
Adv. Geom. 4 (2004), 9–17 Advances in Geometry
( de Gruyter 2004

A geometrical construction of
the oval(s) associated with an a-flock
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(Communicated by T. Penttila)

Abstract. It is known, via algebraic methods, that a flock of a quadratic cone in PGð3; qÞ gives
rise to a family of qþ 1 ovals of PGð2; qÞ and similarly that a flock of a cone over a translation
oval that is not a conic gives rise to an oval of PGð2; qÞ. In this paper we give a geometrical
construction of these ovals and provide an elementary geometrical proof of the construction.
Further we also give a geometrical construction of a spread of the GQ T2ðOÞ for O an oval
corresponding to a flock of a translation oval cone in PGð3; qÞ, previously constructed alge-
braically.

1 Introduction and definitions

The essence of this paper is a geometrical construction of an oval O of PGð2; qÞ, q
even, from a flock of a translation oval cone in PGð3; qÞ and a spread of the corre-
sponding GQ T2ðOÞ. This construction, along with a geometrical proof that it does
indeed give an oval O and a spread of T2ðOÞ, can be found in Section 3 and prelimi-
nary results required can be found in Section 2. Much of this introduction gives the
known algebraic constructions of these objects while in Section 4 it is shown that the
geometrical construction we present here is the same as the algebraic one.

An oval O of PGð2; qÞ is a set of qþ 1 points no three of which are collinear. A line
of PGð2; qÞ is called an external line, a tangent line or a secant line of O depending on
whether it is incident with zero, one or two points of O, respectively. From this point
we assume that q is even. In the case where q is even the tangents to O are concurrent
in a point N called the nucleus of O. A hyperoval of PGð2; qÞ is a set of qþ 2 points
no three collinear. An oval together with its nucleus forms a hyperoval of PGð2; qÞ. If
an oval O has a tangent line l such that there exists a group of q elations of PGð2; qÞ
each element of which has axis l and fixes O, then O is called a translation oval.
The line l is called an axis of O. It was proved by Payne in [5] that each translation
oval is of the form DðaÞ ¼ fð1; t; taÞ : t A GFðqÞgU fð0; 0; 1Þg, for some generator a
of AutðGFðqÞÞ. Note that in the case where a : x 7! x2, or abusing notation a ¼ 2,
that the translation oval is the classical oval, the non-degenerate conic.

Let K be a quadratic cone in PGð3; qÞ with vertex V . A flock F of K is a set of q



planes of PGð3; qÞ partitioning the points of KnfVg. If we suppose that K is defined
by the equation x0x2 ¼ x2

1 , then following Thas in [7] we may write the flock in the
form F ¼ fpt : t A GFðqÞg where

pt : atx0 þ btx1 þ ctx2 þ x3 ¼ 0:

It follows that t 7! at, t 7! bt and t 7! ct are permutations of GFðqÞ. Without loss of
generality the elements of the flock may be normalised to

pt : f ðtÞx0 þ t1=2x1 þ agðtÞx2 þ x3 ¼ 0;

for permutations f and g of GFðqÞ with f ð0Þ ¼ gð0Þ ¼ 0 and f ð1Þ ¼ gð1Þ ¼ 1 and
traceðaÞ ¼ 1. In [3] the authors prove the following theorem concerning flocks of the
above form.

Theorem 1.1. Each of the sets

1; t;
f ðxÞ þ asgðxÞ þ s1=2x1=2

1þ asþ s1=2

� �
: x A GFðqÞ

� �
U fð0; 1; 0Þ; ð0; 0; 1Þg

for s A GFðqÞ and

fð1; t; gðtÞÞ : t A GFðqÞgU fð0; 1; 0Þ; ð0; 0; 1Þg

is a hyperoval of PGð2; qÞ.

In [3] the set of qþ 1 functions defining the hyperovals as above is called a herd. In
[8] Thas gave a geometrical construction of these hyperovals from the flock (although
not a geometrical proof of the construction).

