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Abstract. A topological translation plane may be defined as a system L of a‰ne l-dimensional
subspaces of R2l such that (1) any two points are joined by a unique line L A L and joining is
continuous; (2) Euclid’s parallel postulate holds and L is invariant under translation. It is easy
to see that one of the two parts of condition (2) may be omitted. We use topological methods
to show that (2) may be omitted altogether, unless l ¼ 8. In other words, we show that, except
possibly for l ¼ 8, there are no proper stable planes with point set R2l and a‰ne subspaces as
lines, and that translation invariance is automatic. The core of the argument is Theorem 3.1,
which characterizes the lines of a topological translation plane among a‰ne subspaces: an
l-dimensional subspace A is a line if there is a point p B A such that every line passing through
p intersects A in at most one point. We also consider the e¤ect of the dual spread condition
in our context. Moreover, we point out limits to generalization by giving examples obtained
by transfinite induction in finite dimensional vector spaces over arbitrary infinite skew fields.
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1 Linear planes

1.1 Definition. a) A join space ðV ;LÞ consists of a set V of points and a system L
of subsets LJV , called lines, such that any two points x; y A V are joined by a
unique line L ¼ x4y A L.

b) We call ðV ;LÞ a linear plane if, in addition to the above, the following con-
ditions hold:

(LP 1) V is a vector space over a skew field F ,

(LP 2) all lines are a‰ne subspaces of V , and

(LP 3) any two intersecting lines are cosets of complementary vector subspaces.
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More precisely, condition (LP 3) says that for any two lines K ;L A L intersecting
in a point x ¼ K5L we have a vector space decomposition V ¼ ðK � xÞl ðL� xÞ.

In the literature, join spaces are usually called linear spaces. We want the term
‘linear’ to indicate the presence of a vector space structure. Condition (LP 3) justifies
the name ‘plane’ given to these structures.

Observe that the case dimF V ¼ 2 is trivial: in this case, every one-dimensional
subspace must occur as a line, hence ðV ;LÞ is the Desarguesian a‰ne plane over F .

1.2 Proposition. For a linear plane, the following conditions are equivalent:

(TP 1) Euclid ’s parallel postulate holds in ðV ;LÞ, that is, ðV ;LÞ is an a‰ne plane,

(TP 2) The line system is invariant under vector space translation, that is,
Lþ V ¼ L.

Proof. 1) Suppose that condition (TP 2) holds. Given L A L and x A V nL, choose
y A L; then the line K ¼ Lþ x� y contains x and is disjoint from L. We show that
every other line K 0 containing x intersects L. Indeed, the vector subspaces K � x and
K 0 � x are complementary, hence there are k A K and k 0 A K 0 such that k � xþ
k 0 � x ¼ y� x, and then y� ðk � xÞ ¼ k 0 A LVK 0.

2) Conversely, suppose that ðV ;LÞ is an a‰ne plane and consider L A L and
v A V such that Lþ v0L. We have to show that Lþ v A L. Pick y A L; then
x ¼ yþ v B L and there is a line K line that contains x and is parallel to L.

We claim that Lþ vJK . If there is z A L such that zþ v B K, then the line
W ¼ x4ðzþ vÞ intersects L, say L5W ¼ w. Then Lþ v ¼ Lþ x� w, and the
subspace W VL ¼ W V ðLþ vÞ � xþ w is at least 1-dimensional. This implies that
L ¼ W , a contradiction to x B L.

Equality K ¼ Lþ v now follows by applying twice what we have shown. Indeed,
K � v is contained in the line M passing through y parallel to K , hence LJ
K � vJM. Since both L and M are lines, the three sets are equal. r

1.3 Translation planes. A‰ne planes which are linear planes (and hence satisfy (TP
2)) are called a‰ne translation planes. For a group theoretical definition of a‰ne
translation planes, see [1]; more background and countless examples can be found in
the books [4], [13], and [17].

Observe that a translation plane ðV ;LÞ is completely determined by the pencil L0

of all lines containing the origin 0; indeed, we have L ¼ L0 þ V . The pencil is a
partition, that is, a covering of V by mutually complementary vector subspaces. This
carries over to linear planes in general:

1.4 Proposition. Let ðV ;LÞ be a linear plane. Then for each v A V , the pencil Lv of

all lines containing v defines a partition Lv � v of V into mutually complementary

vector subspaces. In particular, ðV ;Lv þ VÞ is a translation plane.

If the translation planes defined by distinct points are all identical, then the given
linear plane is itself a translation plane. In the finite case, there are no linear planes
other than translation planes:

Rainer Löwen, Günter F. Steinke and Hendrik Van MaldeghemS60



1.5 Proposition. Every finite linear plane is an a‰ne translation plane.

Proof. It follows from (LP 3) that all lines are of the same finite dimension over F .
Hence, they all contain the same number n of points, and V has n2 points. The
number of lines passing through the origin is therefore n2�1

n�1 ¼ nþ 1. A line L not
passing through 0 meets exactly n of these lines, hence it has a unique parallel. The
assertion follows in view of 1.2. r

1.6 Problem 1. Are there any linear planes that are not a‰ne translation planes?

At the end of the present section, we shall give a positive answer to this question
using transfinite induction. Examples of this kind are not very pleasant, hence we
shall sharpen the problem by adding continuity conditions:

1.7 Problem 1 0. Are there any weakly topological linear planes that are not a‰ne
translation planes?

The definition of ‘weakly topological’ will be given in Section 2, and in Section 3
we shall give a partial, negative answer to Problem 1 0. The following observation
should help to develop some feeling for the problems.

