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Abstract. Kwok [10] studied the association schemes obtained by the action of the semidirect
products of the orthogonal groups over the finite fields and the underlying vector spaces. They
are called the assiciation schemes of affine type. In this paper, we define the association
schemes of affine type over the finite ring Z, = Z/qZ where ¢ is a prime power in the same
manner, and calculate their character tables explicitly, using the method in Medrano et al. [13]
and DeDeo [8]. In particular, it turns out that the character tables are described in terms of the
Kloosterman sums. We also show that these association schemes are self-dual.

Introduction

The purpose of the present paper is to study a certain kind of association schemes
related to the orthogonal groups over the finite ring Z, = Z/qZ, where g = p” is a
prime power.

Let f: IF; — IF; be a non-degenerate quadratic form over the finite field IF, and
O(FF, f) its orthogonal group. Since —id is contained in O(IF}, f), the action of the
semidirect product O(IF;’, f) IF; on IF; defines a symmetric association scheme
X(O(Fy, f),IF;). Kwok [10] called this association scheme an association scheme of
affine type, and calculated its character table completely (see also [12], [5]).

We define the association schemes of affine type over the finite rings Z, = Z/
kZ (k € N) in the same manner. However, by the Chinese remainder theorem, it is
enough to consider the case where & is a prime power ([1, p. 59]). It seems that these
association schemes had not been studied, but some related results can be found in
Medrano et al. [13] and DeDeo [8]. Namely, in [13], [8], the finite Euclidean graph
Xy(n,a) over Z, witha € Z; = Z,\ pZ, is defined as the graph with the vertex set Z,
and the edge set

E={(xy)eZyx2;|d(x,y) = a},
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Science.



242 Hajime Tanaka
where d(x, y) € Z, is the “distance” defined by
2 2 2
d(x,y)=(x1 = y1)"+ (2 = y2)" -+ (X0 — ya)”

We will show that if ¢ is an odd prime power, then in our language these graphs
are part of the relations of X(O(Z;,d(-,0)),Z;), the association scheme of affine
type with respect to the non-degenerate quadratic form d(x,0) = x7 + x5 + -+ + x2
(d(-,0) is degenerate if ¢ is even).

In this paper, we determine the character table of the symmetric association
scheme X(O(Z, f),Z,) explicitly for all non-degenerate quadratic forms on Z; (for
both odd ¢ and even ¢). These results are given in Theorem 2.10, Theorem 2.12 and
Theorem 2.15. In particular, we will be able to see a phenomenon similar to the En-
nola type dualities observed in [4]. Also, as an immediate consequence of these cal-
culations, we verify that these association schemes are self-dual.

The outline of the paper is as follows. In Section 1, we review some basic notions
on commutative association schemes, and classify the non-degenerate quadratic
forms on Z; completely. In Section 2, the character tables are calculated explicitly.
The discussion in this section is almost parallel to those in [13], [8]. We will find that
the method of computing the eigenvalues of the graphs X,(n, a) used successfully in
[13], [8] also works in our case. (It seems possible to obtain the results in [10], by the
method in [12], [13], [8].) In particular, the character tables are described in terms of
the Kloosterman sums over Z,,.

Acknowledgement. The author would like to thank Mr. Makoto Tagami for some
useful discussions.

1 Preliminaries and the classification of the non-degenerate
quadratic forms over Z,

1.1 Preliminaries on commutative association schemes. Here, we recall some basic
notions on commutative association schemes. We refer the reader to [3], [7], [2] for
the background in the theory of these objects.

Let X = (X, {Ri}p<;<q) be a commutative association scheme with the adjacency
matrices Ag = I, Ay, ..., Ay, where I is the identity matrix of degree |x|. The algebra
A of dimension d + 1, generated by Ay, ..., A, over the complex number field C, is
called the Bose—Mesner algebra of X. If we consider the action of 2 on the vector
space V = € indexed by the elements of X, then V' is decomposed into the direct
sum of the maximal common eigenspaces:

V=Vl WV L-- LV,

where 14 is the one-dimensional subspace spanned by the all-one vector. Let
E;: V — V; be the orthogonal projection (0 < i < d). Then the set {Ey, Ey,...,Es}
forms another basis of 2, and the base change matrix P = (p;(j)) is called the char-
acter table or the first eigenmatrix of X:
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d
4= pi)E (0<i<d)
=0

(the (j,i)-entry of P is p;(j)). In particular, k; = p;(0) is the valency of the regular
graph (X, R;). The second eigenmatrix Q = (¢;(j)) of X is defined by Q = |X|P~!,
that is,

d
| X|E; = ZQi(j)Aj O<i<d).
=

The numbers m; = ¢;(0) = dim V; (0 < i < d) are called the multiplicities of X. No-
tice that the first eigenmatrix P, together with the multiplicities of X, gives complete
information of the spectra of the graphs (X, R;) (1 <i < d).

