A geometrical construction of the oval(s) associated with an *a*-flock

Matthew R. Brown and J. A. Thas

(Communicated by T. Penttila)

Abstract. It is known, via algebraic methods, that a flock of a quadratic cone in PG(3, q) gives rise to a family of q + 1 ovals of PG(2, q) and similarly that a flock of a cone over a translation oval that is not a conic gives rise to an oval of PG(2, q). In this paper we give a geometrical construction of these ovals and provide an elementary geometrical proof of the construction. Further we also give a geometrical construction of a spread of the GQ $T_2(\mathcal{O})$ for \mathcal{O} an oval corresponding to a flock of a translation oval cone in PG(3, q), previously constructed algebraically.

1 Introduction and definitions

The essence of this paper is a geometrical construction of an oval \mathcal{O} of PG(2, q), q even, from a flock of a translation oval cone in PG(3, q) and a spread of the corresponding GQ $T_2(\mathcal{O})$. This construction, along with a geometrical proof that it does indeed give an oval \mathcal{O} and a spread of $T_2(\mathcal{O})$, can be found in Section 3 and preliminary results required can be found in Section 2. Much of this introduction gives the known algebraic constructions of these objects while in Section 4 it is shown that the geometrical construction we present here is the same as the algebraic one.

An *oval* \mathcal{O} of PG(2, q) is a set of q + 1 points no three of which are collinear. A line of PG(2, q) is called an *external* line, a *tangent* line or a *secant* line of \mathcal{O} depending on whether it is incident with zero, one or two points of \mathcal{O} , respectively. From this point we assume that q is even. In the case where q is even the tangents to \mathcal{O} are concurrent in a point N called the *nucleus* of \mathcal{O} . A hyperoval of PG(2, q) is a set of q + 2 points no three collinear. An oval together with its nucleus forms a hyperoval of PG(2, q). If an oval \mathcal{O} has a tangent line ℓ such that there exists a group of q elations of PG(2, q) each element of which has axis ℓ and fixes \mathcal{O} , then \mathcal{O} is called a *translation oval*. The line ℓ is called an *axis* of \mathcal{O} . It was proved by Payne in [5] that each translation oval is of the form $\mathcal{D}(\alpha) = \{(1, t, t^{\alpha}) : t \in GF(q)\} \cup \{(0, 0, 1)\}$, for some generator α of Aut(GF(q)). Note that in the case where $\alpha : x \mapsto x^2$, or abusing notation $\alpha = 2$, that the translation oval is the classical oval, the non-degenerate conic.

Let \mathscr{K} be a quadratic cone in PG(3, q) with vertex V. A flock \mathscr{F} of \mathscr{K} is a set of q

planes of PG(3, q) partitioning the points of $\mathscr{K} \setminus \{V\}$. If we suppose that \mathscr{K} is defined by the equation $x_0x_2 = x_1^2$, then following Thas in [7] we may write the flock in the form $\mathscr{F} = \{\pi_t : t \in GF(q)\}$ where

$$\pi_t: a_t x_0 + b_t x_1 + c_t x_2 + x_3 = 0.$$

It follows that $t \mapsto a_t$, $t \mapsto b_t$ and $t \mapsto c_t$ are permutations of GF(q). Without loss of generality the elements of the flock may be normalised to

$$\pi_t: f(t)x_0 + t^{1/2}x_1 + ag(t)x_2 + x_3 = 0,$$

for permutations f and g of GF(q) with f(0) = g(0) = 0 and f(1) = g(1) = 1 and trace(a) = 1. In [3] the authors prove the following theorem concerning flocks of the above form.

Theorem 1.1. Each of the sets

$$\left\{ \left(1, t, \frac{f(x) + asg(x) + s^{1/2}x^{1/2}}{1 + as + s^{1/2}}\right) : x \in \mathrm{GF}(q) \right\} \cup \{(0, 1, 0), (0, 0, 1)\}$$

for $s \in GF(q)$ and

$$\{(1, t, g(t)) : t \in \mathbf{GF}(q)\} \cup \{(0, 1, 0), (0, 0, 1)\}\$$

is a hyperoval of PG(2, q).

In [3] the set of q + 1 functions defining the hyperovals as above is called a *herd*. In [8] Thas gave a geometrical construction of these hyperovals from the flock (although not a geometrical proof of the construction).