In an a‰ne translation plane, all lines parallel to a given one form a set of
mutually disjoint a‰ne subspaces, all of the same dimension, covering the whole
vector space V . In the case of translation planes, any set of lines with these properties
is necessarily translation invariant. One might wonder if this is true for a‰ne sub-
spaces in general, and if this could lead to a negative answer to Problem 1. However,
it is rather easy to give examples that are not translation invariant. The examples
given below are even continuous in the sense that the subspace containing a point
p depends on p continuously, hence we do not even obtain negative evidence with
respect to Problem 1 0.

1.8 Example. The vector space R4 can be covered by a set of mutually disjoint 2-
dimensional a‰ne subspaces that is not translation invariant. We obtain such an
example using a ð2� 2Þ-matrix A having no real eigenvalue, for instance A ¼

�
0 �1
1 0

�
.

For x; y A R, we set ðx; yÞA ¼ ðuðx; yÞ; vðx; yÞÞ and define

Wðx; yÞ ¼ ðx; y; 0; 0Þ þ hð0; 0; 1; 0Þ; ðuðx; yÞ; vðx; yÞ; 0; 1Þi;

where the acute brackets denote the linear span. The condition for a vector ða; b; s; tÞ
to belong to Wðx; yÞ is that ða; bÞ ¼ ðx; yÞð1þ tAÞ, where 1 denotes the 2� 2 iden-
tity matrix. Hence there is a unique solution ðx; yÞ. The a‰ne spaces Wðx; yÞ for
x; y A R then form a partition of R4.
Observe that the horizontal subspaces

W 0ðu; vÞ ¼ ð0; 0; u; vÞ þ hð1; 0; 0; 0Þ; ð0; 1; 0; 0Þi

for u; v A R also form a partition of R4 and that furthermore any two subspaces
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Wðx; yÞ and W 0ðu; vÞ are complementary. However there is no 2-dimensional a‰ne
subspace that is complementary to each of Wðx; yÞ and W 0ðu; vÞ.

For everything that follows, we need to fix our notation and terminology regarding
a‰ne and projective spaces.

1.9 A‰ne and projective spaces. Consider a (skew) field F and a (left) F -vector
space W of finite dimension nþ 1. The n-dimensional projective space PðW Þ ¼ PnF

is the lattice of all vector subspaces of W . We denote by PkðW Þ the set of all sub-
spaces Y of (vector space) dimension k þ 1; they are considered as k-dimensional
‘flats’ or, briefly, k-flats in PðW Þ, and we write k ¼ pdimY for the projective dimen-

sion. Given X A PðW Þ, we denote the set of all k-flats contained in X by PkðX Þ.
Often we identify X with its point set P0ðX Þ.

From an n-dimensional (left) F -vector space V , we obtain the n-dimensional a‰ne

space AðVÞ ¼ AnF ; it consists of the point set V ¼ A0ðVÞ together with the set of all
a‰ne subspaces. By definition, an a‰ne subspace is a coset B ¼ U þ v, v A V , of a
vector subspace U cV . In this situation, U will be called the direction space of B and
denoted U ¼ B0. The a‰ne span 04B ¼ B0 þ Fv (the smallest a‰ne subspace con-
taining 0 and B) will be denoted ~BB. The set of k-dimensional a‰ne subspaces will be
denoted AkðVÞ. One-dimensional a‰ne subspaces will be called F-lines in order to
distinguish them from the lines of a linear plane.

Using V ¼ F n and W ¼ F nþ1, we obtain an embedding of AnF into PnF as fol-
lows. The subspace H ¼ F n � f0g A Pn�1ðW Þ is a hyperplane, and the complement
P0ðW ÞnP0ðHÞ may be identified with F n via ða1; . . . ; anÞ $ F ða1; . . . ; an; 1Þ. Under
this identification, every k-dimensional a‰ne subspace BJF n corresponds to a set
of the form P0ðX ÞnP0ðHÞ, where X A PkðW Þ is uniquely determined, and we write
X ¼ B. We call H the hyperplane at infinity with respect to this embedding of AnF

into of PnF . Thinking of B, B and H as subsets of the point set P0ðW Þ, we form the
complement BnB ¼ BVH and denote it by By. It can be described as the set of all
directions of F -lines contained in B.

We proceed now to the construction of linear planes that are not translation planes.
The following lemma and its corollary seem to be well known, compare [18], but we
provide proofs for the convenience of the reader.

1.10 Lemma. Let V be a vector space of finite dimension over a skew field F. If W is a

family of proper subspaces of cardinality cardW < cardF , then the union of W cannot

be all of V.