Now, assume that X is symmetric and that the underlying set X has the structure of
an abelian group. We call X a translation association scheme if for 0 < i < d and
z e X we have

(x,y)eR; = (x+z,y+7z)eR,.

For such an association scheme, there is a natural way to define the dual scheme
X" = (X" {R/}y<icq), Where X* denotes the character group of X. Namely, we
define the relation R} by

(V) eRf swi eV,

(considered as a vector of V). Then, X" = (X*,{R/},;<,) becomes a translation
association scheme with the eigenmatrices P* = Q and Q* = P (see e.g. [7, §2.10B] or
[3, §2.6]). The translation association scheme X is called self-dual if it is isomorphic to
its dual X*. In particular, if X is self-dual, then clearly we have P = Q.

1.2 The classification of the non-degenerate quadratic forms over Z,. Let g = p” with
p prime. If @ is a unit in Z, = Z/gZ, we denote its multiplicative inverse in Z, by
al=11. Sometimes we identify the ring Z, with the set {0,1,...,¢ — 1}, and regard
Z,, (I <r) as a subset of Zj.

For a nonzero element a of Z,, we denote the largest integer / such that p! divides
a by ord[(f>(a). Conventionally, ordlg") (0) is defined to be r. Also, if x = (x1,X2,...,X,)
is an element of Z, then we define ord](f> (x) by

M(x) = mi ) (.
ord,”(x) = min ord,” (x:).
The reduction of x modulo pZj is denoted by xe Z). If ord}(,")(x) > 0, then there

exists a unique element y of Z,, such that x = py, and we write y = %x.
For later use, we prove the following lemma.
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Lemma 1.1. Let W be a submodule of Z;;. Then W is a direct summand of Z, if and
only if it is free.

Proof. First, suppose that I is a direct summand of Z Z so that W is projective. Then
since Z, is local with the maximal ideal pZ,, W is free (see e.g. [11, p. 9, Theorem
2.5]).

Conversely, suppose that W is free. Let {fi, f2,..., fi} be a basis of W. Then it
follows that fi, f5,..., fx € Z, are linearly independent over Z,. In fact, assume
that dlfl + Elzfz + -+ dk_fk = 0 holds for some ay,as, ..., a; € Z,. Then we have

f= aifiepz).

prai

This implies /' = 0, since otherwise p"~'f does not vanish, which is a contradiction.
Thus, we have a; = 0 for all i, as desired. Now, take fii1,..., /s eZq so that
{fis frs---, f,} forms a basis of Z,. Then by the well-known Nakayama lemma (see
e.g. [11, p. 8, Theorem 2.2)), fi, f2,..., /s span Z;. Finally, since > Z,fi] =

\Z;’\ =q", f1,/2,...,f» must be linearly independent over Z,. This completes the
proof of Lemma 1.1. |

Corollary 1. 2 Let x be an element of Z” Then Zyx is a direct summand of Z, " if and
only if ord )(x) = 0.

Let B: Z; x Z; — Z, be a symmetric bilinear form. For a subset U of Z;, w
define the orthogonal complement U* of U by

L:{er(’;|B(x,y):()forallye U}.

The symmetric bilinear form B is said to be non-degenerate if det(B(e;, ¢;)) € Z; =
Z,\pZ,, where {e1,e,...,e,} is the standard basis of Z, that is, ¢; is the element
of Z; with 1 in the i-th component and zero elsewhere. Clearly, this condition is
equivalent to saying that the map x € Z; — B(x,-) € Homg, (Z;,Z,) gives an iso-
morphism between Z; and Homg, (Z},Z,).

A quadratic form on Z; is amap f : Z; — Z, satisfying

flax) = d*f(x),
S(x+y)=f(x)+ f(»)+ Br(x, ),

for any aeZ, and x, y € Z[’;, where By is a symmetric bilinear form on ZZ. Some-
times we call the pair (Z}, ) a quadratic module over Z,.
Let (Z;”, /') be another quadratic module over Z,. An isometry o:(Zy,f) —

(Z,', /') is an injective Z,-linear map such that f(x) = f”(a(x)) for all x € Z; and
o(Zy) is a direct summand of Z;". If in addition the isometry o is a linear isomor-
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phism, then we say that the two quadratic modules (Z;, /) and (Z', /') are iso-
morphic, and write (Z, /) = (Z', /).

The quadratic form [ is said to be non-degenerate if By is non-degenerate. We de-
fine the reductions f : Z,) —Z,and By : Z, x Z, — Z, of f and By modulo pZ,, in
an obvious manner.