Let α be a generator of Aut(GF(q)), $q = 2^e$. Following Cherowitzo in [2] define an α -cone \mathscr{K}_{α} of PG(3,q) to be a cone with point vertex V and base an oval equivalent to $\mathscr{D}(\alpha)$. If X is a point of the base oval on an axis, then the line $\langle X, V \rangle$ is called an *axial line* of \mathscr{K}_{α} . A *flock* of \mathscr{K}_{α} , also known as an α -*flock*, is a set of q planes of PG(3,q) partitioning the points of $\mathscr{K}_{\alpha} \setminus \{V\}$. If \mathscr{K}_{α} is defined by the equation $x_{1}^{\alpha} = x_{0}x_{2}^{\alpha-1}$ and \mathscr{F}_{α} a flock of \mathscr{K}_{α} , then similarly to the case of a flock of a quadratic cone we may write the elements of \mathscr{F}_{α} as

$$\pi_t : f(t)x_0 + t^{1/\alpha}x_1 + ag(t)x_2 + x_3 = 0 \quad \text{for } t \in \mathrm{GF}(q),$$

where f and g are permutations of GF(q) with f(0) = g(0) = 0 and f(1) = g(1) = 1 and trace(a) = 1. Then Cherowitzo ([2]) proves the following result concerning α -flocks.

Theorem 1.2. The set $\{(1, t, f(t)) : t \in GF(q)\} \cup \{(0, 1, 0), (0, 0, 1)\}$ is a hyperoval of PG(2, q).

In Section 3 we give a generalisation of a construction in [8] that each pair (axial line of \mathscr{K}_{α} , flock of \mathscr{K}_{α}) gives rise to an oval of PG(2, q). In the case where \mathscr{K}_{α} is a quadratic cone it was shown in [8] that in this way a flock gives rise to the q + 1 hyperovals of the corresponding herd, while in Section 4 we show that for a general α -flock the oval completes to the hyperoval of Theorem 1.2. In this way we have a geometric proof of Theorem 1.1 and Theorem 1.2.

We now consider the Generalized Quadrangle (GQ) $T_2(\emptyset)$ of Tits; see [4]. Let \emptyset be an oval in PG(2, q) and embed PG(2, q) in PG(3, q), then $T_2(\emptyset)$ is a GQ of order q and is constructed in the following manner. *Points* are (i) the points of PG(3, q) PG(2, q), (ii) the planes of PG(3, q) which meet PG(2, q) in a single point of \emptyset and (iii) a symbol (∞); *lines* are (a) the lines of PG(3, q), not in PG(2, q), which meet PG(2, q) in a single point of \emptyset , and (b) the points of \emptyset ; with *incidence* inherited from PG(3, q) plus (∞) is incident with all lines of type (b). Note that $T_2(\emptyset)$ is the classical GQ Q(4, q) if and only if \emptyset is a conic; see [6, 3.2.2]. A spread \mathscr{S} of $T_2(\emptyset)$ is a set of lines such that each point of $T_2(\emptyset)$ is incident with a unique element of \mathscr{S} . It follows that \mathscr{S} has size $q^2 + 1$. In [1] the authors show that \mathscr{S} must consist of a point P of \emptyset and the q^2 lines not in PG(2, q) of q oval cones, $\mathscr{K}_X, X \in \emptyset \setminus \{P\}$; where \mathscr{K}_X has vertex X, contains P and has nuclear line $\langle X, N \rangle$, with N the nucleus of the oval \emptyset . The following theorem, in an equivalent form, also appears in [1].

Theorem 1.3. Let $\mathcal{O} = \{(t, 1, f(t)) : t \in GF(q)\} \cup \{(0, 0, 1)\}$, with f(0) = 0 and f(1) = 1, be an oval of PG(2, q), q even. Embed PG(2, q) in PG(3, q) as $x_2 = 0$ and let α be a generator of Aut(GF(q)). Let \mathcal{K}_t be the cone with vertex (t, 1, 0, f(t)) and base $\{(s^{\alpha} + a^{\alpha}g(t)^{\alpha}, 0, 1, s) : s \in GF(q)\} \cup \{(0, 0, 0, 1)\}$, with trace(a) = 1. Then (0, 0, 0, 1) plus the q^2 lines not in PG(2, q) of the cones \mathcal{K}_t form a spread of $T_2(\mathcal{O})$ if and only if $\{f(t)x_0 + t^{1/\alpha}x_1 + ag(t)x_2 + x_3 = 0 : t \in GF(q)\}$ is an α -flock of $\mathcal{K}_{\alpha} : x_1^{\alpha} = x_0x_2^{\alpha-1}$, with g(0) = 0 and g(1) = 1.