Let a be a generator of AutðGFðqÞÞ, q ¼ 2e. Following Cherowitzo in [2] define
an a-cone Ka of PGð3; qÞ to be a cone with point vertex V and base an oval equiva-
lent to DðaÞ. If X is a point of the base oval on an axis, then the line hX ;Vi is called
an axial line of Ka. A flock of Ka, also known as an a-flock, is a set of q planes of
PGð3; qÞ partitioning the points of KanfVg. If Ka is defined by the equation
xa
1 ¼ x0x

a�1
2 and Fa a flock of Ka, then similarly to the case of a flock of a quadratic

cone we may write the elements of Fa as

pt : f ðtÞx0 þ t1=ax1 þ agðtÞx2 þ x3 ¼ 0 for t A GFðqÞ;

where f and g are permutations of GFðqÞ with f ð0Þ ¼ gð0Þ ¼ 0 and f ð1Þ ¼ gð1Þ ¼
1 and traceðaÞ ¼ 1. Then Cherowitzo ([2]) proves the following result concerning
a-flocks.

Theorem 1.2. The set fð1; t; f ðtÞÞ : t A GFðqÞgU fð0; 1; 0Þ; ð0; 0; 1Þg is a hyperoval of

PGð2; qÞ.
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In Section 3 we give a generalisation of a construction in [8] that each pair (axial
line of Ka, flock of Ka) gives rise to an oval of PGð2; qÞ. In the case where Ka is
a quadratic cone it was shown in [8] that in this way a flock gives rise to the qþ 1
hyperovals of the corresponding herd, while in Section 4 we show that for a general
a-flock the oval completes to the hyperoval of Theorem 1.2. In this way we have a
geometric proof of Theorem 1.1 and Theorem 1.2.

We now consider the Generalized Quadrangle (GQ) T2ðOÞ of Tits; see [4]. Let O
be an oval in PGð2; qÞ and embed PGð2; qÞ in PGð3; qÞ, then T2ðOÞ is a GQ of order
q and is constructed in the following manner. Points are (i) the points of PGð3; qÞn
PGð2; qÞ, (ii) the planes of PGð3; qÞ which meet PGð2; qÞ in a single point of O and
(iii) a symbol ðyÞ; lines are (a) the lines of PGð3; qÞ, not in PGð2; qÞ, which meet
PGð2; qÞ in a single point of O, and (b) the points of O; with incidence inherited from
PGð3; qÞ plus ðyÞ is incident with all lines of type (b). Note that T2ðOÞ is the clas-
sical GQ Qð4; qÞ if and only if O is a conic; see [6, 3.2.2]. A spread S of T2ðOÞ is a
set of lines such that each point of T2ðOÞ is incident with a unique element of S.
It follows that S has size q2 þ 1. In [1] the authors show that S must consist of
a point P of O and the q2 lines not in PGð2; qÞ of q oval cones, KX , X A OnfPg;
where KX has vertex X , contains P and has nuclear line hX ;Ni, with N the nu-
cleus of the oval O. The following theorem, in an equivalent form, also appears in
[1].

Theorem 1.3. Let O ¼ fðt; 1; f ðtÞÞ : t A GFðqÞgU fð0; 0; 1Þg, with f ð0Þ ¼ 0 and

f ð1Þ ¼ 1, be an oval of PGð2; qÞ, q even. Embed PGð2; qÞ in PGð3; qÞ as x2 ¼ 0 and let

a be a generator of AutðGFðqÞÞ. Let Kt be the cone with vertex ðt; 1; 0; f ðtÞÞ and base

fðsa þ aagðtÞa; 0; 1; sÞ : s A GFðqÞgU fð0; 0; 0; 1Þg, with traceðaÞ ¼ 1. Then ð0; 0; 0; 1Þ
plus the q2 lines not in PGð2; qÞ of the cones Kt form a spread of T2ðOÞ if and only if

f f ðtÞx0 þ t1=ax1 þ agðtÞx2 þ x3 ¼ 0 : t A GFðqÞg is an a-flock of Ka : x
a
1 ¼ x0x

a�1
2 ,

with gð0Þ ¼ 0 and gð1Þ ¼ 1.

In this way the ovals corresponding to an a-flock, as in Theorem 1.2, are charac-
terised as those for which the corresponding Tits GQ admits a spread of the form
above. Our geometrical construction in Section 3 characterises these ovals in the same
way and by attaching coordinates in Section 4 we see that it gives a non-algebraic
proof of Theorem 1.3.

Now we state our main theorem.

