There are points b; c A avVH
such that ‘b; c fixes H pointwise. On the other hand, dim‘b; c d 12. This contradicts
the Corollary. r
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