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On the second sectional geometric genus of
quasi-polarized manifolds
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Abstract. Let (X, L) be a quasi-polarized manifold of dim X = n. In a previous paper we gave
a new invariant (the i-th sectional geometric genus) of (X, L), which is a generalization of the
degree and the sectional genus of (X, L). In this paper we study some properties of the second
sectional geometric genus.
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0 Introduction

Let X be a projective variety of dim X = n over the complex number field C, and let
L be a nef and big (resp. an ample) line bundle on X. Then we call the pair (X,L) a
quasi-polarized (resp. polarized) variety, and (X, L) is called a quasi-polarized (resp.
polarized) manifold if X is smooth. In [6], we gave a new invariant of (X, L) which is
called the i-th sectional geometric genus g;(X, L) of (X, L) for 0 < i < n. We note that
gi(X, L) is a generalization of the degree L" and the sectional genus g(L). (Namely
go(X,L) = L" and ¢,(X,L) = g(L).) Here we recall the reason why we call this in-
variant the sectional geometric genus. Let (X, L) be a quasi-polarized manifold of
dimension n > 2 with Bs|L| = &, where Bs|L| is the base locus of |L|. Let i be an
integer with 1 <i < n, and let Y be the transversal intersection of general n — i ele-
ments of |L|. In this case Y is a smooth projective variety of dimension i. Then we
can prove that g;(X, L) = h'(Oy), that is, g;(X, L) is the geometric genus of Y.

In [6] we study some fundamental properties of the i-th sectional geometric genus.
We find that we can generalize some problems about the sectional genus to the case
of the sectional geometric genus. For example, in [6] we proposed the following
conjecture:

Conjecture 0.1. Let (X, L) be a quasi-polarized manifold of dim X = n and let i be an
integer with 0 <i < n. Then g;(X,L) = h'(Oy).
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Here we note that if i = 0, then this is true because go(X,L) = L" > 1 = h°(Oy). If
i = 1, then this is Fujita’s conjecture. (See [3, (13.7)] or [1, Question 7.2.11].) Namely
we can find that an inequality g(L) > h'(Oy) is a generalization of an inequality
L" > 1. In [6] we proved that this conjecture is true if Bs|L| = . Moreover we clas-
sified polarized manifolds (X, L) which satisfy the following properties:

(A) dim X >3, Bs|L| = &, and g2(X, L) = h*(0x),
(B) dim X > 3, L is very ample, and ¢»(X, L) = h*(Ox) + 1.

In a future paper, we will classify polarized manifolds (X, L) such that L is very
ample and ¢»(X, L) — h*(Ox) < 5. In [7] we study the conjecture for the case where
0 <dimBs|L| <n— 1.

Furthermore in [6] we proved the following which is analogous to a theorem of
Sommese ([11, Theorem 4.1]):

Theorem 0.2 ([6, Corollary 3.5]). Let (X, L) be a polarized manifold of dim X = n > 3.
Assume that L is spanned. Then the following are equivalent:

(1) g2(X, L) = h*(Cx),

2) h°(Ky + (n—2)L) =0,
3) kK(Ky + (n—2)L) = —o0,
)

(
(
(4) (X, L) is one of the types from (1) to (7-4) in Theorem 1.13 below.

In this way, it is interesting and very important to study the sectional geometric
genus, and we hope that by using this invariant we can study polarized manifolds
more deeply.

In this paper, we mainly study the second sectional geometric genus of (quasi-)
polarized manifolds. The contents of this paper are the following: In Section 1, we
prepare for some results which are used later. In Section 2, we give an explicit for-
mula of the second sectional geometric genus of quasi-polarized manifolds. In Sec-
tion 3, we study the second sectional geometric genus of polarized manifolds and we
obtain the following:

(1) We give a lower bound of g,(X, L) for dim X > 4 and x(X) > 0. (Theorem 3.5
(1).) In particular we get that g,(X, L) > h'(Cy). (Corollary 3.5.2 (1).)

(2) We give some numerical conditions of (X, L) with g,(X, L) = 0if dim X > 4 and
1(X) = 0. (Corollary 3.5.4.)

(3) We prove that g,(X,2L) = 0 for dim X = 3. (Theorem 3.7 and Corollary 3.7.1.)

(4) We give a classification of (X, L) with dim X = 3 and ¢»(X,2L) = 0. (Proposi-
tion 3.10 and Proposition 3.11.)

(5) We study the case where dim X > 3, Ky is nef and #x(X) > 0. (Theorem 3.5 (2),
Corollary 3.5.2 (2), and Proposition 3.9.)
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The author would like to thank the referee for giving very valuable comments on
the first version of this paper. In particular, the assertion of Theorem 3.5 was im-
proved by the referee’s comment.

Notation and Conventions. In this paper, we shall study mainly a smooth projective
variety X over the complex number field C. The words “line bundles” and “Cartier
divisors” are used interchangeably.

O(D): invertible sheaf associated with a Cartier divisor D on X.
Oy the structure sheaf of X.

x(F): the Euler—Poincaré characteristic of a coherent sheaf 7.
h'(#) = dim H'(X,7) for a coherent sheaf # on X.

hi(D) = hi(O(D)) for a divisor D.

|D|: the complete linear system associated with a divisor D.
Ky: the canonical divisor of X.

k(D): litaka dimension of a Cartier divisor D on X.

k(X): Kodaira dimension of X.

IP": projective space of dimension 7.

@Q": hyperquadric surface in P"+!.

~ (or =): linear equivalence.

=: numerical equivalence.