Theorem 1.4. For a a generator of GFðqÞ, q even, let Ka be a cone in PGð3; qÞ over
a translation oval equivalent to DðaÞ ¼ fð1; t; taÞ : t A GFðqÞgU fð0; 0; 1Þg. If Fa is a

flock of Ka, then to each pair ðFa; aÞ, where a is an axial line of Ka, there corresponds

an oval O of PGð2; qÞ. Further, there also corresponds a spread S of the generalized

quadrangle T2ðOÞ which consists of one point Y of O and the q2 lines not in PGð2; qÞ of
q a-cones KX , where KX has vertex X A OnfYg, base oval equivalent to DðaÞ and is

tangent to PGð2; qÞ at the axial line hY ;Xi.
Conversely, if a GQ T2ðOÞ has such a spread S, then there corresponds an a-flock

giving rise to the oval O.
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In Section 2 we shall state some basic properties of translation ovals and flocks of
translation oval cones which shall be used in the proof of Theorem 1.4 in Section 3.
In Section 4 we apply coordinates to the construction in the proof of Theorem 1.4 to
show that it gives both Theorem 1.2 and Theorem 1.3.

2 Preliminaries

In this section we give some basic results on translation ovals and a-flocks to be used
in the proof of our main theorem.

By Payne ([5]) we know that any translation oval of PGð2; 2hÞ is equivalent to
an oval of the form DðaÞ ¼ fð1; t; taÞ : t A GFðqÞgU fð0; 0; 1Þg with nucleus ð0; 1; 0Þ,
where a is a generator of AutðGFðqÞÞ. From this form it is clear that DðaÞ is a conic
if and only if a ¼ 2. In the case where DðaÞ is a conic each tangent to DðaÞ is an axis
of DðaÞ and the group of the conic is transitive on the axes. In the case where DðaÞ is
not a conic then DðaÞ has a unique axis ½1; 0; 0�. From the canonical form of a trans-
lation oval it is also straight-forward to see that for a given line l of PGð2; qÞ and
distinct points P;N incident with l that there are exactly qðq� 1Þ ovals equivalent to
DðaÞ containing P and with nucleus N, such that l is an axis of the oval. If R is a
fixed point of PGð2; qÞnl, then there are qðq� 1Þ ovals equivalent to DðaÞ with axis l
and containing the points P and R.

Another notion that we shall need is that of compatibility of ovals. Let O1 and O2

be two ovals of PGð2; qÞ and let P be a point of PGð2; qÞ not on either of the ovals
and distinct from their nuclei. Then O1 and O2 are compatible at P if they have the
same nucleus, they have a point Q in common, the line hP;Qi is a tangent to both
O1 and O2 and every secant line to O1 on P is external to O2. As a consequence every
external line to O1 on P is a secant line to O2. In particular we will need information
regarding points of compatibility in the case where O1 and O2 are both ovals equiv-
alent to DðaÞ with a common axis l, common nucleus N, lVO1 ¼ lVO2 ¼ fQg and
such that O2 is the image of O1 under an elation with axis l and centre Q. Without
loss of generality we may assume that O1 ¼ fð1; u; uaÞ : u A GFðqÞgU fð0; 0; 1Þg and
that O2 ¼ fð1; t; taþBÞ : t AGFðqÞgUfð0; 0; 1Þg for B AGFðqÞ. A point ð0; 1; sÞ, s00,
on the common axis of O1 and O2 is a point of compatibility of O1 and O2 if and only
if traceðB=sa=ða�1ÞÞ ¼ 1, which has q=2 solutions for s A GFðqÞ. Hence O1 and O2 have
q=2 points of compatibility on the common axis.

Now consider a cone Ka in PGð3; qÞ with vertex V and base an oval equivalent to
DðaÞ. Let l be an axial line of the cone and let P be any point incident with l distinct
from V and let p be any plane of PGð3; qÞ not containing P. If we project the q3 � q2

oval sections of Ka not containing P, from P onto p, then we obtain a one-to-one
correspondence between this set and the q2ðq� 1Þ ovals of p equivalent to DðaÞ that
contain the point Y ¼ lV p and have axis n ¼ pl V p, where pl is the plane tangent
to Ka at l. Similarly, the q2 oval sections of Ka containing P are in one-to-one cor-
respondence with the q2 lines of p not incident with Y . This correspondence is the
planar representation of Ka. If we consider a set of q oval sections of Ka that are
mutually tangent at a point of hP;VinfP;Vg, then in the planar representation this
set of q ovals is called an axial linear pencil of ovals. Equivalently, such a set of ovals
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may be described as the images of an oval equivalent to DðaÞ under the group of ela-
tions with axis the axis of the oval and centre the point of the oval on the axis.