In this way the ovals corresponding to an α -flock, as in Theorem 1.2, are characterised as those for which the corresponding Tits GQ admits a spread of the form above. Our geometrical construction in Section 3 characterises these ovals in the same way and by attaching coordinates in Section 4 we see that it gives a non-algebraic proof of Theorem 1.3.

Now we state our main theorem.

Theorem 1.4. For α a generator of GF(q), q even, let \mathscr{K}_{α} be a cone in PG(3,q) over a translation oval equivalent to $\mathscr{D}(\alpha) = \{(1,t,t^{\alpha}) : t \in GF(q)\} \cup \{(0,0,1)\}$. If \mathscr{F}_{α} is a flock of \mathscr{K}_{α} , then to each pair (F_{α}, a) , where a is an axial line of \mathscr{K}_{α} , there corresponds an oval \mathscr{O} of PG(2,q). Further, there also corresponds a spread \mathscr{S} of the generalized quadrangle $T_2(\mathscr{O})$ which consists of one point Y of \mathscr{O} and the q^2 lines not in PG(2,q) of $q \alpha$ -cones \mathscr{K}_X , where \mathscr{K}_X has vertex $X \in \mathscr{O} \setminus \{Y\}$, base oval equivalent to $\mathscr{D}(\alpha)$ and is tangent to PG(2,q) at the axial line $\langle Y, X \rangle$.

Conversely, if a GQ $T_2(0)$ has such a spread \mathcal{S} , then there corresponds an α -flock giving rise to the oval 0.

In Section 2 we shall state some basic properties of translation ovals and flocks of translation oval cones which shall be used in the proof of Theorem 1.4 in Section 3. In Section 4 we apply coordinates to the construction in the proof of Theorem 1.4 to show that it gives both Theorem 1.2 and Theorem 1.3.

2 Preliminaries

In this section we give some basic results on translation ovals and α -flocks to be used in the proof of our main theorem.

By Payne ([5]) we know that any translation oval of $PG(2, 2^h)$ is equivalent to an oval of the form $\mathscr{D}(\alpha) = \{(1, t, t^{\alpha}) : t \in GF(q)\} \cup \{(0, 0, 1)\}$ with nucleus (0, 1, 0), where α is a generator of Aut(GF(q)). From this form it is clear that $\mathscr{D}(\alpha)$ is a conic if and only if $\alpha = 2$. In the case where $\mathscr{D}(\alpha)$ is a conic each tangent to $\mathscr{D}(\alpha)$ is an axis of $\mathscr{D}(\alpha)$ and the group of the conic is transitive on the axes. In the case where $\mathscr{D}(\alpha)$ is not a conic then $\mathscr{D}(\alpha)$ has a unique axis [1, 0, 0]. From the canonical form of a translation oval it is also straight-forward to see that for a given line ℓ of PG(2, q) and distinct points P, N incident with ℓ that there are exactly q(q - 1) ovals equivalent to $\mathscr{D}(\alpha)$ containing P and with nucleus N, such that ℓ is an axis of the oval. If R is a fixed point of PG(2, q)\ ℓ , then there are q(q - 1) ovals equivalent to $\mathscr{D}(\alpha)$ with axis ℓ and containing the points P and R.