Proof. Suppose that V ¼ 6W, where all W A W are proper vector subspaces of
V . Clearly, W contains at least two elements of W1, W2 that are maximal with re-
spect to inclusion. By induction on the dimension of V , we find elements v1 A
W1n6ðWnfW1gÞ and v2 A W2n6ðWnfW2gÞ. Consider the vectors wt ¼ v1 þ tv2,
where t A F . For t0 t 0, the vectors wt and wt 0 must belong to di¤erent subspaces
W ;W 0 A W, which proves that cardF c cardW. Indeed, if both vectors belong to
the same subspace W A W, then wt � wt 0 ¼ ðt� t 0Þv2 A W so that v2 A W . Thus
W ¼ W2 and v1 ¼ wt � tv2 A W2—a contradiction to the choice of v1. r
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N. Rosehr pointed out that some finiteness condition is indispensable for 1.10. For
example, any vector space of countable dimension can be obtained as the union of a
countable ascending chain of proper subspaces.

1.11 Corollary. Let V be an n-dimensional vector space over a skew field F and let W
be a family of vector subspaces of V of dimension at most m, where m < n. If

cardW < cardF , then there is a vector subspace U of V of dimension n�m such that

U VW ¼ f0g for all W A W.

Proof. For each W A W, let W ð0Þ ¼ W . If we have vector subspaces W ðkÞ of dimen-
sion at most mþ k < n, there is a vector vkþ1 A V not contained in any of the W ðkÞ

by Lemma 1.10. We then define W ðkþ1Þ to be the linear span of W ðkÞ and vkþ1. This
process gives us n�m vectors v1; v2; . . . ; vn�m such that the vector subspaceU spanned
by them has dimension n�m. Furthermore, U VW ¼ f0g for all W A W. r

1.12 Examples of non-a‰ne linear planes. Consider an infinite skew field F and a
left F -vector space V of finite dimension 2ld 4. Using transfinite induction, we shall
construct a set L of l-dimensional a‰ne subspaces of V such that V endowed with
L as a line set becomes a linear plane.

Let o be the smallest ordinal having the same cardinality as F . Then we know that
for any n A o, the set of all m < n has smaller cardinality than F . Consider the follow-
ing two sets, which have the same cardinality as F : the set R of all F -lines (one-
dimensional a‰ne subspaces) of V and the set U of all l-dimensional a‰ne subspaces
of V . Choose bijections n 7! Rn and n 7! Un of o onto these sets. For each a A o, we
shall define an l-dimensional subspace La, andL will be the set of all these subspaces.

We shall enforce that we obtain a join space simply by making sure that every
Rn A R is contained in a unique line La A L. Let 1 A o be the smallest element. The
only condition for the choice of L1 is that R1 cL1. If lines Lb have been chosen for
all b < a A o such that (LP 3) is satisfied, consider the smallest n ¼ nðaÞ such that Rn

is not contained in any of the Lb, b < a. (To see that such Rn exist, apply 1.11 to the
direction spaces of the Lb.) We shall choose La such that it contains RnðaÞ; the prob-
lem is to ensure that (LP 3) is satisfied. In the sequel, we shall prove the existence of
suitable candidates U A U for La. The transfinite enumeration of all l-dimensional
subspaces will then be used to remove all ambiguity from the definition of La: among
the spaces Um satisfying our conditions, we choose the one with minimal m. Our pro-
cedure guarantees that always nðaÞd a, so that every element of R will eventually be
contained in some line.

We may assume that Rn contains the origin 0. We define Vb ¼ ðLbÞ0 þ Rn if the
direction space ðLbÞ0 does not contain Rn and Vb ¼ ~LLb (the linear span) if ðLbÞ0
contains Rn. In any case Vb has dimension l þ 1 < 2l. By Corollary 1.11 there is an
l � 1 dimensional vector subspace W of V that is complementary to each Vb. Let
U ¼ W þ Rn. Then dimU ¼ l and U VVb ¼ Rn. It now follows that ðLbÞ0 VU ¼ f0g
if ðLbÞ0 does not contain Rn and ~LLb VU ¼ Rn if ðLbÞ0 contains Rn.

Hence, if none of the direction spaces ðLbÞ0, b < a, contains Rn, then we may
choose La complementary to all of them, which entails that cardðLa VLbÞ ¼ 1. If
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some of the ðLbÞ0 contain Rn, we can make our choice such that ~LLb VLa ¼ Rn for all
such b. This ensures that Lb and La are disjoint, but their direction spaces are di¤er-
ent. This case inevitably occurs at some stage, hence we cannot get a translation
plane. Actually, we do not get a single pair of lines that are translates of each other.

2 Weakly topological linear planes

Throughout this section, we consider real linear planes ðV ;LÞ of finite dimension.
In other words, F ¼ R will be the field of real numbers, and the vector space
V ¼ R2l will be of finite dimension, necessarily an even number 2l. Then lines are l-
dimensional a‰ne subspaces. We shall assume that the join operation is continuous
at least in one variable, and we shall deduce stronger continuity properties. In par-
ticular, it will follow that l A f1; 2; 4; 8g (but, as we remarked in 1.1, only the cases
l > 1 are interesting). The purpose of these results is not to initiate a theory of topo-
logical linear planes but to minimize the hypotheses of the non-existence result that
will be proved in Section 3.

The vector space V will be regarded as the real a‰ne space AðR2lÞ embedded
in the real projective 2l-space PðR2lþ1Þ, as explained in 1.9. We shall make use of
the continuity properties of the geometric operations in real projective spaces, as
explained in the sequel.