Now consider a flock F ¼ fp1; . . . ; pqg of Ka. Without loss of generality suppose
that P A pq. For i ¼ 1; . . . ; q� 1 let the projection of the oval pi VKa from P onto
p be Oi and let w denote the line pq V p. Then it follows that in the planar represen-
tation of Ka that F is the set fO1; . . . ;Oq�1;wg. Thus O1; . . . ;Oq�1;w partition the
points of pnn, and it also follows that the nuclei of the Oi are distinct points of
nnfYg and that the line w intersects n in the remaining point of nnfYg. Conversely,
any such set fO1; . . . ;Oq�1;wg partitioning the points of pnfng corresponds to a flock
of Ka.

3 Proof of Theorem 1.4

Suppose Fa is a flock of Ka and a an axis of the base oval of Ka. If V is the vertex of
Ka, then hV ; ai contains the axial line l of Ka. Then, as in Section 2, if we project the
elements of Fa from a non-vertex point P of l onto a plane p, not containing P, we
obtain a planar representation fO1;O2; . . . ;Oq�1;wg of Fa. Let the common point of
the ovals O1; . . . ;Oq�1 be Y , the common axis of the ovals be n and nVw ¼ X 0.

Now consider two other planes PGð2; qÞ and x, such that PGð2; qÞV p ¼ n, pV
PGð2; qÞV x ¼ fYg, PGð2; qÞV x ¼ m and pV x ¼ u. In x we consider an oval O 0

1

equivalent to DðaÞ such that O 0
1 has axis m, contains the point Y on m, and has

nucleus N. Let fO 0
1;O

0
2; . . . ;O

0
qg be the axial linear pencil containing O 0

1 with axis m.
The ovals O 0

1;O
0
2; . . . ;O

0
q partition xnm, and in particular the points of unfYg. Con-

sequently we may choose indices such that Oi VO 0
i ¼ fY ;Wig, with Wi A u and i ¼

1; 2; . . . ; q� 1.
We now show that for each i ¼ 1; 2; . . . ; q� 1 there is a unique cone containing Oi

and O 0
i . Since n and m are tangents to Oi and O 0

i at Y , respectively, it follows that the
vertex of any cone containing the two ovals must be in the plane hn;mi ¼ PGð2; qÞ.
Now there are qðq� 1Þ cones containing O 0

1 and with vertex in PGð2; qÞnðnUmÞ, and
also qðq� 1Þ ovals of p equivalent to DðaÞ with axis n and containing the points Y
and W1. Thus, if we can find a group fixing O 0

1;Y and W1 as well as acting regularly
on both the set of points of PGð2; qÞnðnUmÞ and the set of ovals of p equivalent to
DðaÞ with axis n and containing the points Y and W1, then it follows there must
be exactly one cone containing O 0

1 and such an oval. To show the existence of such
a group we (briefly) apply coordinates. Let PGð2; qÞ : x2 ¼ 0, p : x3 ¼ 0, x : x1 ¼ 0.
We may assume that O 0

1 has the form fðta; 0; 1; tÞ : t A GFðqÞgU fð1; 0; 0; 0Þg. The re-
quired group has elements of the form

la r 0 0

0 1 0 0

0 0 1 0

0 0 0 l

0
BBB@

1
CCCA for r A GFðqÞ and l A GFðqÞnf0g:

By the above there is a unique cone K1 containing O1 and O 0
1 which has vertex X1,
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say, in PGð2; qÞ. Similarly we have cones Ki , i ¼ 1; 2; . . . ; q� 1, where Ki contains Oi

and O 0
i and has vertex Xi. We also define Kq to be the cone containing O 0

q and with
vertex X 0. For convenience we will relabel the point X 0 as Xq.