1 Preliminaries

Definition 1.1. Let X be a normal projective variety of dim X = n, and let & be a
vector bundle on X. Let % = (hy,...,h,—1) be an (n — 1)-tuple of numerically effec-
tive @Q-divisors on X. Then & is said to be #-semistable if

54]/(97) < 64/(&)
for every nonzero subsheaf & of &, where

C1 ((q)hl .. ~hn—l

ou(¥) = rank %

for any torsion free sheaf 4 on X.
Theorem 1.2 (Harder—Narashimhan filtration). Let X be a normal projective variety of

dim X = n and let & be a torsion free sheaf on X. Let U = (hy, ..., hy_1) be an (n — 1)-
tuple of numerically effective Q-divisors on X. Then there exists a unique filtration
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that has the following properties: for any integer i with 1 <i <s
(1) Gri(Z%) := &/ &1 is a torsion free U-semistable sheaf,

(2) 0u(Gri(Z)) is a strictly decreasing function on i.
Proof. See [10, Theorem 2.1]. O

Remark 1.2.1. We say that the above filtration X4 of & is the Harder—Narashimhan
filtration of & with respect to U.

Definition 1.3. (1) The coherent subsheaf &) in Theorem 1.2 is said to be the maximal
U-destabilizing subsheaf of &.

(2) Let X be a normal projective variety of dim X =n and let = (hy,...,hy-2)
be a (n — 2)-tuple of numerically effective @-divisors on X. A torsion free sheaf & on
X is said to be generically U-semipositive if for every numerically effective @Q-divisor
Don X, 04, p)((67);) <0, where & denotes the dual of &, and (), is the maximal
(%, D)-destabilizing subsheaf of &*. (See [10, Section 6].)

Theorem 1.4. Let X be a normal projective variety of dim X = n such that X is smooth
in codimension two. Let NA(X ) < {Pic(X)/numerical equivalence} ® R be the ample
cone. Let & be a torsion free sheaf on X, with its first Chern class being a numerically
effective Q-divisor. Assume that & is generically B-semipositive, where 8 = (hy,. ..,
hy—2) and h; € NA(X ), for each i. Then

Cz(éa)hl cohy = 0.
Proof. See [10, Theorem 6.1]. O
Theorem 1.5. Let X be a smooth projective variety of dim X = n. Let Hy, ..., H, > be
ample Cartier divisors on X. Then Q )1( is generically (Hy, ..., H,_»)-semipositive unless
X is uniruled. (For the definition that X is uniruled, see Definition 1.15 below.)

Proof. See [10, Corollary 6.4]. O

Theorem 1.6 (Hirzebruch—Riemann—Roch). Let X be a smooth complete variety and
let & be a locally free sheaf on X. Then

2(8) = jX ch(#) td(7%),

where Ty is the tangent bundle of X, ch(&) (resp. td(Ty)) is the Chern character of &
(resp. the Todd class of Tx), and [, denotes the degree of the zero-dimensional com-
ponent of (ch(&)td(Tx)) N[X].
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Proof. See |9, Chapter Four]. U

Notation 1.7. Let (X,L) be a quasi-polarized manifold of dmX =#n >3 and
Bs|L| = . (Here Bs|L| denotes the base locus of |L|.) We put X := X and L := L.
Let X; € [L;—1| be a smooth member of |L; | and L; = L; 1|y, for | <i<n—1.

Definition 1.8. Let (X, L) be a quasi-polarized variety of dim X = n, and let y(zL) be
the Euler—Poincaré characteristic of L. Here we put

n £L/]
= E X_/'(XaL)_~'7
=0 f'

where {7l = t(t41)...(t4+j—1) for j=1 and 7% = 1. Then the sectional genus
g(L) of (X, L) is defined by the following:

g(L)=1—y,(X,L).

Remark 1.8.1. If X is smooth, then the sectional genus of (X, L) can be expressed by
the following formula:

o(L) =1+ 3 (K + (n— L)L,

where Ky is the canonical divisor of X.

Definition 1.9 (See [6, Definition 2.1]). Let (X, L) be a quasi-polarized variety of
dim X = n. Then for an integer 0 < i < n the i-th sectional geometric genus g;(X, L)
of (X, L) is defined by the following formula:

gi(X, L) = (=) (zs(X, L) Z )" ().

(Here we use notation in Definition 1.8.)

Remark 1.9.1. (1) Since y,_;(X,L) € Z, g;(X, L) is an integer by definition.

(2) Ifi = 0 (resp. i = 1), then g;(X, L) is equal to the degree (resp. the sectional genus)
of (X,L).

(3) If i = n, then g,(X, L) = h"(0Ox), and g,(X, L) is independent of L.

Theorem 1.10. Let (X, L) be a quasi-polarized manifold of dim X = n. Let i be an inte-
ger such that 0 <i<n— 1. Then

n—i—1 n—i

gi(X, L) = (—l)f(" ; i)hO(Kx +(n—i= L)+ Y (=1 h K (oy).

= k=0
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Proof. See [6, Theorem 2.3]. O

Theorem 1.11. Let X be a variety of dim X =n and let Ly, Ly, Ay, ..., A, be nef
Q-bundles on X. Then

(L1L2A1 .. .An,Q)Z = (L]LlAl .. .A,,,z)(LszAl .. .Anfz).
Proof. See [3, (0.4.6)], or [1, Proposition 2.5.1]. O

Definition 1.12. (1) Let X (resp. Y) be an n-dimensional projective manifold, and L
(resp. A) an ample line bundle on X (resp. Y). Then (X, L) is called a simple blowing
up of (Y, A) if there exists a birational morphism 7 : X — Y such that 7 is a blowing
up at a point of Y and L = n*(A4) — E, where E is the n-exceptional reduced divisor.

(2) Let X (resp. Y) be an n-dimensional projective manifold, and L (resp. 4) an
ample line bundle on X (resp. Y). Here we put (Xy,Lo) := (X,L). Then we say
that (Y, A) is the first reduction of (X, L) if there exist polarized manifolds (X, L;)
for 1 < j <1+ 1 and birational morphisms g, : X; — Xjy for 0 < j <7 such that
(Xiv1, Liy1) = (Y, 4), (Xj, L)) is a simple blowmg up of (Xji1,L;y1) for any j with
0 < j<t and (Y, A) is not obtained by a simple blowing up of any polarized mani-
fold. The birational morphism g : =y, 0---ouy: X — Y is called the first reduction
map.