2.1 Real topological projective spaces. We abbreviate P ¼ PðRnþ1Þ and Pk ¼
PkðRnþ1Þ, compare 1.9. Each of the sets Pk carries a natural topology, the Grass-

mann topology, which makes it a compact topological (even smooth) manifold. The
topology can either be derived from the transitive action of the general linear group
GLðW Þ on Pk, compare [19], 64.3, or from local coordinate systems, compare [5],
VI, §3.5. The point set P0 ¼ P0ðRnþ1Þ is the n-manifold Pn, the real projective n-
space. Its topology is simply the quotient topology with respect to the map
Rnþ1nf0g ! P0 sending a vector v0 0 to its span Rv. The point set P0ðX Þ of each
k-flat X A Pk is homeomorphic to Pk.

With respect to the Grassmann topologies, P is a topological projective space. This
means, among other things, that the join and intersection operations4 and5 are
both continuous on each subset of Pk � Pr on which the result of the operation has
constant dimension. Moreover, the function pdimðX5Y Þ is upper semi-continuous
on Pk � Pr, which means that pdimðX 05Y 0Þc pdimðX5Y Þ for all ðX 0;Y 0Þ in
some small neighbourhood of ðX ;YÞ. This will be referred to as the stability prop-

erty. There is also a dual stability property for joins. Finally, we need the fact that the
incident pairs form a closed subset of Pk � Pr for each kc r. A convenient reference
for these results due to Misfeld is [14].

2.2 Topological translation planes. As we observed in 1.3, a translation plane
ðR2l ;LÞ with point set R2l is determined by the pencil L0 of all lines containing the
origin 0. The pencil is a partition, that is, a covering of R2l by mutually comple-
mentary l-dimensional vector subspaces.

If we think of R2l as real a‰ne space embedded in real projective space PðR2lþ1Þ,
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then we may view the pencil as a subset L0 JPlðR2lþ1Þ, from where it inherits a
topology, referred to as the Grassmann topology. Taking intersections with the
hyperplane H at infinity, we obtain a spread SJPl�1ðHÞ, that is, a set of mutually
disjoint ðl � 1Þ-flats covering H. We have Pl�1ðHÞAPl�1ðR2lÞ, and the topology
induced on S by this set corresponds to the Grassmann topology because the pro-
jection map L0 ! S and its inverse are both continuous.

Using PðR2lþ1Þ, one obtains a neat description of the projective closure of
ðR2l ;LÞ. Its point set is ðP0nHÞUS, and its lines are the l-flats L such that L5H

belongs to the spread S, plus one line represented by S itself. Incidence is given by
inclusion. This description is known as the André-Bose representation of a projective
translation plane; it can also be used in order to obtain the topology of the projective
point set as a quotient topology inherited from P0ðR2lþ1Þ, see [15] or [19], 64.4. The
topology of the line space is taken from PlðR2lþ1Þ. It turns out that a spread S
defines a topological translation plane (with continuous join and intersection) if and
only if S is compact in the Grassmann topology. In this case, S is homeomorphic to
the l-sphere Sl , and l A f1; 2; 4; 8g, compare [19], 52.5.

We are now ready to consider continuity properties of linear planes. The following
result sharpens the characterization of topological translation planes that we just
mentioned; the additional fact is that the Grassmann topology on the line pencil of a
translation plane is the only one that can render the join operation continuous even in
one variable.

2.3 Proposition. Let ðR2l ;LÞ be an a‰ne translation plane and assume that the pencil

L0 carries a Hausdor¤ topology t such that the join map j0 : R2lnf0g ! L0, defined
by j0ðxÞ ¼ x40, is continuous. Then t coincides with the Grassmann topology g,

and ðR2l ;LÞ is a topological translation plane; in particular, l A f1; 2; 4; 8g.

Proof. 1) Let SJR2l be a sphere centered at 0. We consider a third topology on L0,
namely, the quotient topology d defined by the restriction j0 : S ! L0. It is compact,
and by assumption the identity map ðL0; dÞ ! ðL0; tÞ is continuous. Since t is
assumed to be Hausdor¤, the topologies agree.

2) We shall show that L0 is closed in Pl�1ðR2lÞ with respect to the Grassmann
topology and, hence, compact. This will imply that the join map is continuous with
respect to g, see 2.2. Repeating the argument of step (1) we obtain that g ¼ d ¼ t.
Everything else follows, see again 2.2.

Suppose therefore that a sequence of lines Ln A L0 converges to an l-dimensional
vector space A A Pl�1ðR2lÞnL0 with respect to the Grassmann topology. Then AVS
contains two points a1; a2 such that the lines a140 and a240 are distinct. Using
the properties of the topological projective space P2lR, one obtains sequences xi

n A
Ln VS such that xi

n ! ai for i ¼ 1; 2. This implies that Ln ¼ j0ðxi
nÞ ! ai40 with

respect to t, but a sequence in a Hausdor¤ space cannot have two limits. r

2.4 Definition. We say that a linear plane ðR2l ;LÞ is weakly topological if there is a
Hausdor¤ topology t on L such that the join operation4 is continuous in each
variable separately. For instance, if ðR2l ;LÞ is a stable plane (see, e.g., [10]), then it
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is weakly topological. In fact, one can show like in 2.3 that continuity of join in both
variables simultaneously implies that the linear plane is a stable plane with respect to
the Grassmann topology. We do not give a proof, because at present we only have
nonexistence results and no examples of topological proper linear planes.

