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Foliations and contact structures
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Abstract. We introduce a notion of linear deformation of codimension one foliations into
contact structures and describe some foliations which deform instantly into contact structures
and some which do not. Restricting ourselves to closed smooth manifolds, we obtain a neces-
sary and su‰cient condition for a foliation defined by a closed nonsingular 1-form to be lin-
early deformable into contact structures.
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1 Introduction

A contact form on a 2nþ 1-dimensional manifold M is a 1-form a such that
a5ðdaÞn is a volume form on M. The system of equations aðZÞ ¼ 1 and daðZ;XÞ ¼
0 for arbitrary X uniquely determines a vector field Z called the Reeb vector field,
or the characteristic vector field of a. The tangent subbundle x ¼ kern a of rank 2n is
called the contact structure associated with a. In general, a contact structure on a
2nþ 1-dimensional manifold is a rank 2n tangent subbundle which is locally deter-
mined by contact forms (see Blair’s book [1] for more details about contact struc-
tures).

The manifolds in this paper will be assumed to be oriented and all planes fields
considered herein are supposed to be transversely orientable. Let x be a hyperplane
field on a manifold M. When x is a foliation, we say that x is deformable into contact
structures if there exists a one parameter family xt of hyperplane fields satisfying
x0 ¼ x and for all t > 0, xt is contact. It is well known from Eliashberg–Thurston’s
work [2] that any oriented codimension 1 C 2-foliation on an oriented 3-manifold can
be perturbed into contact structures, except the product foliation of S2 � S1 by
spheres S2. It was then unknown if this approximation can always be done through a
deformation. In this note, we deal with particular deformations called ‘‘linear’’. For a
foliation x defined by a 1-form a0, a deformation xt defined by 1-forms at is said to be
linear if at ¼ a0 þ ta where a is a 1-form on M (independent of t). We point out that
our definition of linearity is weaker than that of Eliashberg–Thurston [2]. We con-
struct some examples of deformations and prove the following results.



Theorem 1. Let M be a closed, 2nþ 1-dimensional manifold, a0 a closed 1-form on M

and a any 1-form on M. Then, the following two conditions are equivalent.

(i) The 1-forms at ¼ a0 þ ta in a linear deformation of a0 are contact for all t > 0.

(ii) The 1-form a is contact and a0ðZÞ ¼ 0 where Z is the Reeb vector field of a.

Theorem 2. Let ðM; a;ZÞ be a closed contact 2nþ 1-dimensional manifold where Z

is the Reeb vector field of the contact form a. Let a0 be a closed 1-form such that a0ðZÞ
is not identically zero. Then there is a positive constant R such that the 1-form at ¼
a0 þ ta is not contact for 0c tcR.

A corollary of Theorem 1 is that besides the foliation of S2 � S1 by 2-spheres,
there are other foliations which are defined by closed nonsingular 1-forms and which
cannot be linearly deformed into contact structures. Throughout this paper, the
notation o > 0 for a di¤erential form of top degree on M means that o is equal to a
fixed volume form multiplied by a positive function on M.

2 Examples in dimension 3

On the 3-dimensional torus T3 with coordinates y; x and y, consider the nonsingular
closed 1-form dy with any one of the contact forms an ¼ cos ny dxþ sin ny dy, where
n is a positive integer. The one parameter family of ‘‘confoliations’’ [2] an; t ¼ dyþ tan
is a foliation for t ¼ 0, but for t > 0, a direct calculation shows that an; t instantly
becomes a contact form. Thus, the trivial foliation of the torus T3 by tori T2 is lin-
early deformable into contact structures.

Denoting by Zn the characteristic vector field of an, one sees that dyðZnÞ ¼ 0.
Another way of expressing this is that dy is a closed basic 1-form for the flow deter-
mined by Zn. Now consider the other closed nonsingular 1-form dyþ df where df is
a small di¤erential of a nonbasic function f . A function f is said to be basic if its
di¤erential df is an exact basic 1-form. As a direct consequence of Theorem 2 in this
paper, there exist an R > 0 such that the linear deformation an; t ¼ dyþ df þ tan of
dyþ df is not contact for 0c tcR.

Another example of foliations which are deformable into contact structures is
provided by the following proposition.

Proposition 1. There exist transversely a‰ne foliations with holonomy on a compact

manifold which are deformable into contact structures.