Another notion that we shall need is that of compatibility of ovals. Let \mathcal{O}_1 and \mathcal{O}_2 be two ovals of PG(2, q) and let *P* be a point of PG(2, q) not on either of the ovals and distinct from their nuclei. Then \mathcal{O}_1 and \mathcal{O}_2 are *compatible* at *P* if they have the same nucleus, they have a point *Q* in common, the line $\langle P, Q \rangle$ is a tangent to both \mathcal{O}_1 and \mathcal{O}_2 and every secant line to \mathcal{O}_1 on *P* is external to \mathcal{O}_2 . As a consequence every external line to \mathcal{O}_1 on *P* is a secant line to \mathcal{O}_2 . In particular we will need information regarding points of compatibility in the case where \mathcal{O}_1 and \mathcal{O}_2 are both ovals equivalent to $\mathcal{D}(\alpha)$ with a common axis ℓ , common nucleus N, $\ell \cap \mathcal{O}_1 = \ell \cap \mathcal{O}_2 = \{Q\}$ and such that \mathcal{O}_2 is the image of \mathcal{O}_1 under an elation with axis ℓ and centre *Q*. Without loss of generality we may assume that $\mathcal{O}_1 = \{(1, u, u^{\alpha}) : u \in GF(q)\} \cup \{(0, 0, 1)\}$ and that $\mathcal{O}_2 = \{(1, t, t^{\alpha} + B) : t \in GF(q)\} \cup \{(0, 0, 1)\}$ for $B \in GF(q)$. A point $(0, 1, s), s \neq 0$, on the common axis of \mathcal{O}_1 and \mathcal{O}_2 is a point of compatibility of \mathcal{O}_1 and \mathcal{O}_2 if and only if trace $(B/s^{\alpha/(\alpha-1)}) = 1$, which has q/2 solutions for $s \in GF(q)$. Hence \mathcal{O}_1 and \mathcal{O}_2 have q/2 points of compatibility on the common axis.

Now consider a cone \mathscr{H}_{α} in PG(3, q) with vertex V and base an oval equivalent to $\mathscr{D}(\alpha)$. Let ℓ be an axial line of the cone and let P be any point incident with ℓ distinct from V and let π be any plane of PG(3, q) not containing P. If we project the $q^3 - q^2$ oval sections of \mathscr{H}_{α} not containing P, from P onto π , then we obtain a one-to-one correspondence between this set and the $q^2(q-1)$ ovals of π equivalent to $\mathscr{D}(\alpha)$ that contain the point $Y = \ell \cap \pi$ and have axis $n = \pi_{\ell} \cap \pi$, where π_{ℓ} is the plane tangent to \mathscr{H}_{α} at ℓ . Similarly, the q^2 oval sections of \mathscr{H}_{α} containing P are in one-to-one correspondence with the q^2 lines of π not incident with Y. This correspondence is the planar representation of \mathscr{H}_{α} . If we consider a set of q oval sections of \mathscr{H}_{α} that are mutually tangent at a point of $\langle P, V \rangle \setminus \{P, V\}$, then in the planar representation this set of q ovals is called an *axial linear pencil* of ovals. Equivalently, such a set of ovals

may be described as the images of an oval equivalent to $\mathscr{D}(\alpha)$ under the group of elations with axis the axis of the oval and centre the point of the oval on the axis.

Now consider a flock $\mathscr{F} = \{\pi_1, \ldots, \pi_q\}$ of \mathscr{K}_{α} . Without loss of generality suppose that $P \in \pi_q$. For $i = 1, \ldots, q - 1$ let the projection of the oval $\pi_i \cap \mathscr{K}_{\alpha}$ from P onto π be \mathscr{O}_i and let w denote the line $\pi_q \cap \pi$. Then it follows that in the planar representation of \mathscr{K}_{α} that \mathscr{F} is the set $\{\mathscr{O}_1, \ldots, \mathscr{O}_{q-1}, w\}$. Thus $\mathscr{O}_1, \ldots, \mathscr{O}_{q-1}, w$ partition the points of $\pi \setminus n$, and it also follows that the nuclei of the \mathscr{O}_i are distinct points of $n \setminus \{Y\}$ and that the line w intersects n in the remaining point of $n \setminus \{Y\}$. Conversely, any such set $\{\mathscr{O}_1, \ldots, \mathscr{O}_{q-1}, w\}$ partitioning the points of $\pi \setminus \{n\}$ corresponds to a flock of \mathscr{K}_{α} .

3 Proof of Theorem 1.4

Suppose \mathscr{F}_{α} is a flock of \mathscr{K}_{α} and *a* an axis of the base oval of \mathscr{K}_{α} . If *V* is the vertex of \mathscr{K}_{α} , then $\langle V, a \rangle$ contains the axial line ℓ of \mathscr{K}_{α} . Then, as in Section 2, if we project the elements of \mathscr{F}_{α} from a non-vertex point *P* of ℓ onto a plane π , not containing *P*, we obtain a planar representation $\{\mathcal{O}_1, \mathcal{O}_2, \ldots, \mathcal{O}_{q-1}, w\}$ of \mathscr{F}_{α} . Let the common point of the ovals $\mathcal{O}_1, \ldots, \mathcal{O}_{q-1}$ be *Y*, the common axis of the ovals be *n* and $n \cap w = X'$.