From 1.4 and 2.3 we conclude that each line pencil Lv, v A R2l , of a weakly topo-
logical linear plane defines a topological translation plane. In particular, we have
l A f1; 2; 4; 8g by 2.2, and, since we are looking for linear planes that are not trans-
lation planes, we may assume that l > 1.

2.5 The projective join map. Let ðR2l ;LÞ be a topological translation plane. Con-
sider an l-dimensional a‰ne subspace AJR2l not containing the origin 0. In addi-
tion, we assume that A meets each line passing through 0 in at most one point. For
example, A could be a line of a linear plane having the pencil L0 in common with the
given translation plane. We have the restriction j ¼ jA;0 : A ! L0 of the continuous
join map. We want to extend this map to a continuous surjection J ¼ JA;0 : A ! L0,
where A is the projective closure of A as defined in 1.9. (As usual, we are identifying
A with its set of points P0ðAÞAPl .) We define J using the continuous lattice oper-
ations of the topological projective space PðR2lþ1Þ, as follows.

Consider the pencil R0 of all R-lines R A P1ðR2lþ1Þ which contain the origin of the
a‰ne space R2l JP0ðR2lþ1Þ. There is a map j : R0 ! L0 assigning to every R-line
R the unique line L A L such that L contains R. The fact that the incidence relation
of the projective space is closed (see 2.1) together with the fact that L0 is compact
(see 2.2) implies that j is continuous. Composing j with the continuous join map
s : A ! R0 of the projective space, we obtain the desired continuous extension
J ¼ j � s. That J agrees with j on A is easily verified. Moreover, J has the following
properties.

2.6 Proposition. Let ðR2l ;LÞ be a topological translation plane, and let AJ
R2lnf0g be an l-dimensional a‰ne subspace that meets each line passing through 0 in

at most one point. The projective join map J ¼ JA;0 defined in 2.5 has the following

properties.

a) J : A ! L0ASl is continuous and surjective (remember that AAPl).

b) The map J is an identification, that is, the topology of L0 is the quotient topology

with respect to J.

c) The set AARl is mapped homeomorphically onto the set IJL0 of lines inter-

secting A.

d) The set Ay ¼ AnAAPl�1 is mapped onto the set DJL0 of lines disjoint from A,
and the restriction J : Ay ! D is an identification.

e) The fibers J�1ðLÞ, L A L0, are flats ( projective subspaces).

Proof. Continuity of J has been proved. In order to prove surjectivity, consider a line
L A L0 and an arbitrary point a A A. If the intersection Ly VAy contains a point p,
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then JðpÞ ¼ L. If the intersection is empty, then the l-dimensional vector spaces L

and A� a are complementary, and this implies that LVA is a point p. Clearly,
JðpÞ ¼ L A I, and this proves assertion (a). Conversely, if LVA ¼ fpg, then
Ay VLy ¼ q; it follows that JðAÞJI and JðAyÞJD.

Claim (b) follows from the continuity of J together with the facts that AAPl is
compact and that L0ASl is a Hausdor¤ space. By construction, J induces a con-
tinuous injective map of the l-manifold AARl into the l-manifold L0ASl . The
Domain Invariance Theorem, see, e.g., [19], 51.18f, shows that the induced map is a
homeomorphism onto its image, and this proves (c). The first part of (d) follows from
(a) and (c). The restriction of J is an identification for the same reasons as J itself.
Finally, (e) follows from the definition of J. r

The set D carries the quotient topology with respect to the restriction J : Ay ! D.
This topological quotient can also be obtained as follows. Choose an arbitrary point
a A A and map each point p A ðA� aÞnf0g to the unique line L A L containing it.
This map is a continuous surjection onto D, and D carries the quotient topology. The
fibers are the sets ððA� aÞVLÞnf0g, where L A D. Note that the dimension of the
fibers is larger by 1 than in the previous description. We prefer, however, the projec-
tive point of view, hence we shall not pursue this idea.

2.7 Aims and strategy. We intend to prove a partial negative answer to Problem 1 0,
see Corollary 3.2. The case l ¼ 8 will remain open, however. This is why we shall give
two independent proofs for the main result 3.1. The second one, given in 4.3, is more
direct and does not use the projective join map, whereas the first one, given in Section
3, yields a comprehensive picture of that map. Conceivably, one of the the two
proofs, or both together, will be useful in the future in tackling the last missing case.

Technically, our aim in the first proof is to show that D has only one element, or in
other words, that Ay contains only one fiber of J (the proof of 3.6 below will show
why this is indeed what we want). The method to prove this will be to consider all
possibilities for the dimensions of the fibers and to determine the resulting topologies
of D, hoping to show that the space D cannot be the complement of an embedding of
Rl into Sl , whereas 2.6 says that L0ASl is the disjoint union of IARl and D. This
strategy will be successful in all cases except l ¼ 8.

3 Nonexistence results

The core of our nonexistence proof is to establish the following more ‘positive’ result.

3.1 Theorem. Let ðR2l ;LÞ be a topological translation plane of dimension 2l ¼ 4 or

8, and consider an l-dimensional a‰ne subspace AJR2lnf0g that intersects every line

L A L0 in at most one point. Then A is a line.

