16-dimensional compact projective planes with 3 fixed points

Helmut Salzmann

Dedicated to Professor Adriano Barlotti on the occasion of his 80th birthday

Let $\mathscr{P} = (P, \mathfrak{L})$ be a topological projective plane with a compact point set *P* of finite (covering) dimension $d = \dim P > 0$. A systematic treatment of such planes can be found in the book *Compact Projective Planes* [15]. Each line $L \in \mathfrak{L}$ is homotopy equivalent to a sphere \mathbb{S}_{ℓ} with $\ell | \mathfrak{S}$, and $d = 2\ell$, see [15] (54.11). In all known examples, *L* is in fact homeomorphic to \mathbb{S}_{ℓ} . Taken with the compact-open topology, the automorphism group $\Sigma = \operatorname{Aut} \mathscr{P}$ (of all continuous collineations) is a locally compact transformation group of *P* with a countable basis, the dimension dim Σ is finite [15] (44.3 and 83.2).

The classical examples are the planes $\mathscr{P}_{\mathbb{K}}$ over the three locally compact, connected fields \mathbb{K} with $\ell = \dim \mathbb{K}$ and the 16-dimensional Moufang plane $\mathcal{O} = \mathscr{P}_{\mathbb{O}}$ over the octonion algebra \mathbb{O} . If \mathscr{P} is a classical plane, then Aut \mathscr{P} is an almost simple Lie group of dimension C_{ℓ} , where $C_1 = 8$, $C_2 = 16$, $C_4 = 35$, and $C_8 = 78$.

In all other cases, dim $\Sigma \leq \frac{1}{2}C_{\ell} + 1 \leq 5\ell$. Planes with a group of dimension sufficiently close to $\frac{1}{2}C_{\ell}$ can be described explicitly. More precisely,

the classification program seeks to determine all pairs (\mathcal{P}, Δ) , where Δ is a connected closed subgroup of Aut \mathcal{P} and $b_{\ell} \leq \dim \Delta \leq 5\ell$ for a suitable bound $b_{\ell} \geq 4\ell - 1$.

This has been accomplished for $\ell \leq 2$ and also for $b_4 = 17$. Here, the case $\ell = 8$ will be studied; the value of b_ℓ varies with the configuration of the fixed elements of Δ .

Most theorems that have been obtained so far require additional assumptions on the structure of Δ . If dim $\Delta \ge 27$, then Δ is always a Lie group [12].

By the structure theory of Lie groups, there are 3 possibilities: (i) Δ is semi-simple, or (ii) Δ contains a central torus subgroup, or (iii) Δ has a minimal normal vector subgroup, cf. [15] (94.26). The first two cases are understood fairly well:

- (a) If Δ is semi-simple and dim $\Delta > 28$, then $\Delta \cong SL_3\mathbb{H}$ and \mathscr{P} is a Hughes plane (as described in [15] §86), or $\Delta \cong Spin_9(\mathbb{R}, r)$ with $r \leq 1$, or $\mathscr{P} \cong \mathcal{O}$, see [10], [11].
- (b) If Δ contains a central torus, and if dim $\Delta > 30$, then $\Delta' \cong SL_3\mathbb{H}$, see [13].

A group Δ of type (iii) fixes a point or a line, cf. [3] (XI.10.19). Hence (a) and (b) imply

(c) If dim $\Delta > 30$ and Δ has no fixed element, then \mathcal{P} is a Hughes plane or $\mathcal{P} \cong \mathcal{O}$.

The case that Δ fixes exactly one element has been treated in [14]:

(d) If dim $\Delta \ge 35$ and if Δ fixes one line and no point, then \mathcal{P} is a translation plane.

All such planes have been determined in [6], [7], [9]. Either $\mathscr{P} \cong \mathscr{O}$ or dim $\Delta = 35$.

Little progress has been made in the cases where Δ fixes exactly two elements, necessarily a point and a line. If dim $\Delta \ge 40$, then \mathscr{P} and its dual are translation planes [15] (87.7). All *translation planes* with dim $\Delta \ge 38$ are described in [15] (82.28).

- (e) If dim $\Delta \ge 34$ and Δ fixes exactly 2 points and only one line, then Δ contains a translation group of dimension at least 15.
- (f) If dim $\Delta \ge 33$ and Δ fixes 2 points and 2 lines, then Δ contains a translation group $T \cong \mathbb{R}^8$ and a compact subgroup $\Phi \cong \text{Spin}_8\mathbb{R}$.

A method to construct all planes with exactly 2 fixed points have been given in [8].