Remark 1.12.1. If (X, L) is not obtained by a simple blowing up of any polarized
manifold, then (X, L) is the first reduction of itself.

Theorem 1.13. Let (X, L) be a polarized manifold of n = dim X > 3. Then (X, L) is
one of the following types:

(1) (", 0(1)),

(2) (", 0(1)),

(3) a scroll over a smooth curve,

(4) Ky ~ —(n— 1)L, that is, (X, L) is a Del Pezzo manifold,
(5)

(6)

(7)

5) a hyperquadric fibration over a smooth curve,

6) a scroll over a smooth surface,
7) let (X', L") be the first reductzon of (X,L),
(7-1) n=4, (X’ L') = (P*,0(2)),
(1:2) n=3, (X", L) = (@,0(2))
(7'3) n= 39 ( ) ) (IP3 (9( ))
(7-4) n =3, X' is a P*-bundle over a smooth curve C with (F',L'|.,) = (P*,0(2))

for any fiber F' of it,
(8) Ky + (n—2)L' is nef.
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Proof. See [1, Proposition 7.2.2, Theorem 7.2.4, Theorem 7.3.2, and Theorem 7.3.4].
See also [4]. Il

Remark 1.13.1. (X, L) is the type (1) (resp. the type (1), (2), or (3)) in Theorem 1.13 if
and only if Ky + nL (resp. Ky + (n — 1)L) is not nef.

Proposition 1.14. Let (X, L) be a polarized manifold of dim X = n, and let i be an
integer with 1 <i < n. Let (M, A) be the first reduction of (X,L). Then g;(X,L) =
g,‘(M, A)

Proof. See [6, Proposition 2.6]. O
Definition 1.15. A variety X of dimension 7 is said to be uniruled if there exist a vari-
ety Y of dimension n — 1 and a dominant rational map IP! x ¥ - X. (Here we note
that P” is uniruled.)

Definition 1.16 (See [1, (13.1)]). Let X be a normal and 1-Gorenstein projective vari-
ety of dim X = n and let L be a line bundle on X. For an integer j with 0 < j < n,
the j-th pluridegree d;(L) of the pair (X, L) is defined as

di(L) = (Kx + (n —2)L)’L"7,

where Ky is the canonical sheaf of X.

Remark 1.16.1. Let (X, L) be as in Definition 1.16. Then by easy calculations, we
obtain the following:

(1) KxL" ' =d\(L) — (n = 2)do(L),

(2) KAL" 2 =dy(L) — 2(n — 2)di (L) + (n — 2)*do(L).

Lemma 1.17. Let X be a smooth projective variety of dim X =n > 3 and let L be an

ample line bundle on X. Assume that k(X) = 0. Let (M, A) be the first reduction of
(X,L). Let d;(A) be the j-th pluridegree of (M, A). Then for j=1,...,n,

d(4) > (n—2)dj1(4).
Furthermore if k(X) = 1, then the inequalities are strict.

Proof. See [1, Lemma 13.1.3]. O

2 An explicit formula for the second sectional geometric genus

In this section we will give an explicit formula for the second sectional geometric
genus of quasi-polarized manifolds.
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Proposition 2.1. Let (X, L) be a quasi-polarized manifold of dim X = 3. Then
1
g2(X,L) = —1+h'(0y) JFE((KX +2L)(Ky + L) + 2)L,

where c; is the second Chern class of X.
Proof. By the Hirzebruch—Riemann—Roch theorem (see Theorem 1.6), we get that

1 1 1 1
x(=L) = _5L3 +ZC1L2 _E(Clz +C2)L+ﬂ016’27

where ¢; = ¢;(Jx) for the tangent bundle 7y of X. By the Kawamata—Viehweg
vanishing theorem and the Serre duality, we have

—h’(Kx + L) = z(-L).
Hence

1 1 1 1
hO(KX +L)= 8L3 - ZCILZ +§(512 + )L fﬁclcz.

By the Hirzebruch—Riemann—Roch theorem, we obtain that

1
h = —
1(Ox) 54 €162

Therefore since ¢; = —Ky, we get that

1 1 1
WKy + L) = 6L3 +—KyL* +— (K3 + o)L — y(0Oy)

4 12
= éLS +%le42 +%(KA2’ + C2)L — (1 — hl((ﬁx) + hz(@x) — /13((9)())
1 3 2 2 1 1 2 3
:E(2L +3KxL +KXL)+EC2L—(1 —h'(Ox) + h*(Ox) — h*(Oy))

= 11—2((Kx +2L)(Ky + L) + ¢2)L — 1 + k' (0x) — B2(Ox) + B3 (Oy).

So by Theorem 1.10 we get the assertion. O
Next we consider the case in which dim X > 4.

Proposition 2.2. Let (X, L) be a quasi-polarized manifold of dim X = n > 4. Assume
that L is spanned. Then
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92X, L) = 1+ 1 (03) + 33 ((Kx + (0 = DDy + (1= D)L) + )L

+ % (2Ky + (n—2)L)L"".

Proof. Here we use Notation 1.7. Then (X,_3,L,_3) is a quasi-polarized manifold

with dim X;,_3 = 3 and Bs|L,_3| = J. Then we can prove that by the adjunction
formula

(Ky + (n— 1)L)(Kx 4+ (n —2)L)L"* = (Ky, , + 2L, 3)(Kx, s + Ly_3)L,_3.
By the exact sequence
0= Ty, = (Ix) = O(L)ly,, — 0,
we get that
c(p*(7x)) = e(Tx,)e(O(Li)ly,,),

where p : X;11 — X; is the embedding, 7, is the tangent bundle of X; for j =1i,i+ 1,
and ¢(&) denotes the total Chern class of a vector bundle £. So we obtain that

a(Xi)ly,, = a(Xi)O(Li)|y,,, + c2(Xit1)

= —Kx, Lis1 + c2(Xig1).
Here we note that

n—3

2Ky + (n—2)L)L" ' = (Kx + L)L" ' + -+ + (Kx + (n — 3)L)L""".
Therefore

(X)L 2 + % 2Ky + (n —2)L)L""!