Now consider two other planes PG(2,q) and ξ , such that $PG(2,q) \cap \pi = n$, $\pi \cap PG(2,q) \cap \xi = \{Y\}$, $PG(2,q) \cap \xi = m$ and $\pi \cap \xi = u$. In ξ we consider an oval \mathcal{O}'_1 equivalent to $\mathcal{D}(\alpha)$ such that \mathcal{O}'_1 has axis *m*, contains the point *Y* on *m*, and has nucleus *N*. Let $\{\mathcal{O}'_1, \mathcal{O}'_2, \ldots, \mathcal{O}'_q\}$ be the axial linear pencil containing \mathcal{O}'_1 with axis *m*. The ovals $\mathcal{O}'_1, \mathcal{O}'_2, \ldots, \mathcal{O}'_q$ partition $\xi \setminus m$, and in particular the points of $u \setminus \{Y\}$. Consequently we may choose indices such that $\mathcal{O}_i \cap \mathcal{O}'_i = \{Y, W_i\}$, with $W_i \in u$ and $i = 1, 2, \ldots, q - 1$.

We now show that for each i = 1, 2, ..., q - 1 there is a unique cone containing \mathcal{O}_i and \mathcal{O}'_i . Since *n* and *m* are tangents to \mathcal{O}_i and \mathcal{O}'_i at *Y*, respectively, it follows that the vertex of any cone containing the two ovals must be in the plane $\langle n, m \rangle = PG(2, q)$. Now there are q(q-1) cones containing \mathcal{O}'_1 and with vertex in $PG(2, q) \setminus (n \cup m)$, and also q(q-1) ovals of π equivalent to $\mathcal{D}(\alpha)$ with axis *n* and containing the points *Y* and W_1 . Thus, if we can find a group fixing \mathcal{O}'_1 , *Y* and W_1 as well as acting regularly on both the set of points of $PG(2, q) \setminus (n \cup m)$ and the set of ovals of π equivalent to $\mathcal{D}(\alpha)$ with axis *n* and containing the points *Y* and W_1 , then it follows there must be exactly one cone containing \mathcal{O}'_1 and such an oval. To show the existence of such a group we (briefly) apply coordinates. Let $PG(2, q) : x_2 = 0$, $\pi : x_3 = 0$, $\xi : x_1 = 0$. We may assume that \mathcal{O}'_1 has the form $\{(t^{\alpha}, 0, 1, t) : t \in GF(q)\} \cup \{(1, 0, 0, 0)\}$. The required group has elements of the form

$$\begin{pmatrix} \lambda^{\alpha} & \rho & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \lambda \end{pmatrix} \quad \text{for } \rho \in \mathrm{GF}(q) \text{ and } \lambda \in \mathrm{GF}(q) \setminus \{0\}.$$

By the above there is a unique cone \mathscr{H}_1 containing \mathscr{O}_1 and \mathscr{O}'_1 which has vertex X_1 ,

say, in PG(2, q). Similarly we have cones \mathscr{K}_i , i = 1, 2, ..., q - 1, where \mathscr{K}_i contains \mathscr{O}_i and \mathscr{O}'_i and has vertex X_i . We also define \mathscr{K}_q to be the cone containing \mathscr{O}'_q and with vertex X'. For convenience we will relabel the point X' as X_q .