A smaller dimension of Δ suffices if Δ fixes more than two points (the last case to be considered):

Theorem. If dim $\Delta \ge 32$ and Δ has (at least) 3 fixed points, then Δ contains a transitive translation group T. Either dim $\Delta = 32$ and a maximal semi-simple subgroup Ψ of Δ is isomorphic to $SU_4\mathbb{C}$, or dim $\Delta \ge 37$ and $\mathscr{P} \cong \emptyset$.

Translation planes with a group $\Psi \cong SU_4\mathbb{C}$ have already been studied in [5]. Examples of proper translation planes such that $T\Psi$ has a fixed point set $S \approx S_2$ are given in [6].

According to the *stiffness* result [15] (83.23), the stabilizer Λ of a non-degenerate quadrangle satisfies dim $\Lambda \leq 14$. The proof of the theorem depends decisively on Bödi's improvement [1] of the stiffness theorem:

(D) If the fixed elements of the connected Lie group Λ form a connected subplane \mathscr{E} , then Λ is isomorphic to the 14-dimensional compact group G_2 or its subgroup $SU_3\mathbb{C}$ or dim $\Lambda < 8$. If \mathscr{E} is a Baer subplane (dim $\mathscr{E} = 8$), then Λ is a subgroup of $SU_2\mathbb{C}$.

Corollary. From dim $\Lambda > 8$ it follows that dim $\mathscr{E} = 2$.

Proof. Assume that dim $\mathscr{E} = 4$. If *L* is any line of \mathscr{E} and if $c \in L \setminus \mathscr{E}$, then dim $\Lambda_c > 0$ and the fixed elements of Λ_c form a Baer subplane $\langle \mathscr{E}, c \rangle$. Hence dim $\Lambda_c \leq 3$ and dim $\Lambda \leq 11$. An alternative proof is given by [15] (96.35).

Proof of the Theorem. 1) For any closed subgroup $\Gamma \leq \Delta$ and any point x the dimension formula dim $\Gamma = \dim \Gamma_x + \dim x^{\Gamma}$ holds, see [15] (96.10). This fact will be used repeatedly without mention.

2) By the stiffness theorem, the stabilizer ∇ of a triangle satisfies dim $\nabla \leq 30$. Hence

all fixed points of Δ are incident with the same line W. There are at least 3 fixed points $u, v, w \in W$ and the stiffness theorem implies dim $\Delta \leq 38$.

3) Because of results (a) and (b), the group Δ has a minimal normal subgroup $\Theta \cong \mathbb{R}^t$. Choose $a \notin W$ and $\varrho \in \Pi \leq \Theta$ such that $\Pi \cong \mathbb{R}$ and $a^\varrho \neq a$. Since Δ acts linearly on Θ , the centralizer $\operatorname{Cs} \varrho$ is also the centralizer of Π , and the dimension formula gives dim $\operatorname{Cs} \Pi \ge 32 - t$. The connected component Λ of $\Delta_a \cap \operatorname{Cs} \Pi$ fixes the orbit a^{Π} pointwise, and the fixed elements of Λ form a connected subplane \mathscr{E} , see [15] (42.1). By (\Box) we have dim $\Delta_a - t \leq \dim \Lambda \leq 14$ and $t \geq 2$; moreover, dim $\Lambda = 14$ or dim $\Lambda \leq 8$.

4) Assume first that t < 8. Then $\Lambda \cong G_2$ is compact. Remember that the action of any compact or semi-simple Lie group on a real vector space is completely reducible ([2] (35.4)). Each irreducible module of G_2 on \mathbb{R}^{16} has a dimension divisible by 7, see [15] (95.10). Since $\Pi^{\Lambda} = \Pi$, it follows from $t \leq 7$ that the commutator $[\Lambda, \Theta]$ is trivial.

5) The last statement implies that the orbit a^{Θ} is contained in \mathscr{E} . Because Θ is commutative, Θ_a fixes each point of a^{Θ} . Hence Θ_a acts trivially on the subplane \mathscr{E} generated by a^{Π} and u, v, w, and the connected component of Θ_a is contained in Λ , but Λ is simple and $\Lambda \cap \Theta = 1$. Therefore, dim $\Theta_a = 0$ and dim $a^{\Theta} = t = 2$.

6) Denote the connected component of Δ_a by ∇ . From steps 3) and 5) it follows that dim $\nabla = 16$. Consequently, ∇ has a 2-dimensional radical $\mathbf{P} = \sqrt{\nabla}$, and $[\Lambda, \mathbf{P}] = \mathbb{1}$. Hence $\mathscr{E}^{\mathbf{P}} = \mathscr{E}$. If *c* is a point of \mathscr{E} and $c \in aw \setminus \{a, w\}$, then dim $\mathbf{P}_c > 0$. On the other hand, \mathbf{P}_c acts trivially on the smallest closed subplane containing *a*, *c*, *u*, *v*, and this subplane coincides with \mathscr{E} by [15] (32.7); thus the connected component of \mathbf{P}_c would belong to the simple group Λ . This contradiction shows that $t \ge 8$.