= (X)) L1 + K, L + (Ky, + L)LY 2 + -+ + (Ky, + (n — 4)Ly) L
= (X)L} + (Ky, + L)LY + -+ (Kx, + (n —4)Ly) L

(X )L+ (Kx, , + Ly a)L2,
2(Xu-a)ly, ,Lns + Ky, L2
Cz(Xn—3)Ln—3-
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We also note that h!(0y) = h'(Oy, ). By [6, Theorem 2.4] we get that g»(X,_3,
L, 3) = g»(X,L). Therefore

14 00) + 15 (K + (1= DI) (K + (1= 2)L) + )L
n—3

_ n—1
S Ky + (n=2)L)L

+

1
=—1+h'(Ox,_,)+ 13 (Kx,y + 2Ln-3)(Kx,y + Lu-3) + €2(Xn-3)) L3

= g2(Xn—3, Ls—3)
= gz(X,L).

This completes the proof of Proposition 2.2. |

Corollary 2.3. Let (X, L) be a quasi-polarized manifold of n = dim X > 3. Then

(X, L) = —1+n'(0y) + % (Kx +(n—1)L)(Ky + (n = 2)L) + ¢;)L" 2
n—23

24

+ (2Ky + (n—2)L)L"".

Proof. Let A be an ample line bundle on X. We put

f([) =-—1 +hl((9)() +%((KX + (n— 1)(L+ ZA))(KX +(n—- 2)(L+ t4)) + ¢2)

x (L+ 14" + %(21@ + (= 2)(L+ tA)) (L + t4)" ",

Here we note that g,(X, L + tA) is a polynomial in one indeterminate ¢ by Theorem
1.6 and Definition 1.9, and f(¢) is also a polynomial in one indeterminate z. If
Bs|L + t4| = &, then g»(X, L+ tA) = f(t) by Proposition 2.2. But since there are
infinitely many ¢ with Bs|L + t4| = ¢J, we have g»(X,L + tA) = f(¢) for any ¢. In
particular ¢,(X, L) = f(0) and we get the assertion. N

3 Properties of the second sectional geometric genus of polarized manifolds

In this section, we assume that X is smooth and L is ample. We study the second
sectional geometric genus of a polarized manifold (X, L). First we prove the follow-
ing lemma.

Lemma 3.1. Let X be a smooth projective variety of dimX =n >3, and let L,
H,y,...,H,_» be ample Cartier divisors on X. We put % = (H,,...,H,_). Let & be a
vector bundle on X such that & is generically U-semipositive. Then & ® L is also
generically AU -semipositive.
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Proof. Let D be a numerically effective Q-divisor on X and let " = (Hy,...,H, >,
D). Let
Ly :0=(6")yc(6") g <(67),=¢"

be the Harder—Narashimhan filtration of &* with respect to #". Then by Theorem
1.2 for any integer i with 1 < i < s the following are satisfied:

(®) Gri(Zy) :=(67);/(67),_, 1s a torsion free ¥ -semistable sheaf,
(M) 0y (Gri(Zy)) =09 ((67),;/(67),_,;) 1s a strictly decreasing function on i.
Since & is generically %-semipositive, we get that

cl((g*)l)Hl .. .Hn,zD

<0.
rank(&™),

Claim 3.1.1. The Harder—Narashimhan filtration of (§ ® L)" with respect to W is the
following:
Sy QL :0=(")y®L ("), QL g S ("), ®L"
—E®L =(6®L)".
Proof. (A) First we prove that Gr;(Xy ® L*) is a torsion free # -semistable sheaf.
We find that Gri(Zy ® L") = ((£7), ®L )/(67) @ L™) = ((67);/(67);_y) ® L

is torsion free. For any subsheaf # of ((6); ® L*)/((6*),_; ® L*) we obtain that
Z ® L is a subsheaf of (6*),/(£"),_, and by using (#) we get that

Cl(ﬁ®L)H1 ...Hn,zD < Cl((g*)[/(g*),'_l)Hl ...Hn,zD

k(7 ®L) S rank((6),/(67), )
Since
a(#®L)H,...H, ,D _ a(#F)H,...H,_»D
rank(# ® L) B rank L D
we get that

61(9‘7)1‘[1...Hn,QD_Cl(g®L)H1 ,, 2D

rank & N rank (7 ®L)
a((67);/(6")i)H ... Hy 2D
rank((67);/(67);-1)

ci(((67):/(6%);1) @ L*)H, ... Hy D
rank((& )i/((g*)ifl)

a(((¢),®L")/((67), ., ® L") H, ... Hy 2D

rank(((67); ® L*)/((67);_; ® L*))

Therefore ((6*), ® L*)/((6"),_; ® L*) is # -semistable.
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(B) Next we prove that 04 (Gr;(Z, ® L*)) is a strictly decreasing function on i. By
using (dé), we get that
Oy (Gri(Zy ® L)) — 0y (Griy1 Ty ® LY))
ei(((67),/(67); ) @ L) Hy ... Hy s D
rank(((&"),/(), 1) © L")

ci(((67)i1/(67)) @ L*)H, ... Hy 2D
rank(((67);,,/(67);) ® L)

a((67)/(6)s)Hr ... HyoD  a1((67);,/(67);)Hy - .. Hy 2D
rank(((67);/(67);-;) ® L*) rank(((&7),.,/(¢ )) L¥)
@)/ 6) ) Hy D a8, /() H - HyaD
rank((€7);/(67),_1) rank((é”),-+1/( ),»)
Therefore X, ® L* is the Harder—Narashimhan filtration of £* ® L* with respect
to # . This completes the proof of Claim 3.1.1. O