Proof. Let f : S1 ! R, j ! sin j. f �1ð0Þ ¼ fp; 2pg. 0 is a regular value for f . Con-

sider the foliation on T2 ¼ S1 � S1 defined by the 1-form o ¼ df þ f dy where dy is
the volume form on S1. It is a transversely a‰ne foliation since do ¼ o5dy and
dðdyÞ ¼ 0. This foliation has two compact leaves p� S1, 2p� S1, each di¤eomor-
phic to S1 and with holonomy since

Ð
S1 dy ¼ 2p0 0. Except for those two compact

leaves, all the others are dense.
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Multiplying by S1, one obtains on T3 a transversely a‰ne foliation with holonomy
and with exactly two compact toric leaves with nontrivial linear holonomy. All the
other leaves are dense.

The above foliation can be deformed into contact structures. Indeed, there are two
curves G1 and G2 contained respectively in the two compact leaves F1 and F2 with
nontrivial linear holonomy. The other leaves contain G1 and G2 in their closures. Put
G ¼ G1 UG2. One can find a neighborhood U of G in T3 such that FjU can be de-
formed into contact structures. Indeed, there is a 1-form b on a neighborhood U

containing G. Put U HG� ½�1; 1� � ½�1; 1� such that FjU is defined by g ¼ dzþ
uðz; xÞ dx where qu

qz
dC, where C is a positive constant. Pick a di¤erentiable mono-

tone function

h : R ! ½0; 1�

which is equal to a constant k > 0 near 0 and is positive on ½0; 1�, zero on ½1;þy½.
Let b ¼ hðx2 þ z2Þ dy; it can easily be verified that the 1-form b satisfies

g5db þ b5dg > 0:

Consider the family xt of planes fields defined by mt ¼ gþ tb. xt is a deformation
of FjU ; xt is contact in U and coincides with F on T 3 �U . Thus, we have built a
family of confoliations on the compact manifold T 3 beginning with the foliation F.
Take V and W other open sets such that V HW HW HU . We can find a family of
confoliations ~xxt such that ~xx0 is equal to F, ~xxt is contact for all t > 0 and ~xxt ¼ xt on V

[2], thus completing the proof. r

3 Generalisation of the above examples

In the example involving the 1-form dyþ df , the contact form an and its character-
istic vector field Zn in the previous section, a crucial fact is that df ðZnÞ takes negative
and positive values. More generally, one has the following lemma.

Lemma 1. Let ðM; a;ZÞ be a closed 2nþ 1-dimensional contact manifold and b any

closed 1-form on M. Then one has

ð
M

bðZÞa5ðdaÞn ¼ 0:

Proof. First a general identity on contact manifolds. Given a contact manifold
ðM; a;ZÞ, any 1-form b on M decomposes as b ¼ bðZÞaþ g where g is a 1-form
satisfying the identity gðZÞ ¼ 0. Therefore one has

b5ðdaÞn ¼ ðbðZÞaþ gÞ5ðdaÞn ¼ bðZÞa5ðdaÞn þ g5ðdaÞn:

If fZ;E1; . . . ;E2ng is a basis for the tangent space at a point p A M such that
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aðEiÞ ¼ 0 for i ¼ 1; . . . ; 2n, then since gðZÞ ¼ 0 and daðZ;EiÞ ¼ 0 for i ¼ 1; . . . ; 2n,
one has g5ðdaÞnðZ;E1; . . . ;E2nÞ ¼ 0 hence g5ðdaÞn ¼ 0 which implies the identity:

b5ðdaÞn ¼ bðZÞa5ðdaÞn: ð1Þ

From

0 ¼ iZ½b5a5ðdaÞn� ¼ bðZÞa5ðdaÞn � b5ðdaÞn;

and identity (1), we deduce that

bðZÞa5ðdaÞn ¼ b5ðdaÞn ¼ �d½b5a5ðdaÞn�1�:

Therefore,

ð
M

bðZÞa5ðdaÞn ¼ �
ð
M

dðb5a5ðdaÞn�1Þ ¼ 0

by Stokes’ Theorem. r

Remark. Lemma 1 implies that bðZÞ is either identically zero or takes negative and
positive values on M.

4 Proof of Theorems 1 and 2

Proof of Theorem 1. In our proof of Theorem 1, we may assume without loss of
generality that at being contact means at5ðdatÞn > 0, the case where at5ðdatÞn < 0
can be proven similarly.