7) If t = 8, then $16 \leq \dim \nabla = \dim \varrho^{\nabla} + \dim \Lambda \leq t + 14 = 22$ and $\dim \Lambda \geq 8$. Consider the smallest closed subplane \mathscr{F} containing a^{Θ} and u, v, w, and assume that $\mathscr{P} \neq \mathscr{F} = \mathscr{F}^{\nabla}$. Then ∇ induces on \mathscr{F} a group ∇/K of dimension ≤ 7 , see [15] (83.17). Hence dim $K \geq 9$ and K contains G_2 . The Corollary implies that dim $\mathscr{F} = 2$ and then dim $\nabla/K \leq 1$ and dim K > 14. This contradiction shows $\mathscr{F} = \mathscr{P}$ and $\Theta_a = 1$ (because Θ_a fixes \mathscr{F} pointwise). By (\Box) there are two possibilities: either $\Lambda \cong G_2$ for some $\varrho \in \Theta$, or $\Lambda \cong SU_3\mathbb{C}$ for each choice of ϱ , and ∇ acts transitively on $\Theta \setminus \{1\}$ by [15] (96.11). These cases will be treated separately.

8) Suppose that $\Lambda \cong G_2$ and that Λ is contained in the maximal semi-simple subgroup Ψ of Δ . By minimality of Θ and [15] (95.6b), the group Ψ acts irreducibly on Θ and $\Lambda < \Psi$. Clifford's Lemma [15] (95.5) implies that Λ cannot be contained in a proper factor of Ψ , hence Ψ is almost simple. Inspection of the list [15] (95.10) of representations shows that Ψ is locally isomorphic to an orthogonal group. Because each action of SO₅ \mathbb{R} on a compact projective plane is trivial ([15] (55.40)), the group Ψ is simply connected and then Ψ has a subgroup $Y \cong \text{Spin}_7 \mathbb{R}$. The central involution $\alpha \in Y$ cannot be planar (or else Y would induce a group SO₇ \mathbb{R} on the fixed plane \mathscr{F}_{α}). Hence α is a reflection with axis W and some center c. Because dim $\Delta_c \leq 22$, we have dim $c^{\Delta} \ge 10$ and, therefore, dim $\alpha^{\Delta} \alpha \ge 10$. It is well-known that $\alpha^{\Delta} \alpha$ is contained in the group T of translations with axis W and that α inverts each translation in T. Consequently, Y acts faithfully on each invariant subgroup of T. There is only one irreducible representation of Y in dimension ≤ 16 , viz. the natural one on \mathbb{R}^8 . It follows that $T \cong \mathbb{R}^{16}$ is transitive and that dim TY = 37. Finally, [4] Satz 3.6 or [15] (81.17) shows that $\mathscr{P} \cong \mathscr{O}$.

9) Consider now the second case mentioned at the end of 7). By [15] (96.19), transitivity of ∇ on $\Theta \setminus \{1\}$ implies that a maximal compact subgroup Φ of ∇ is transitive on the 7-sphere *S* consisting of all rays in Θ . We know that $SU_3\mathbb{C} \cong \Lambda < \Phi$ and that dim $\Phi < \dim \nabla \leq \dim \Lambda + t = 16$. From [15] (96.20–22) we can conclude that the commutator group Φ' is isomorphic to $SU_4\mathbb{C}$. Let ω denote the central involution in Φ' and note that $\Phi'/\langle \omega \rangle \cong SO_6\mathbb{R}$. As in step 8), it follows that ω is a reflection with axis *W*, that the translation group T has dimension at least 10, and that T is the sum of two 8-dimensional irreducible submodules; moreover, dim $\Delta = \dim \nabla + \dim T = 32$, and the theorem is proved in the case $t \leq 8$.

10) For t > 8, the vector group Θ contains a minimal normal subgroup $H \cong \mathbb{R}^s$ of the connected component Γ of Δ_{av} . Mutatis mutandis, the arguments in steps 3)–9) can be applied to Γ and H instead of Δ and Θ . Using the same notation as before, we have

$$24 \leq \dim \Gamma \leq \dim a^{\Gamma} + \dim \varrho^{V} + \dim \Lambda \leq 8 + s + \dim \Lambda.$$

Hence (\Box) gives $s \ge 2$, moreover, $\Lambda \cong G_2$ or $s \ge 8$.