By Claim 3.1.1, the maximal % -destabilizing subsheaf of §* @ L* is (6*), ® L*.
Since & is generically %-semipositive and L is ample, we have

O, py) (6" @ L)) =0m,,..H,,,0)((67), ® L")
C]((o )1 ®L )H] ...Hn_zD
rank((6"), ® L*)
_ Cl(((g)*)l)Hl . .HH,QD _
= rank((éa*)l L) LH,...H, »D
- C]((g*)]>H1 .. .Hn,zD
N rank(67%),

—LH,...H, ,D <0.

Hence & ® L is generically %-semipositive. ]
By Theorem 1.5 and Lemma 3.1 we get the following.

Corollary 3.2. Let X be a smooth projective variety of dmX =n >3, and let L,
Hy,...,H, » be ample Cartier divisors on X. Then QX ® L is generically (Hy,...
Hn,z)-semipositive unless X is uniruled.

3

Corollary 3.3. Let X be a smooth projective varzety of dm X =n = 3, and let L be an
ample divisor on X. If X is not uniruled, then ¢3(Q} ® L)L"* > 0.

Proof. By Corollary 3.2, we get that Q)l( ® L is generically (L, ..., L)-semipositive.
On the other hand ¢;(Q} ® L) = Ky + nL is nef unless X is uniruled. (See Remark
1.13.1.) Hence by Theorem 1.4, we have ¢;(Q} ® L)L"~2 > 0. O
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Proposition 3.4. Let X be a smooth projective variety of dim X =n > 3. Let L be an
ample Cartier divisor on X. If X is not uniruled, then

(X)L > — <Z>L —(n— D)KyL" "

Proof. By [8, Example 3.2.2], we get that
) i
aQleL) = Z( ) QL)L
i=0
-1
)z (" a@r+ el

-
(1Yo (7 Yoot st

NSNS

S

[\

Therefore

—1
Q) ® L)L = (;)L" n (” | )KXL”1 + QL2

Because ¢(Q4)L"2 = ¢,(X)L"2, by Corollary 3.3 we have
1 n—2 n n n—1 n—1 n—2
0<a@ oL = (1 )r+ (" )KL + o
Namely
e(X)L"2 > — <Z>L — (n— )KyL".

This completes the proof of Proposition 3.4. O

Theorem 3.5. Let (X, L) be a polarized manifold of dim X = n. Assume that k(X) = 0.
Let (M, A) be the first reduction of (X, L), and let y be the number of points blown up
under the first reduction map.

(1) If n = 4, then

L"+vy

@(X,L) > -1 +h1((5"x) + B

(n* —5n+5).

(2) If n = 3 and Ky is nef, then

92 (X,L) = —1+h'(0y) +§(3n2 — 11n+ 10)L"
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Proof. (1) First we note that by Proposition 1.14, g,(X, L) = g>(M, A). So we calcu-
late g>(M, A). Here we note that M is not uniruled because x(M) > 0. So by Prop-
osition 3.4 we have

n

er(M)A" 2 > —(2

)A”— (n— 1)Ky A"

On the other hand,

(Kyr 4+ (n — 1)A)(Kpr + (n — 2)A) A" % + c2(M) A" 2

n

> (Ky+ (n—1DA)(Ky + (n —2)4)4" % — <2

>A” —(n— 1)Ky A"}

o

= Ky (Kyr + (n—2)A)A" 2 + (n — 1)(;—2>A”. (3.5.a)

= (Ky+ (n—1A)(Kyy + (n —2)A) 4"

—(n—1)(Ky+ (n— 2)A)A"71 + ((n -Hn-2)—(n—-1)

NI

Let d;(A) be the j-th pluridegree of (M, A), that is,
di(A) == (Kyr + (n —2)4)’ 4"

By (1) and (2) in Remark 1.16.1, we get that

Ky (Ky + (n = 2)A)A"™ 2 + (n— 1) (g - 2>A”

= () — (n— 2 () + L= g (3.5.b)
2Ky + (n—2)4) A" = 2d,(A) — (n — 2)do(A). (3.5.¢)

Therefore by Corollary 2.3 and by (3.5.a), (3.5.b), and (3.5.c), we obtain that

1

G (M, A) = =1+ h' (Oy) + o (Kyr + (n— 1)A)(Kyr + (n —2)A) A" 2

L1 (M)A4"~2 +n—_3(21< +(n—2)4)4""!
12 24 \Fhum

1
>—1+h'(Oy) + 75 K (K + (n = 2)4)A"?

1 n . h=3 nel
+E(n— 1)<§—2)A +7(2KM+(n—2)A)A
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= 1R () 75 (@A) — (1= 2)di (1))

$ D08 g ) 42 i (4) — (- 20 ()

= LB (o) 75 (d(4) — dh(A) — do(4).

Since x(X) = 0, by Lemma 1.17 we get that for j=1,...,n
d(4) > (n—2)dj1(4).

Therefore
92(M,4) > —1 1 (Onr) + 33 (do(4) — h(4) — di(4))

> 1+ 1 (o) 75 (0 — 2 (4) — i (4) — do(4))

> —1+h'(Oy) +1—12((n —3)(n—2) — 1)do(A)

= —1+n"(Oy) +%(n2 —5n+5)do(A).

Since do(A4) = L" + y and h'(0y) = h'(Ox), we get the assertion (1).
(2) Assume that n > 3 and Ky is nef. In this case (X, L) = (M, A) because Ky is
nef. We also note that ¢a(X)L"~2 > 0 by Miyaoka’s theorem ([10, Theorem 6.6)).
Hence by Corollary 2.3

@(X, L) = —1+h'(Oy) + % (Kx + (n—1)L)(Ky + (n —2)L)L""?