Applying this as indicated in 2.7 we obtain our main result, which partly answers
Problem 1 0:
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3.2 Corollary 1. Weakly topological linear planes other than topological translation

planes do not exist except, possibly, in dimension 2l ¼ 16.

Proof of Corollary 1. Suppose that ðR2l ;LÞ is a weakly topological linear plane of
dimension 2l0 16. Then 1.4 together with 2.3 shows that the line pencil L0 defines a
topological translation plane with line set L0 þR2l . According to 3.1, we have
LJL0 þR2l . Since each of these two sets defines a join space with point set R2l ,
the sets are equal, and the given linear plane is a topological translation plane. r

Remember that the definition of a weakly topological linear plane requires the
continuity of the join map jp : q 7! q4p for all points p. However, the proof just
given does not use the continuity of jp except for one particular point p ¼ 0. There is
nothing special about 0, and we have the following.

3.3 Corollary 2. For l A f2; 4g, let L be a set of l-dimensional a‰ne subspaces of R2l

such that any two points of R2l are on a unique element L A L. If there is a point p

such that the join map jp is continuous, then ðR2l ;LÞ is a topological translation plane.

Before we proceed to the proof of 3.1, we ask for possible generalizations:

3.4 Problem 2. Describe the class of all translation planes for which Theorem 3.1
is true.

Certainly, 3.1 is not valid in all translation planes; this follows from our examples
in 1.12. A case of special interest is, of course, the case of 16-dimensional topological
translation planes ðl ¼ 8Þ. We remark here that in this case the proof of 3.1 fails only
when the fibers X JAy of the projective join map J satisfy pdimX A f1; 2; 3; 4; 5g,
with dimension 1 or 2 occurring at least once.

In Section 4, we shall discuss a condition which holds in (locally compact, con-
nected) topological translation planes and implies the assertion of 3.1 for small values
of l, but not in general.

The Proof of Theorem 3.1 is given as a sequence of lemmas dealing with the vari-
ous possibilities for the dimensions of the fibers of the projective join map J ¼ JA;0.
Another, independent proof will be given in Section 4. We shall always mean the
projective dimension pdimX when we speak about the dimension of a flat. This is the
same as the topological (manifold) dimension of the point set P0ðX Þ. Let l A f2; 4; 8g.
It will be tacitly understood that the following lemmas deal with the situation of
Theorem 3.1; however, the case l ¼ 8 will not be excluded.

3.5 Lemma. The projective join map J has at least one nontrivial fiber X JAy, that
is, a fiber which is not reduced to a point.

Proof. If the assertion is not true, then J is injective, hence J is a homeomorphism by
compactness. But AAPl and L0ASl are not homeomorphic for l > 1. r
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3.6 Lemma. If the projective join map has a fiber X of dimensiondl � 2, then Ay is a

single fiber, and the assertion of 3.1 is true.

Proof. We have pdimX d pdimAy � 1, hence all other fibers Y JAy are points
(remember that fibers must be disjoint). If X 0Ay, then J is injective on
AynXAR l�1 and maps this set homeomorphically onto its image because J induces
an identification Ay ! D. It follows that D is homeomorphic to the one point
compactification Sl�1 of R l�1. But then L0nD is disconnected by the Jordan–
Brouwer Separation Theorem, see [8], XVII.2.4 or [9], 18.5. This is a contradiction,
since we know from 2.6(c) and (d) that I ¼ L0nDARl .

Now suppose that X ¼ Ay. This means that L ¼ JðX Þ is the only line passing
through 0 that is disjoint from A, and that the a‰ne subspaces A and L have the
same points at infinity. Choose an arbitrary point a A A; then it follows that
A ¼ Lþ a A L. r

3.7 Lemma. The projective join map J has at least one fiber X JAy of J such that

pdimX 0 l
2 � 1.

Proof. Suppose that all fibers are of dimension l
2 � 1. Then the fibers form a spread S

in the projective ðl � 1Þ-space Ay. Now by its definition, the spread S is compact in
the Grassmann topology on Pl=2�1ðAyÞ, hence it gives rise to a topological trans-

lation plane on the a‰ne space AGRl . Using 2.2, we infer that SASl=2 with
respect to the Grassmann topology. On the other hand, arguments like in the proof
of 2.6 show easily that the natural map Ay ! S is an identification with respect to
the Grassmann topology. Together with 2.6d this shows that DASl=2, and we can
use Lefschetz duality to compute the homology of the complement L0nD,
compare [9], 18.3. The result contradicts the fact that I ¼ L0nD is homeomorphic
to Rl according to 2.6. r

3.8 Lemma. The set of points of Ay forming a 0-dimensional fiber is open in Ay.

Proof. Remember that a fiber J�1ðLÞ, L A L0, is (the point set of ) the intersection
L5A. Two l-flats in P2l cannot be disjoint, hence the stability property (see 2.1)
implies that the set of all lines L defining a 0-dimensional fiber is open. By continuity
of joining, the corresponding fibers fill an open set of points in A, and intersecting
with Ay we obtain the assertion. r

The next result is purely topological:

3.9 Lemma. Consider a real projective space Pk, k odd, and an identification map

q : Pk ! X . If there is a nonempty open subset U JPk such that all fibers q�1qðuÞ,
u A U , are singletons, then there is a continuous map X ! Sk that is not homotopic to

a constant.