11) Suppose that s < 8. As in step 4), it follows that $[\Lambda, H] = 1$. Choose a point c in the 2-dimensional subplane \mathscr{E} with $c \in av \setminus \{a, v\}$. Then dim $c^{H} \leq 1$ and $H_{c} \cap \Lambda$ has positive dimension, but Λ is simple. Therefore, $s \geq 8$. If s = 8, the Theorem is true by the arguments 7)–9).

12) To finish the proof, let s > 8 and consider the smallest closed subplane \mathscr{H} containing a^{H} and u, v, w. If k is the dimension of a line of \mathscr{H} , then $k \mid 8$. Note that $a^{\mathrm{H}} \subseteq av$ and that H_a induces the identity on \mathscr{H} . It follows that dim $\mathrm{H}_a > 0$, hence $\mathscr{H} \neq \mathscr{P}$ and $k \leq 4$. Since H has no compact subgroups other than 1, the stiffness theorem (\Box) shows that dim $\mathrm{H}_a < 8$, moreover, dim $\mathrm{H}_a > 3$ implies $k \leq 2$. Only the possibility k = 2 remains. By [15] (55.4), each closed subplane of \mathscr{H} is connected, and $\mathscr{H}^{\nabla} = \mathscr{H}$ because H is normal in Γ . There are points $b, c \in av \cap \mathscr{H}$ such that $\nabla_{b,c}$ fixes \mathscr{H} pointwise. On the other hand, dim $\nabla_{b,c} \ge 12$. This contradicts the Corollary.

References

- R. Bödi, On the dimensions of automorphism groups of eight-dimensional ternary fields. II. *Geom. Dedicata* 53 (1994), 201–216. MR 96c:51028 Zbl 0829.51007
- H. Freudenthal, H. de Vries, *Linear Lie groups*. Academic Press 1969. MR 41 #5546 Zbl 0377.22001
- [3] T. Grundhöfer, H. Salzmann, Locally compact double loops and ternary fields. In: *Quasigroups and loops: theory and applications*, 313–355, Heldermann, Berlin 1990. MR 93g;20133 Zbl 0749.51016
- [4] H. Hähl, Lokalkompakte zusammenhängende Translationsebenen mit großen Sphärenbahnen auf der Translationsachse. *Resultate Math.* 2 (1979), 62–87. MR 82a:51010 Zbl 0437.51011
- [5] H. Hähl, $SU_4(\mathbb{C})$ als Kollineationsgruppe in sechzehndimensionalen lokalkompakten Translationsebenen. *Geom. Dedicata* **23** (1987), 319–345. MR 88j:51023 Zbl 0622.51008

- [6] H. Hähl, Sixteen-dimensional locally compact translation planes admitting SU₄C · SU₂C or SU₄C · SL₂ℝ as a group of collineations. *Abh. Math. Sem. Univ. Hamburg* 70 (2000), 137–163. MR 2003b:51023 Zbl 0992.51007
- H. Hähl, Sixteen-dimensional locally compact translation planes with large automorphism groups having no fixed points. *Geom. Dedicata* 83 (2000), 105–117. MR 2001h;51021 Zbl 0973.51011
- [8] H. Hähl, H. Salzmann, 16-dimensional compact projective planes with a large group of automorphisms fixing two points. In preparation.
- [9] H. Löwe, 16-dimensional locally compact, connected translation planes admitting SL₂IH as a group of collineations. To appear in *Pacific J. Math.* **209** (2003), 325–337.
- [10] B. Priwitzer, Large semisimple groups on 16-dimensional compact projective planes are almost simple. Arch. Math. (Basel) 68 (1997), 430–440. MR 98e:51020 Zbl 0877.51014
- [11] B. Priwitzer, Large almost simple groups acting on 16-dimensional compact projective planes. *Monatsh. Math.* 127 (1999), 67–82. MR 2000d:51020 Zbl 0929.51010
- [12] B. Priwitzer, H. Salzmann, Large automorphism groups of 16-dimensional planes are Lie groups. J. Lie Theory 8 (1998), 83–93. MR 99f:51027 Zbl 0902.51012
- H. Salzmann, Characterization of 16-dimensional Hughes planes. Arch. Math. (Basel) 71 (1998), 249–256. MR 99i:51013 Zbl 0926.51016
- [14] H. Salzmann, Near-homogeneous 16-dimensional planes. Adv. Geom. 1 (2001), 145–155.
 MR 2002h:51009 Zbl 1002.51011
- [15] H. Salzmann, D. Betten, T. Grundhöfer, H. Hähl, R. Löwen, M. Stroppel, Compact projective planes. de Gruyter 1995. MR 97b:51009 Zbl 0851.51003

Received 28 August, 2002

H. Salzmann, Mathematisches Institut der Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany Email: helmut.salzmann@uni-tuebingen.de