3
+ "7 (2Kx + (n— 2)L)L"".

By using (1) and (2) in Remark 1.16.1 we obtain that
(Ky 4 (n — 1)L)(Kx + (n — 2)L)L" > = dy(L) + dy (L),

and

(2Kx + (n —2)L)L"' = 2d,(L) — (n — 2)L".
Hence

dr(L)+di(L) n—3 "
S L @d (L) - (- 2)L)

(L) n-2 n*—51+6_,
T )L

g2 (X, L) = —1+h'(0y) +

= —1+h'(0y) +
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By using Lemma 1.17, we obtain that

_ )2 2
gz(XvL)>l+h1(aX)+<(” 2)" n 5n+6>Ln

6 24

302 — 11n+ 10
ont - Hn A+ 10,

= - Lo
L+h (Ox) + oy

We get the assertion (2). O

Remark 3.5.1. In both cases of Theorem 3.5, if x(X) = 1, then the inequalities are
strict by Lemma 1.17.

Corollary 3.5.2. Let (X, L) be a polarized manifold of dim X = n.

(1) If n > 4 and x(X) = 0, then g»(X, L) = h'(Oy).

(2) If n =3, x(X) = 0, and Ky is nef, then go(X, L) = h'(0Oy).

Proof. (1) By Theorem 3.5 (1), we obtain that

L"+y

(X, L) = —1+h'(0y) + 7

(n> —5n+5).

Sincen >4,y >0,and L" > 1, we get that

L"+vy

2_
P (n"—5n+5)>0.

Hence ¢2(X, L) > h'(Ox) — 1. Because g»(X, L) is an integer, we obtain the assertion

().
(2) Assume that n =3, k(X) >0, and Ky is nef. Then by Theorem 3.5 (2), we
obtain that

1
@(X, L) = —1+h'(0y) +6L3.

Since L3 > 1, we get that go(X, L) > h'(Ox) — 1. Because g2(X, L) is an integer, we
obtain the assertion (2). O

Remark 3.5.3. (1) Let (X,L) be a polarized manifold of dim X =# such that
k(X) = 0.
(1.1) If n > 7, then by Theorem 3.5 (1) we get that g,(X, L) = h'(Ox) + 1.

(1.2) If Ky is nef and n =5, then by Theorem 3.5 (2) we get that ¢g>(X,L) >
Y (Ox) + 1.



On the second sectional geometric genus of quasi-polarized manifolds 231

(2) The inequality in Corollary 3.5.2 (2) is best possible. Namely, there exists an
example of (X L) such that dim X = 3, x(X) > 0, Ky is nef, and g»(X, L) = h'(Cy).
Let X = C® bea symmetrlc product of a smooth projective curve C of genus three.
Let: C x C x C — C® be the natural map and let p: C x C x C — C be the first
projection. We put L = 7, (p*(x)) for x € C. Then x(X) > 0 and Ky is nef. Further-
more ¢»(X,L) =3 = h'(Oy).

By Theorem 3.5 (1), we can give numerical conditions for polarized manifolds
(X, L) with g(X,L) =0, k(X) =0, and dim X > 4.

Corollary 3.5.4. Let (X, L) be a polarized manifold of dim X = n > 4. Assume that
K(X) = 0. Let y be the number of points blown up under the first reduction map. If
g2(X,L) =0, then h' (Ox) = 0 and

(1) L"+y <12 forn=4;

2) L"+y<2forn=5
(2a) Ifn=5and L" +y =2, thenn =5
(2b) Ifn=5and L"+y =1, thenn =5,6.

Proof. Assume that g»(X, L) = 0. By Corollary 3.5.2 (1), we get that h'(Oy) = 0.
(1) If n = 4, then

L”—i—y 2 _L4+V
P (n"—=5n+95) = o

Because by Theorem 3.5 (1)
L4y

0=go(X,L) > —1+

12

we obtain that L* +y < 12 and we get the assertion (1).
(2) If n = 5, then

L"er 5 ;

Hence by Theorem 3.5 (1)

5
0=g(X,L) = —1 +1 (L" + ),

2

and we obtain that L” 4+ y < 2 because L" + y is an integer.
(2.a) If L" + y = 2, then

1
0=gy(X,L) > —l+g(n2—5n+5).

Namely n?> — 5n — 1 < 0. Since n > 5, we get that n = 5.
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(2b) If L" +y =1, then

0=g2(X,L) 271+%(n2—5n+5).

Namely n? — 5n — 7 < 0. Since n > 5, we get that 5 <n < 6.
This completes the proof of Corollary 3.5.4. O

Here we consider the case where x(X) = — 0.

Proposition 3.6. Let (X,L) be a polarized manifold of dimX =n such that
k(X) = —o0 and X is not uniruled. Then

(1) If Ky + ((n —2)/2)L is nef and n = 6, then g2(X, L) = h'(0Oy).
(2) If Ky + L is nef and n = 5, then g»(X, L) = h'(Oy).

Proof. (1) By the same argument as in the proof of Theorem 3.5 (1) (see (3.5.a)), we
get that

(Kx + (n— 1)L)(Ky + (n — 2)L)L" % 4 ¢3(X)L" 2

> Ky(Ky + (n—2)L)L" 2 + (n— 1) (g - 2) L

because X is not uniruled. Furthermore
Ky(Ky + (n—2)L)L" 2+ (n— 1) (g - 2) L

2 2
- (KX—f—n;ZL) L”‘z—(n_42) L”—i—(n—l)(g—Z)L”

-2\ 2_6n+4
— (KX+n2 L) Ln—z_’_%l}’l.