We now show that Xi;Xj;Y , i0 j, are not collinear and that the two cones Ki and
Kj , i0 j, intersect in exactly Y . Without loss of generality we will consider K1 and
K2. First suppose that Y ;X1;X2 are collinear on a line o (which is necessarily a gen-
erator of both K1 and K2). Of the qþ 1 planes of PGð3; qÞ on o, PGð2; qÞ is a tangent
plane to both K1 and K2 while each of the other q planes contains a second generator
of both K1 and K2 and so a second point of K1 VK2. Hence jK1 VK2j ¼ qþ 1. Now
we consider the planes on the line m. The plane PGð2; qÞ is tangent to both K1 and
K2 while each of the other q planes intersects both K1 and K2 in an oval equivalent
to DðaÞ with axis m, containing the point Y and with nucleus N. Two such ovals may
intersect in either 0; 1; 2 or qþ 1 points. Suppose that there exists a plane h distinct
from PGð2; qÞ on m for which hVK1 ¼ hVK2 ¼ O, O an oval. Now since O is the
set of common points of K1 and K2 it follows that pVO ¼ O1 VO2 ¼ fYg. Hence
the line pV h is tangent to both K1 and K2 at Y and so must be n. This implies that
m; nH h and so h ¼ PGð2; qÞ, a contradiction. It follows that each plane on m dis-
tinct from PGð2; qÞ contains exactly two points of K1 VK2, Y and one other. How-
ever this must also hold for x, a contradiction. Therefore Y ;X1;X2 are not collinear.

If N A hX1;X2i, then O1 and O2 have a common nucleus and so it follows that
N;X1;X2 are not collinear. So the line hX1;X2i contains a point P of mnfY ;Ng. If
K1 and K2 are to meet in exactly Y , then no line of x distinct from m and incident
with P can contain a point of both O 0

1 and O 0
2. Hence O 0

1 and O 0
2 are compatible at

P. From this we see that the number of cones containing O 0
2, with vertex in PGð2; qÞ,

that meet K1 in exactly Y is the number of points on m at which O 0
1 and O 0

2 are
compatible, multiplied by q� 2 for the possible vertices in hX1;PinfX1;Pg not on n,
for each such point of compatibility P. By Section 2 this is qðq� 2Þ=2. In the planar
representation of Ka in p, this is the same as the number of ovals equivalent to DðaÞ
meeting O1 in exactly Y , containing W2, and with nucleus distinct from that of O1. It
follows that the cones K1 and K2 meet in exactly Y .

We now show that the cone Kq and any cone Ki , i A f1; 2; . . . ; q� 1g intersect in
exactly Y . If we consider a plane p 0 such that uH p 0, but m; nQ p 0, then we have the
same situation as above except that Kq V p 0 is an oval and not a line. By choosing p 0

appropriately we see that Kq VKi ¼ fYg for i ¼ 1; 2; . . . ; q� 1.
Since the cones Ki intersect pairwise in exactly Y it follows that they partition the

points of PGð3; qÞnPGð2; qÞ.
We now show that the set O ¼ fY ;X1;X2; . . . ;Xqg is an oval with nucleus N.

Consider the three points Xi;Xj;Xk for distinct i; j; k in f1; 2; . . . ; q� 1g. Suppose
that Xi;Xj ;Xk are collinear on the line lijk. There are q planes on lijk distinct from
PGð2; qÞ, and the q lines of KinhY ;Xii lie on these planes with at most two per
plane; and similarly for Xj and Xk. It follows that there is a plane on lijk which con-
tains a line from at least two of the cones Ki ;Kj ;Kk, which implies two cones inter-
secting in a point other than Y , a contradiction. Hence Xi;Xj;Xk cannot be collinear.
Similarly, Xq;Xi;Xj are not collinear for distinct i; j in f1; 2; . . . ; q� 1g and O ¼ fY ;
X1;X2; . . . ;Xqg is an oval. Since the lines hN;Xii, i ¼ 1; 2; . . . ; q� 1 and hN;Xqi are
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the nuclear lines of the cones Ki , i ¼ 1; 2; . . . ; q, respectively, and these lines intersect
n in distinct points it follows that N is the nucleus of the oval fY ;X1;X2; . . . ;Xqg.

If we construct the GQ T2ðOÞ in PGð3; qÞ, then the set S ¼ fYgU fKinhY ;Xii :
i ¼ 1; 2; . . . ; qg is a spread of T2ðOÞ, and the cone Ki has base oval equivalent to DðaÞ
and axial line hY ;Xii.

Conversely, suppose that we have such a spread S of T2ðOÞ. If we take any plane
p on Y , distinct from the plane PGð2; qÞ of O, that intersects O in a secant, then the
intersection of the cones of S with p yields an a-flock in the planar representation; if
we take any plane x on Y and N, distinct from PGð2; qÞ, then the intersection of the
cones of S with x yields ovals O 0

1;O
0
2; . . . ;O

0
q . It is clear that the above construction

gives us the oval O.
Note that this result characterises the ovals O that may be constructed from an a-

flock by the existence of the corresponding spread of T2ðOÞ. (This result was first
proved algebraically in [1].)