In order to prove that (i) implies (ii), first observe that

at5dðatÞn ¼ tna05ðdaÞn þ tnþ1a5ðdaÞn ð2Þ

and therefore, if a05ðdaÞn < 0 and a5ðdaÞn c 0, then at5ðdatÞn < 0.
Suppose that a05ðdaÞn < 0 and a5ðdaÞn > 0 at some point p A M. Let fE0;

E1; . . . ;E2ng be a positive tangent frame at p. Then evaluating (2) on the positive
frame fE0; . . . ;E2ng and for any t such that

0 < t <
jða05ðdaÞnÞðE0; . . . ;E2nÞj
jða5ðdaÞnÞðE0; . . . ;E2nÞj

;

the right hand side of (2), ðtna05ðdaÞn þ tnþ1a5ðdaÞnÞðE0; . . . ;E2nÞ is equal to

tnða05ðdaÞn þ ta5ðdaÞnÞðE0; . . . ;E2nÞ
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and satisfies

tnða05ðdaÞn þ ta5ðdaÞnÞðE0; . . . ;E2nÞ < tnðða05ðdaÞnÞðE0; . . . ;E2nÞ

þ jða05ðdaÞnÞðE0; . . . ;E2nÞjÞ ¼ 0;

thus in this case also, one obtains at5ðdatÞn < 0. The above argument shows that if
at is contact for t > 0, (i.e. at5ðdatÞn > 0), then a05ðdaÞn d 0. But then,

ð
M

a05ðdaÞn ¼ �
ð
M

dða05a5ðdaÞn�1Þ ¼ 0;

so necessarily

a05ðdaÞn ¼ 0: ð3Þ

It follows from identity (2) that a5ðdaÞn > 0, that is, a is a contact form. Now, from
identity (3) and using (1), one obtains

0 ¼ a05ðdaÞn ¼ a0ðZÞa5ðdaÞn;

which implies that a0ðZÞ ¼ 0.
Conversely, if Condition (ii) is satisfied, then for t > 0, identity (2) implies

at5ðdatÞn ¼ tna0ðZÞa5ðdaÞn þ tnþ1a5ðdaÞn ¼ tnþ1a5ðdaÞn > 0;

that is, at is contact for t > 0. r

Corollary 1. Let x be a fibration of a closed, odd-dimensional manifold M over the

circle S1. If the leaves of x have nonzero Euler characteristic, then x cannot be linearly

deformed into contact structures.

Proof. Let a0 be a closed 1-form defining the foliation x. If at ¼ a0 þ ta, td 0 is a
linear deformation of a0 into contact forms, then by Theorem 1, a is a contact form
whose characteristic vector field is tangent to the leaves of x. Therefore, each closed
leaf of x has Euler characteristic zero. r

As a consequence of this corollary, we see that for a closed surface Sg of genus
g0 1, the product foliation on Sg � S1 cannot be linearly deformed into contact
structures. It is known [2] that the foliation of S2 � S1 by 2-spheres cannot even be
perturbed into contact structures.

Proof of Theorem 2. Merging identities (1) and (2), one obtains the other identity:

at5ðdatÞn ¼ tn½a0ðZÞ þ t�a5ðdaÞn:
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By Lemma 1 and the remark in the previous section, there are constants a and b,
a < 0 < b such that the inequality ac a0ðZÞc b holds. It is clear that for 0c tc

�a, the 1-form at fails to be contact on the subset St HM, where St ¼ fp A M;
a0ðZÞðpÞ ¼ �tg. Therefore, one may take R ¼ jaj. r

5 Further examples

5.1 K-contact geometry. A contact manifold M with contact form a, Reeb vector
field Z, partial almost complex operator J and contact metric g is said to be K-
contact [1] if Z is Killing relative to g. Suppose a0 is a nonsingular harmonic (relative
to g) 1-form, then a0 is basic relative to the flow of Z [3]. This fact and Theorem 1
lead immediately to the following.

Corollary 2. On a closed K-contact manifold M, any foliation defined by a nonsingular

harmonic 1-form is linearly deformable into contact structures.

If a is a contact form with Reeb vector field Z and a0 a closed, relative to Z basic
1-form, then the characteristic vector field of a0 þ ta is just 1

t
Z. Therefore, if a is a K-

contact form with contact metric g, then each Zt is a Killing vector field with respect
to g. It follows from [4] that each of at ¼ a0 þ ta is a K-contact form. We may rightly
call the type of deformations in Corollary 2 ‘‘linear K-contact deformations’’.

5.2 Flat contact geometry. Going back to closed 3-dimensional manifolds, any con-
tact metric structure with flat contact metric g carries a codimension one foliation
which is determined by a parallel, hence harmonic, 1-form a0 [5]. This foliation is
parallelizable by two commuting orthogonal vector fields, each being the Reeb vector
field of a contact form with contact metric g. Therefore, denoting the two contact
forms by n and b, we see that the foliation determined by a0 admits a 2-parameter
family at; s ¼ a0 þ tnþ sb, td 0, sd 0, of linear deformations into contact structures.
These include and generalize examples presented in Section 2.
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