Proof. Choose a topological k-disk DJU and let YASk be the quotient space
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obtained from Pk by shrinking the closure of PknD to a point. Let p : Pk ! Y

denote the corresponding identification map and r : Sk ! Pk the universal covering
map. There is a continuous map f : X ! Y such that p ¼ f � q, and we claim that f
is not homotopic to a constant. If this is not true, then also the map g :¼
f � q � r ¼ p � r is homotopic to a constant. We proceed to show that this is not the
case.

The inverse image r�1ðDÞ consists of two disjoint disks that are interchanged by
the unique nontrivial deck transformation t : x 7! �x with respect to r. Observe that
t preserves orientation since k is odd. It follows that both disks are mapped onto Sk

with the same orientation, and the mapping degree of g isG2; compare [7], Sect. IV.5
or [2], 9.1. r

3.10 Lemma. If l > 1, then Ay does not contain a 0-dimensional fiber.

Proof. If there is a 0-dimensional fiber, then 3.8 and 3.9 show that DJL0 satisfies
the conditions of the Borsuk Separation Theorem [8], XVII.2.1, which asserts that
L0nD is disconnected; this is a contradiction to 2.6(c) and (d), which say that I ¼
L0nDARl . r

Note that 3.10 implies the nonexistence of ðl � 2Þ-dimensional fibers, because fibers
are disjoint projective subspaces. In 3.6, we gave an independent and much simpler
proof of this fact; that proof may be considered as an illustration of the general
argument.

3.11 Summing up the results 3.5 through 3.10, we see that we have proved Theorem
3.1 for l A f2; 4g. For l ¼ 8, the open cases are those where all fibers have dimensions
d A f1; 2; 3; 4; 5g and some number d0 3 occurs. Since fibers are disjoint, occurrence
of d A f4; 5g implies occurrence of d A f1; 2g. For the time being, we cannot prove
more.

4 Bispreads

R. Riesinger (private communication) raised the question as to whether Theorem 3.1
is valid for all translation planes whose generating spread is also a dual spread, i.e.,
every vector subspace of codimension one contains exactly one spread element. Such
spreads will be called bispreads in the sequel. It is well-known that there are spreads
which are not bispreads, see [3], [6], [11], [12]. It is also well-known that every com-
pact spread in a real vector space of finite dimension is a bispread, see [19], 64.10a,
hence a positive answer to Riesinger’s question would remove the exception l ¼ 8
from Theorem 3.1 and its corollaries.

It turns out, however, that the answer to Riesinger’s question is ‘no’ in general;
we construct counterexamples over every infinite skew field (4.4). Nevertheless, the
answer is ‘yes’ for lc 3, see 4.2. The proof of this result gains even more strength in
the topological setting. It can then be used for an alternative proof of Theorem 3.1
(under the original hypotheses). We present this proof, because it might be the key to
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treating the last missing case l ¼ 8. Yet another problem suggests itself, to which we
have no answer:

4.1 Problem 3. Suppose we have a linear plane ðV ;LÞ such that each line pencil Lv

is a bispread. Is ðV ;LÞ necessarily an a‰ne translation plane?

4.2 Theorem. Let F be an arbitrary skew field. Let ðF 2l ;LÞ be a translation plane of

dimension 2l ¼ 4 or 6 defined by a bispread L0, and consider an l-dimensional a‰ne

subspace AJF 2lnf0g that intersects every line L A L0 in at most one point. Then A

is a line.

Proof. Let ~AA be the ðl þ 1Þ-dimensional vector subspace of F 2l spanned by A. In
general, its intersection with a line L A L0 is at least one-dimensional, but we can
obtain a stronger condition because L0 is a bispread. Indeed, let H be a ð2l � 1Þ-
dimensional vector subspace of F 2l that contains ~AA. Since L0 is also a dual spread,
there exists a unique element L of L0 contained in H. Then

dimðLV ~AAÞ ¼ dim ~AAþ dimL� dimð ~AAþ LÞd l þ 1þ l � ð2l � 1Þ ¼ 2: ð�Þ

The same argument shows that dimLVA0 d 1, where A0 ¼ A� v, v A A, is the
direction space of A, compare 1.9. It follows that the intersection LVA is empty, or
else it would contain a coset of LVA0. Now the direction space A0 is the largest
vector subspace of ~AA that is disjoint from A, hence we have that LV ~AAJA0.

It now follows that L is contained in ~AA if and only if LJA0, and dimension con-
siderations show that this is equivalent to L ¼ A0 ¼ A� v. In this case, A is a coset
of L and A A L.

Now assume that A is not a line. Then LU ~AA, and we may choose a di¤erent
hyperplane H 0 d ~AA, not containing L. Then the line L 0 A L0 contained in H 0 has
trivial intersection with L, and this carries over to the at least 2-dimensional sub-
spaces LV ~AA and L 0 V ~AA of A0. This is impossible because dimA0 c 3. r

Note that we have used the assumption that lc 3 only in the last sentence of the
proof. This proof will guide us in the construction of 8-dimensional examples where
A is not a line, see 4.4. But first we look at this proof in the topological context; we
shall obtain another, independent proof of 3.1.

