Linear systems with multiple base points in \mathbb{P}^2

Brian Harbourne and Joaquim Roé

(Communicated by R. Miranda)

Abstract. Conjectures for the Hilbert function h(n; m) and minimal free resolution of the mth symbolic power I(n; m) of the ideal of n general points of \mathbb{P}^2 are verified for a broad range of values of m and n where both m and n can be large, including (in the case of the Hilbert function) for infinitely many m for each square n > 9 and (in the case of resolutions) for infinitely many m for each even square n > 9. All previous results require either that n be small or be a square of a special form, or that m be small compared to n. Our results are based on a new approach for bounding the least degree among curves passing through n general points of \mathbb{P}^2 with given minimum multiplicities at each point and for bounding the regularity of the linear system of all such curves. For simplicity, we work over the complex numbers.

1 Introduction

Consider the ideal $I(n;m) \subset R = \mathbb{C}[\mathbb{P}^2]$ generated by all forms having multiplicity at least m at n given general points of \mathbb{P}^2 . This is a graded ideal, and thus we can consider the Hilbert function h(n;m) whose value at each nonnegative integer t is the dimension $h(n;m)(t) = \dim I(n;m)_t$ of the homogeneous component $I(n;m)_t$ of I(n;m) of degree t. It is well known that $h(n;m)(t) \ge \max\left(0, \binom{t+2}{2} - n\binom{m+1}{2}\right)$, with equality for t sufficiently large. Denote by $\alpha(n;m)$ the least degree t such that h(n;m)(t) > 0 and by $\tau(n;m)$ the least degree t such that $h(n;m)(t) = \binom{t+2}{2} - n\binom{m+1}{2}$; we refer to $\tau(n;m)$ as the *regularity* of I(n;m).

For $n \le 9$, the Hilbert function [29] and minimal free resolution [17] of I(n; m) are known. For n > 9, there are in general only conjectures:

Conjecture 1.1. Let $n \ge 10$ and $m \ge 0$; then:

- (a) $\alpha(n;m) \geqslant m\sqrt{n}$;
- (b) $h(n;m)(t) = \max(0, {t+2 \choose 2} n{m+1 \choose 2})$ for each integer $t \ge 0$; and
- (c) the minimal free resolution of I(n; m) is an exact sequence

$$0 \to R[-\alpha - 2]^d \oplus R[-\alpha - 1]^c \to R[-\alpha - 1]^b \oplus R[-\alpha]^a \to I(n;m) \to 0,$$
where $\alpha = \alpha(n;m)$, $\alpha = h(n;m)(\alpha)$,