We now show that $X_i, X_j, Y, i \neq j$, are not collinear and that the two cones \mathscr{K}_i and $\mathscr{K}_i, i \neq j$, intersect in exactly Y. Without loss of generality we will consider \mathscr{K}_1 and \mathscr{K}_2 . First suppose that Y, X_1, X_2 are collinear on a line o (which is necessarily a generator of both \mathscr{K}_1 and \mathscr{K}_2). Of the q + 1 planes of PG(3, q) on o, PG(2, q) is a tangent plane to both \mathscr{K}_1 and \mathscr{K}_2 while each of the other q planes contains a second generator of both \mathscr{K}_1 and \mathscr{K}_2 and so a second point of $\mathscr{K}_1 \cap \mathscr{K}_2$. Hence $|\mathscr{K}_1 \cap \mathscr{K}_2| = q + 1$. Now we consider the planes on the line m. The plane PG(2,q) is tangent to both \mathcal{K}_1 and \mathscr{K}_2 while each of the other q planes intersects both \mathscr{K}_1 and \mathscr{K}_2 in an oval equivalent to $\mathscr{D}(\alpha)$ with axis *m*, containing the point Y and with nucleus N. Two such ovals may intersect in either 0, 1, 2 or q + 1 points. Suppose that there exists a plane η distinct from PG(2, q) on m for which $\eta \cap \mathscr{K}_1 = \eta \cap \mathscr{K}_2 = \overline{O}$, \overline{O} an oval. Now since \overline{O} is the set of common points of \mathscr{K}_1 and \mathscr{K}_2 it follows that $\pi \cap \overline{O} = \mathcal{O}_1 \cap \mathcal{O}_2 = \{Y\}$. Hence the line $\pi \cap \eta$ is tangent to both \mathscr{K}_1 and \mathscr{K}_2 at Y and so must be n. This implies that $m, n \subset \eta$ and so $\eta = PG(2, q)$, a contradiction. It follows that each plane on m distinct from PG(2,q) contains exactly two points of $\mathscr{K}_1 \cap \mathscr{K}_2$, Y and one other. However this must also hold for ξ , a contradiction. Therefore Y, X_1, X_2 are not collinear.

If $N \in \langle X_1, X_2 \rangle$, then \mathcal{O}_1 and \mathcal{O}_2 have a common nucleus and so it follows that N, X_1, X_2 are not collinear. So the line $\langle X_1, X_2 \rangle$ contains a point P of $m \setminus \{Y, N\}$. If \mathscr{H}_1 and \mathscr{H}_2 are to meet in exactly Y, then no line of ξ distinct from m and incident with P can contain a point of both \mathcal{O}'_1 and \mathcal{O}'_2 . Hence \mathcal{O}'_1 and \mathcal{O}'_2 are compatible at P. From this we see that the number of cones containing \mathcal{O}'_2 , with vertex in PG(2, q), that meet \mathscr{H}_1 in exactly Y is the number of points on m at which \mathcal{O}'_1 and \mathcal{O}'_2 are compatible, multiplied by q - 2 for the possible vertices in $\langle X_1, P \rangle \setminus \{X_1, P\}$ not on n, for each such point of compatibility P. By Section 2 this is q(q-2)/2. In the planar representation of \mathscr{H}_{α} in π , this is the same as the number of ovals equivalent to $\mathscr{D}(\alpha)$ meeting \mathcal{O}_1 in exactly Y, containing W_2 , and with nucleus distinct from that of \mathcal{O}_1 . It follows that the cones \mathscr{H}_1 and \mathscr{H}_2 meet in exactly Y.

We now show that the cone \mathscr{K}_q and any cone \mathscr{K}_i , $i \in \{1, 2, ..., q-1\}$ intersect in exactly Y. If we consider a plane π' such that $u \subset \pi'$, but $m, n \not\subset \pi'$, then we have the same situation as above except that $\mathscr{K}_q \cap \pi'$ is an oval and not a line. By choosing π' appropriately we see that $\mathscr{K}_q \cap \mathscr{K}_i = \{Y\}$ for i = 1, 2, ..., q-1.

Since the cones \mathscr{K}_i intersect pairwise in exactly Y it follows that they partition the points of $PG(3,q)\setminus PG(2,q)$.

We now show that the set $\mathcal{O} = \{Y, X_1, X_2, \dots, X_q\}$ is an oval with nucleus *N*. Consider the three points X_i, X_j, X_k for distinct i, j, k in $\{1, 2, \dots, q - 1\}$. Suppose that X_i, X_j, X_k are collinear on the line ℓ_{ijk} . There are *q* planes on ℓ_{ijk} distinct from PG(2, *q*), and the *q* lines of $\mathscr{K}_i \setminus \langle Y, X_i \rangle$ lie on these planes with at most two per plane; and similarly for X_j and X_k . It follows that there is a plane on ℓ_{ijk} which contains a line from at least two of the cones $\mathscr{K}_i, \mathscr{K}_j, \mathscr{K}_k$, which implies two cones intersecting in a point other than *Y*, a contradiction. Hence X_i, X_j, X_k cannot be collinear. Similarly, X_q, X_i, X_j are not collinear for distinct *i*, *j* in $\{1, 2, \dots, q - 1\}$ and $\mathcal{O} = \{Y, X_1, X_2, \dots, X_q\}$ is an oval. Since the lines $\langle N, X_i \rangle$, $i = 1, 2, \dots, q - 1$ and $\langle N, X_q \rangle$ are the nuclear lines of the cones \mathscr{K}_i , i = 1, 2, ..., q, respectively, and these lines intersect *n* in distinct points it follows that *N* is the nucleus of the oval $\{Y, X_1, X_2, ..., X_q\}$.