4.3 Second proof of 3.1. Recall that every line pencil of a topological translation
plane is a bispread. In view of 4.2, it follows that only the case l ¼ 4 remains to be
considered. We use the notation of the previous proof, except that now F ¼ R.
Consider the set H of all 7-dimensional vector subspaces HcR8 containing ~AA.
Intersecting H with some vector space X cR8 complementary to ~AA, we obtain a
homeomorphism HAP2.

We assume that A is not a line. In the previous proof, we saw that every H A H

contains a unique line L A L0, which intersects ~AA in an at least two-dimensional
subspace jðHÞ ¼ LV ~AA of A0. We can find H 0 such that jðHÞ has trivial intersection
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with jðH 0Þ; then these are complementary subspaces of the 4-dimensional vector
space A0. In particular, dim jðHÞ ¼ 2 and H ¼ Lþ ~AA. It now follows that any two
distinct hyperplanes H;H 0 A H have complementary subspaces jðHÞ and jðH 0Þ of
A0 as images. Moreover, j is continuous because incidence is closed. Thus, j is a
homeomorphism of P2 onto a partial spread of A0. Now in a 2k-dimensional real
vector space, a partial spread which is a compact k-manifold is a spread, see [16], 1.7;
moreover, such a spread is homeomorphic to Sk, compare 2.2. This is a contradic-
tion. r

A large part of this proof works in the case l ¼ 8, as well. However, we cannot
exclude the possibility that dim jðHÞ A f2; 3; 4; 5; 6g varies depending on H, and this
makes it impossible to apply the concluding arguments to this situation.

Our final result shows that 3.1 cannot be proved using the bispread condition
alone.

4.4 Proposition. Let F be an infinite skew field and consider a vector space F 2l , where
ld 4. Let A be an l-dimensional a‰ne subspace not containing 0. Then there is a

bispread L0 of l-dimensional subspaces of F 2l such that A intersects every L A L0 in at

most one point but A is not a line of the translation plane defined by L0.

Proof. As in 4.2, we denote the linear span of A by ~AA and the direction space A� v,
v A A, by A0. Like in 1.12, we choose a suitable ordinal o with smallest element 1 A o

and a transfinite enumeration Rn, n A o, of all one-dimensional vector subspaces of
F 2l . Similarly, we enumerate the ð2l � 1Þ-dimensional subspaces as Hn, n A o and the
l-dimensional subspaces of F 2l as Um, m A o. Inductively, we define l-dimensional
subspaces La such that

(1) Lb VLa ¼ f0g for b < a,

(2) cardðLa VAÞc 1,

(3) dimðLa VA0Þc 2,

(4) every Rn is contained in some La,

(5) every Hn contains some La.

This will su‰ce; note that A is not a line by (3). In each inductive step (assuming that
Lb has been defined for all b < a), we determine first the smallest value of n for which
either condition (4) or condition (5) is not yet satisfied and choose La so that it rem-
edies the defect; if both (4) and (5) fail for the same smallest n, preference will be
given to (4). This makes it impossible to argue as in 1.12 that always nðaÞd a, but
still the set fnðaÞ j a A og has the same cardinality as o, and this implies that con-
ditions (4) and (5) will eventually be satisfied for all n. As usual in proofs of this kind,
any ambiguity concerning the choice of La is eliminated by taking the first eligible
subspace, i.e. La ¼ Um with minimal m satisfying our conditions. The remainder of the
proof is concerned with the existence of eligible subspaces.

If condition (4) is the critical one, we define vector subspaces Vb ¼ Lb þ Rn for
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1c b < a and we set V0 ¼ A0 þ Rn if A0 does not contain Rn while V0 ¼ ~AA if A0

contains Rn. Then each Vd, 0c d < a, has dimension l þ 1. As in 1.12 we obtain an
l-dimensional vector subspace U that is complementary to each Lb. Moreover,
U VV0 ¼ Rn so that either U and A0 are complementary or dimU V ~AAc 1, both
of which imply (2) for La ¼ U .

Now suppose that Hn is the first hyperplane not containing any Lb with
b < a. Thus, dimLb VHn ¼ l � 1 for b < a. Furthermore lc dimHn V ~AAc lþ 1.
Let k ¼ dimHn V ~AA� ðl � 1Þ so that k ¼ 1 or 2. We have ld 4 and dimLb VA0 c 2
by (3), hence we may apply Corollary 1.11 to the vector space Hn VA0 and obtain a
k-dimensional subspace B of Hn VA0 such that BVLb ¼ f0g for all b < a; observe
that A0 JHn if k ¼ 2.

We now define Vb ¼ ðHn VLbÞ þ B. Then dimVb ¼ l � 1þ k ¼ dimHn V ~AA. By
Corollary 1.11 there is a vector subspace W of Hn such that W VVb ¼ W V
ðHn V ~AAÞ ¼ f0g for all b < a and W has dimension 2l � 1� ðl � 1þ kÞ ¼ l � k.
Finally let U ¼ W þ BJHn. Then U has dimension l and U VLb ¼ f0g for b < a

while U V ~AA ¼ BJA0. Hence (1), (2) and (3) are satisfied for La ¼ U . r
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projective planes. de Gruyter 1995. MR 97b:51009 Zbl 0851.51003

Received 13 September, 2002; revised 7 March, 2003
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