Since Ky + ((n — 2)/2)L is nef and n > 6, we get that

-2\’ 2_6n+4
Kyt 2p )2 o0t s
2 4
and

2Ky + (n —2)L)L"' > 0.

Hence by Corollary 2.3 g2(X, L) = h'(0y) because g»(X, L) € Z.
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(2) Assume that n =5 and Ky + L is nef. Then by the same argument as in the
proof of Theorem 3.5 (1) (see (3.5.a)), we get that
(Ky +4L)(Ky + 3L)L> + ¢»(X)L* > Ky(Ky + 3L)L* + 2L°.
Hence

B (X, L) +1—h'(0x) = %KX(KX +3L)L + éLS +%(2KX +3L)L*

1 1 1 1
=—Ky(K DL +-L°+—KyL*+—(K L)L*
2 X( X+3) +6 +12 X +12( X+3)

1
=15 (Kx + L)(Kx + 3L)L* + 7 (Kx + 2L)L*.

Since Ky + L is nef, we obtain that
(Ky +L)(Ky +3L)L> >0 and (Ky +2L)L*>0.

Therefore g»(X, L) > h'(Ox) — 1. Because g2( X, L) is an integer, we get that g»(X, L)
> h'(Oy). This completes the proof of Proposition 3.6. O

Next we consider a lower bound of g,(X,2L) for the case where dim X = 3.

Theorem 3.7. Let (X, L) be a polarized manifold of dim X = 3.

(1) Assume that k(X) = 0. Let (M, A) be the first reduction of (X, L), and let y be the
number of points blown up under the first reduction map. Then

5
92(X,2L) = —1 + h'(Oy) +6<L3 +7).

(2) Assume that kK(X) = —oo. Then
g2(X,2L) = h*(0x) = 0.

Proof. (1) The case where x(X) > 0.
Let (M, A) be the first reduction of (X, L). By Theorem 1.10, we get that

92(X,2L) = h°(Ky + 2L) — h3(Ox) + h*(Cy).

On the other hand, since h°(Ky +2L) = h%(Ky +24), h*(Ox) = h*(Oy), and
h*(Ox) = h*(0yr), we obtain that gy(X,2L) = g2(M,2A4).
Next we calculate go(M,24). Since M is not uniruled, we have ¢;(M)A4 > —343 —
2K 1 A* by Proposition 3.4. Hence
((Ky +4A4)(Kyr +2A4) + c2(M))A
= (Kyr + 44)(Kyr 4+ 24)4 + e2(M) 4

> (K +44)(Ky +24)4 — 34° — 2Ky A% (3.7.a)
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Since Kjs + A is nef and x(M) = 0, we get that
(Kyr +4A4)(Ky +24)A — 34° — 2Ky A>

> 4(Kyy +24)4% —2(Ky + A)A? — 43

= 4(Ky + A) A +44° —2(Ky + A)A* — 4°

= 2(Ky + A)A* + 34°. (3.7.b)
By Lemma 1.17 we get that (K, + A)A> > A>. Hence

(Kyr 4+ 4A4)(Kyy +24)A — 343 — 2Ky A% > 54°.

Therefore by Proposition 2.1

92(X,2L) = g2(M,24)
1
= —1+hr'(Oy) +E((KM +4A4)(Ky +24) + c2(M))(24)
> —1+h'(Oy) +§A3 = —1+h'(Ox) +§(L3 +7).

Hence we get the assertion (1).
(IT) The case where xk(X) = —o0.
By Theorem 1.10 and the Serre duality, we have

92(X,2L) = h°(Ky + 2L) — k°(Ky) + h*(Ox)
=h°(Ky + 2L) + h*(Ox) = h*(Ox) > 0.
This completes the proof of Theorem 3.7. O

Corollary 3.7.1. Let (X,L) be a polarized manifold of dim X = 3. Assume that
k(X) = 0. Then g2(X,2L) = h'(Ox) = 0.

Proof. By Theorem 3.7 (1), we get that
5
g2(X,20) = —1+ /’ll((/ox) +E(L3 +7),

where y is the number of points blown up under the first reduction map.
Since L +y > 0, we get that g»(X,2L) > h'(0x) — 1. Hence we get the assertion
because g>(X,2L) is an integer. O

Here we note that if L is nef and big, dim X = 3 and 4°(L) > 1, then we get the
following:

Proposition 3.8. Let (X,L) be a quasi-polarized manifold. If dimX =3 and
h°(L) = 1, then go(X, L) = h*(Ox) = 0.
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Proof. By Theorem 1.10 and the Serre duality we get that

92 (X, L) = h°(Ky + L) — h°(Ky) + h*(Oy).

If i°(Ky) = 0, then

g2(X, L) = h°(Ky + L) + h*(Ox) = h*(Oy).

If i%(Ky) = 1, then h°(Ky + L) — h°(Kx) = h°(L) — 1 > 0 and so we get that

92(X, L) = h°(Kx + L) = h°(Kx) + h*(Ox) = h*(Ox).

This completes the proof of Proposition 3.8.

O

Remark 3.8.1. By the same method as in the proof of Proposition 3.8, we can prove
that g,_1(X, L) = h""'(Oy) if X is a smooth projective variety of dim X = n, and L is
a nef and big line bundle on X with A°(L) > 1.

Here we assume that dim X =n > 3, Kx is nef, and x(X) > 0. In this case, by

Theorem 3.5 (2), we get that

1
g2 (X,L) = —1+h'(Oy) Jrﬁ@n2 — 1ln+ 10)L".

By using this inequality, we study (X, L) with g,(X,L) = 0.