If we construct the GQ $T_2(\mathcal{O})$ in PG(3, q), then the set $\mathscr{S} = \{Y\} \cup \{\mathscr{K}_i \setminus \langle Y, X_i \rangle : i = 1, 2, ..., q\}$ is a spread of $T_2(\mathcal{O})$, and the cone \mathscr{K}_i has base oval equivalent to $\mathscr{D}(\alpha)$ and axial line $\langle Y, X_i \rangle$.

Conversely, suppose that we have such a spread \mathscr{S} of $T_2(\mathscr{O})$. If we take any plane π on Y, distinct from the plane PG(2, q) of \mathscr{O} , that intersects \mathscr{O} in a secant, then the intersection of the cones of \mathscr{S} with π yields an α -flock in the planar representation; if we take any plane ξ on Y and N, distinct from PG(2, q), then the intersection of the cones of \mathscr{S} with ξ yields ovals $\mathscr{O}'_1, \mathscr{O}'_2, \ldots, \mathscr{O}'_q$. It is clear that the above construction gives us the oval \mathscr{O} .

Note that this result characterises the ovals \mathcal{O} that may be constructed from an α -flock by the existence of the corresponding spread of $T_2(\mathcal{O})$. (This result was first proved algebraically in [1].)

4 Algebraic description of \mathcal{O} and \mathcal{S}

In this section we add coordinates to the construction of Theorem 1.4 to show that the hyperoval completion of \mathcal{O} is the same as the hyperoval constructed from an α flock by Cherowitzo and that the spread \mathscr{S} of $T_2(\mathcal{O})$ is the same as that constructed by Brown, O'Keefe, Payne, Penttila and Royle. Note that in [8] Thas showed that in the case of a flock of a quadratic cone that the q + 1 (flock, axis to base oval of cone) pairs gave rise to the q + 1 herd hyperovals constructed from a flock as formalised in Theorem 1.1.

Adding coordinates as in the proof of Theorem 1.4, let $PG(2, q) : x_2 = 0, \pi : x_3 = 0, \zeta : x_1 = 0$. Thus $n : x_2 = x_3 = 0, m : x_1 = x_2 = 0$ and $u : x_3 = x_1 = 0$ with Y(1, 0, 0, 0).

Let $\mathscr{K}_{\alpha} : x_1^{\alpha} = x_0 x_2^{\alpha-1}$ and let \mathscr{F}_{α} be a flock of \mathscr{K}_{α} . From Section 1 we may assume that \mathscr{F}_{α} has elements $\pi_t : f(t)x_0 + t^{1/\alpha}x_1 + ag(t)x_2 + x_3 = 0$, $t \in \mathrm{GF}(q)$, where f and g are permutations such that f(0) = g(0) = 0 and f(1) = g(1) = 1 and trace(a) = 1. Let \mathscr{O}_t'' denote the oval $\mathscr{K}_{\alpha} \cap \pi_t$, and so

$$\mathcal{O}_t'' = \{(s^{\alpha}, s, 1, f(t)s^{\alpha} + t^{1/\alpha}s + g(t)) : s \in \mathrm{GF}(q)\} \cup \{(1, 0, 0, f(t))\}$$

with nucleus $(0, 1, 0, t^{1/\alpha})$. We now choose to project these \mathcal{O}_t'' from the point U = (1, 0, 0, 1) on the axial line $x_1 = x_2 = 0$ of \mathscr{K}_{α} , onto the plane π . As f(1) = 1 the point U is contained in π_1 and so

$$\mathcal{O}_1'' \mapsto w : x_3 = x_0 + x_1 + x_2 = 0.$$

For $t \neq 1$

$$\mathcal{O}_t'' \mapsto \mathcal{O}_t = \{((1+f(t))s^{\alpha} + t^{1/\alpha}s + ag(t), s, 1, 0) : s \in GF(q)\} \cup \{Y\}$$

with nucleus $(t^{1/\alpha}, 1, 0, 0)$. Thus the planar representation of the α -flock is $\{\mathcal{O}_t : t \in GF(q) \setminus \{1\}\} \cup \{w\}$. For $t \neq 1$ define W_t to be the second point (other than Y) of

 \mathcal{O}_t on u, that is, $W_t = (ag(t), 0, 1, 0)$ and define W_1 to be the intersection of w and u, that is $W_1 = (1, 0, 1, 0)$.