4 Algebraic description of O and S

In this section we add coordinates to the construction of Theorem 1.4 to show that
the hyperoval completion of O is the same as the hyperoval constructed from an a-
flock by Cherowitzo and that the spread S of T2ðOÞ is the same as that constructed
by Brown, O’Keefe, Payne, Penttila and Royle. Note that in [8] Thas showed that in
the case of a flock of a quadratic cone that the qþ 1 (flock, axis to base oval of cone)
pairs gave rise to the qþ 1 herd hyperovals constructed from a flock as formalised in
Theorem 1.1.

Adding coordinates as in the proof of Theorem 1.4, let PGð2; qÞ : x2 ¼ 0, p : x3 ¼ 0,
x : x1 ¼ 0. Thus n : x2 ¼ x3 ¼ 0, m : x1 ¼ x2 ¼ 0 and u : x3 ¼ x1 ¼ 0 with Yð1; 0; 0; 0Þ.

Let Ka : x
a
1 ¼ x0x

a�1
2 and let Fa be a flock of Ka. From Section 1 we may assume

that Fa has elements pt : f ðtÞx0 þ t1=ax1 þ agðtÞx2 þ x3 ¼ 0, t A GFðqÞ, where f and
g are permutations such that f ð0Þ ¼ gð0Þ ¼ 0 and f ð1Þ ¼ gð1Þ ¼ 1 and traceðaÞ ¼ 1.
Let O 00

t denote the oval Ka V pt, and so

O 00
t ¼ fðsa; s; 1; f ðtÞsa þ t1=asþ gðtÞÞ : s A GFðqÞgU fð1; 0; 0; f ðtÞÞg

with nucleus ð0; 1; 0; t1=aÞ. We now choose to project these O 00
t from the point

U ¼ ð1; 0; 0; 1Þ on the axial line x1 ¼ x2 ¼ 0 of Ka, onto the plane p. As f ð1Þ ¼ 1 the
point U is contained in p1 and so

O 00
1 7! w : x3 ¼ x0 þ x1 þ x2 ¼ 0:

For t0 1

O 00
t 7! Ot ¼ fðð1þ f ðtÞÞsa þ t1=asþ agðtÞ; s; 1; 0Þ : s A GFðqÞgU fYg

with nucleus ðt1=a; 1; 0; 0Þ. Thus the planar representation of the a-flock is fOt :
t A GFðqÞnf1ggU fwg. For t0 1 define Wt to be the second point (other than Y ) of
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Ot on u, that is, Wt ¼ ðagðtÞ; 0; 1; 0Þ and define W1 to be the intersection of w and u,
that is W1 ¼ ð1; 0; 1; 0Þ.

Next, in the plane x we choose the axial linear pencil of ovals equivalent to DðaÞ to
be

O 0
B ¼ fðra þ aB; 0; 1; rÞ : r A GFðqÞgU fYg; B A GFðqÞ; with nucleus ð0; 0; 0; 1Þ:

The second point (other than Y ) of the oval O 0
B on u is ðaB; 0; 1; 0Þ ¼ Wg�1ðBÞ.

For t0 1 the unique cone on Ot and O 0
gðtÞ has vertex ðt1=a; 1; 0; ð1þ f ðtÞÞ1=aÞ. Thus

by Theorem 1.4 we have that

fðt1=a; 1; 0; ð1þ f ðtÞÞ1=aÞ : t A GFðqÞgU fð1; 0; 0; 0Þg

is an oval of PGð2; qÞ with nucleus ð0; 0; 0; 1Þ.
Applying the collineation x 0

3 ¼ x3 þ x1 and then the automorphic collineation
induced by a, the oval is equivalent to

O ¼ fðt; 1; 0; f ðtÞÞ : t A GFðqÞgU fð1; 0; 0; 0Þg with nucleus ð0; 0; 0; 1Þ:

This implies that the hyperoval completion of the oval is indeed the same hyperoval
as that in Theorem 1.2.

Now considering the corresponding spread of T2ðOÞ, we see that the cone with
vertex ðt; 1; 0; f ðtÞÞ intersects the plane x in the oval

fðra þ aagðtÞa; 0; 1; rÞ : r A GFðqÞgU fð1; 0; 0; 0Þg with nucleus ð0; 0; 0; 1Þ:

This is the same as the spread given in Theorem 1.3.
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