Proposition 3.9. Let (X, L) be a polarized manifold of dim X = n = 3. Assume that Ky
is nef and k(X) = 0. If g2(X,L) = 0, then n =3, h'(Ox) = 0, and we obtain the fol-

lowing:

L3 | KxL?> | K2L | ea(X)L | g(L)
3 2 0 0 5
2 2 0 2 4
2 2 1 1 4
2 2 2 0 4
1 2 0 4 3
1 2 1 3 3
1 2 2 2 3
1 2 3 1 3
1 2 4 0 3
6 0 0 0 7
5 0 0 2 6
4 0 0 4 5
3 0 0 6 4
2 0 0 8 3
1 0 0 10 2
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Proof. Here we note that (X, L) is the first reduction of itself. We also note that by
Miyaoka’s theorem ([10, Theorem 6.6))

a(X)L" 2> 0. (3.9.1)
Furthermore since Ky is nef we get that
KZL"™2>0 and KyL"'>0. (3.9.2)

Assume that g»(X, L) = 0. By Corollary 3.5.2, we get that 4'(0y) = 0. Hence by
Theorem 3.5 (2)

1
(X, L) > -1 Jrﬁ(3n2 — 1ln+ 10)L".

Claim. n = 3.

Proof. If n = 5, then

1, L5
— — > "
5g Bn? = 1n+10)L" > 2L

and ¢>(X, L) = 1. Therefore this is impossible.
Assume that n = 4. Then

(3n* — 1ln+ 10)L" = 1—72L4.

1
24

Since

;
0=go(X, L) > —1+5 LY,

we obtain that L* = 1. In this case by Corollary 2.3 the second sectional geometric
genus of (X, L) is the following:

1 1 7 1
X, L)=—14+—K2L*>+-KyL’+—+—c (X)L~
g2(X,L) + 5 Kil” + 5 Ky +12+12cz( )

By (3.9.1) and (3.9.2), we obtain that KyL* =0 because g»(X,L) = 0. But then
(Ky +3L)L? = 3 and this is impossible because (Ky -+ 3L)L? is even. This completes
the proof of this claim. |

Since n = 3 and 4'(Cy) = 0, by Corollary 2.3 we get that
12 = ((Ky +2L)(Kx + L) + e2(X))L = KL + 3KxL* + 213 + c»(X)L. (3.9.3)

By (3.9.1) and (3.9.2) we have L* < 6. Here we note that KyL? + 2L is even. Hence
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KyL? is even and we obtain that KyL? = 0 or 2 by (3.9.3), and by (3.9.1), (3.9.2),
and (3.9.3) we get the list in Proposition 3.9. (Here we note that by Theorem 1.11
K3L =0if KyL? = 0 because Ky is nef.) O

Problem 3.9.1. Find an example of (X, L) such that dim X = 3, Ky is nef, x(X) > 0,
and ¢g>(X,L) = 0.

Remark 3.9.2. There exists a Calabi—Yau 3-fold X such that there is an ample divisor
L on X with g2(X,L) =0 and L* = 1 or 2. (See [6, Example 4.3.3].)

In Theorem 3.7 and Corollary 3.7.1, we proved that ¢g>(X,2L) >0 if (X,L) is a
polarized 3-fold. Here we study a polarized 3-fold (X, L) with ¢>(X,2L) = 0.

Proposition 3.10. Let (X, L) be a polarized manifold of dim X = 3. If g2(X,2L) = 0,
then k(X) = —o0.

Proof. Assume that x(X) > 0. Let (M, 4) be the first reduction of (X, L), and let
y be the number of points blown up under the first reduction map. Assume that
g2(X,2L) = 0. By Theorem 3.7 (1), we obtain that L> =1, y =0, and h'(Cy) = 0.
Hence (X,L) = (M, A4).

By (3.7.a) and (3.7.b) in the proof of Theorem 3.7, we get that

1 1
92(X,2L) = 1+ 2 (Ky +4L)(Ky +2L)L + zex(X)L

1 1

1 5
= 1+-KyL*>+=>1°.
+3 X +6

Hence KyL? = 0 because g>(X,2L) = 0.
In this case

g(L) =1 +%(1<X +2L)(L)* = 2.

By [2, Theorem (1.10) and Remark (2.2)], O(Kx) = Oy and A(L) < 3, where A(L) =
34 L3 —h°(L). So we obtain that 2°(L) > 1. On the other hand by Theorem 1.10
and the Serre duality,

0=g2(X,2L)
=h"(Ky +2L) — h°(Ky) + h*(Oy)
> h°(Ky +2L) — h°(Ky)
=h'2L) -1
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since O(Ky) = (Ox. Hence h°(2L) = 1 since h°(2L) > 0. On the other hand by the
Riemann—Roch theorem and the Kodaira vanishing theorem, we get that

h°(2L) = h®(Ky 4+ 2L) = L? + 2h°(Ky + L) = L* +2h°(L) = 3.
So this is impossible. Therefore we get the assertion. O

Proposition 3.11. Let (X,L) be a polarized manifold of dim X = 3. Assume that
g2(X,2L) = 0 and h°(2L) = 2. Then (X, L) is one of the following type:

(1) (X, L) = (P, 0ps(1)),
(2) (X, L) = (@, Ogs(1)),
(3)

3) (X, L) is a scroll over a smooth curve.
Proof. First we prove the following claim:
Claim 3.11.1. 2°(Ky +2L) = 0.
Proof. By Theorem 1.10 and the Serre duality, we obtain that
92(X,2L) = h°(Ky +2L) — h°(Ky) + h*(Cx)
> h°(Ky +2L) — h°(Kx).
) =

If K%(Ky) >0, then 0= g2(X,2L) > h°(Ky +2L) — h°(Ky) > h°(2L) — 1 > 1 and
this is a contradiction. Hence h°(Ky) =0 and 0 = g»(X,2L) > h®(Ky +2L) > 0.

Therefore 1°(Ky + 2L) = 0. This completes the proof of Claim 3.11.1. O

Hence we obtain that Ky + 2L is not nef by 5, Corollary 2.7]. So (X, L) is one of the

above types by Theorem 1.13 and Remark 1.13.1. O
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