Next, in the plane ξ we choose the axial linear pencil of ovals equivalent to $\mathscr{D}(\alpha)$ to be

$$\mathcal{O}_B' = \{ (r^{\alpha} + aB, 0, 1, r) : r \in \operatorname{GF}(q) \} \cup \{Y\}, \quad B \in \operatorname{GF}(q), \quad \text{with nucleus } (0, 0, 0, 1).$$

The second point (other than Y) of the oval O'_B on u is $(aB, 0, 1, 0) = W_{g^{-1}(B)}$.

For $t \neq 1$ the unique cone on \mathcal{O}_t and $\mathcal{O}'_{g(t)}$ has vertex $(t^{1/\alpha}, 1, 0, (1 + f(t))^{1/\alpha})$. Thus by Theorem 1.4 we have that

$$\{(t^{1/\alpha}, 1, 0, (1+f(t))^{1/\alpha}) : t \in \mathbf{GF}(q)\} \cup \{(1, 0, 0, 0)\}$$

is an oval of PG(2, q) with nucleus (0, 0, 0, 1).

Applying the collineation $x'_3 = x_3 + x_1$ and then the automorphic collineation induced by α , the oval is equivalent to

 $\mathcal{O} = \{(t, 1, 0, f(t)) : t \in GF(q)\} \cup \{(1, 0, 0, 0)\} \text{ with nucleus } (0, 0, 0, 1).$

This implies that the hyperoval completion of the oval is indeed the same hyperoval as that in Theorem 1.2.

Now considering the corresponding spread of $T_2(\mathcal{O})$, we see that the cone with vertex (t, 1, 0, f(t)) intersects the plane ξ in the oval

$$\{(r^{\alpha} + a^{\alpha}g(t)^{\alpha}, 0, 1, r) : r \in GF(q)\} \cup \{(1, 0, 0, 0)\} \text{ with nucleus } (0, 0, 0, 1).$$

This is the same as the spread given in Theorem 1.3.

References

- [1] M. R. Brown, C. M. O'Keefe, S. E. Payne, T. Penttila, G. F. Royle, Spreads of $T_2(\mathcal{O})$, α -flocks and ovals. To appear in *Des. Codes Cryptogr.*
- [2] W. Cherowitzo, α-flocks and hyperovals. Geom. Dedicata 72 (1998), 221–246. MR 99m:51011 Zbl 0930.51007
- [3] W. Cherowitzo, T. Penttila, I. Pinneri, G. F. Royle, Flocks and ovals. *Geom. Dedicata* 60 (1996), 17–37. MR 97c:51006 Zbl 0855.51008
- [4] P. Dembowski, Finite geometries. Springer 1968. MR 38 #1597 Zbl 0159.50001
- [5] S. E. Payne, A complete determination of translation ovoids in finite Desarguian planes. *Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.* (8) 51 (1971), 328–331. MR 49 #2427 Zbl 0238.50018
- [6] S. E. Payne, J. A. Thas, Finite generalized quadrangles. Pitman 1984. MR 86a:51029 Zbl 0551.05027
- [7] J. A. Thas, Generalized quadrangles and flocks of cones. *European J. Combin.* 8 (1987), 441–452. MR 89d:51016 Zbl 0646.51019

A geometrical construction of the oval(s) associated with an α -flock

[8] J. A. Thas, A result on spreads of the generalized quadrangle T₂(O), with O an oval arising from a flock, and applications. *European J. Combin.* 22 (2001), 879–886. MR 2002f:51009 Zbl 0998.51006

Received 20 April, 2001; revised 15 October, 2002

- M. R. Brown, School of Pure Mathematics, University of Adelaide, SA 5005, Australia Email: mbrown@maths.adelaide.edu.au
- J. A. Thas, Department of Pure Mathematics and Computer Algebra, Krijglaan 281—S22, B-9000 Gent, Belgium Email: jat@cage.rug.ac.be