The orthogonal group O(Z;, f) is the group of all linear transformations on Z,
that fix f, that is,

0!, f) = {0 € GL(Z}) | f(6(x)) = f(x) for all x e Z!}.

Now we classify all non-degenerate quadratic forms on Z; using the classification
of those on Z,,. First of all, we prepare two propositions.

Proposition 1.3 (cf. [1, p. 10, Proposition 3.2]). Let f be a quadratic form on Z;. If W
is a direct summand of Z; such that the restriction Sflw of f to W is non-degenerate,
then we have Z) = W 1 W.

Proof. For an element x of Z;, define a Z,-linear map ¢, : W — Z, by ¢.(y) =
Bys(x,y) for y e W. Since Br|, is non-degenerate, there exists a unique element z
of W such that ¢ (y) = By(z, y) for all y e W, so that we have x =z+ (x —z) €
W + W+, Since clearly W N W+ = 0, we obtain the desired result. O

Proposition 1.4 (cf. [1, p. 11, Corollary 3.3]). Let [ be a quadratic form on Z.
Then, for any orthogonal decomposition Zl’j = W, L W, with respect to f such that
the restriction f |W1 is non-degenerate, there exists an orthogonal decomposition
Z:} = Wi L Wy such that 1y, is non-degenerate and W= W;/pW; (i =1,2).

Proof. Let yi,y2,..., ¥, be a basis of Z) such that yi,ys,..., y; span W;. For
each y; = (yi1, yiay -« -, yin) (1 < i< n), take an element x; = (x;1, X7, ..., X;p) of Z;’
such that y; = X;. Since det(yy),<; ;<, # 0, we have det(x;),<; ;, €Z, so that
X1,X2,...,X, form a basis of Z;’. Put

Wi =Zyx1 @Lyx> @ --- D Zyx;.

Since f|W] is non-degenerate, we have det(B;(y;, Yi)i<ij<i # 0, from which it fol-
lows that det(By(x;, X)), <; j<; € Z, that is, f1y, is non-degenerate. Thus, we have

Z; = W1 L W by Proposition 1.3 where W, = W and clearly, W; = W;/pW, (i =
1,2), as desired. ]

It is well-known that the non-degenerate quadratic forms over Z, are classified as
follows:

Theorem 1.5 (cf. [14]). (i) Suppose n = 2m is even. If p is odd, then there are two in-
equivalent non-degenerate quadratic forms f;" and f;:
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fﬁ(X) =X1X2 + -+ - + Xom—1Xom,

_ 2 2
S (x) = X120 + -+ Xom3Xom-2 + X3, | — &X3,

Jor x = (X1,X2,...,Xom) € Z 2m \phere ¢ is a non- square element of Z,.
If p =2, then there are also two inequivalent non-degenerate quadratic forms f," and

S
ST (X) = x1x0 4+ -+ 4 Xopm_1 X0,

_ 2 2
fi (X) = X1X2 + -+ Xo_3X0m_2 + Xom—1 + Xom—1Xom + Xom

for x = (X1,X2,. .., Xm) € Z3".
(i) Suppose n=2m+1 is odd. If p is odd, then there are two inequivalent non-
degenerate quadratic forms fi and f:

2
S1(x) = x1x2 4+ 4 Xom—1X2m + Xom+1

. 2
f(x) =x1x2 + -+ + Xom—1X0m + €X5,,

or x = (X1,X2,...,Xns1) € Zz”’“, where ¢ is a non-square element of Z,, but their
+ q Y/’
orthogonal groups 0(12’"+1 fl) and 0(12’”+l f{) are isomorphic.
If p = 2, then there is no non- degenemte quadratic form on Zz’”“

Remark 1.6. The definition of non-degeneracy of a quadratic form in this paper is
slightly stronger than that in [14]. Namely, if we define the radical Rad f of a qua-
dratic form f on Z by

Rad / = /~'(0)N(Z))*,

then using the terminology in [14], f is said to be non-degenerate if Rad /' = 0. Our
definition agrees with this unless p = 2 and n is odd. If one adopts the definition in
[14], then it turns out that there exists exactly one inequivalent non-degenerate qua-
dratic form f; on Z3"":

2
ﬁ(X) =X1X2+ -+ Xom—1Xom + Xom+1s
for x = (X1, X2, ..., Xom+1) € Zf’”“, which is clearly degenerate in our sense.

For the convenience of the discussion, we call the (free) quadratic module
(Zser @ Zyes, f) of rank two with a distinguished basis {e;,e,} such that f(e;) = o,
f(e2) = p and By(er,e;) = 1, the quadratic module of type [«,$]. Similarly, we call
the quadratic module (Z,e, ) of rank one with a distinguished basis {e} such that
f(e) = {, the quadratic module of type [{]. In order to find the isomorphisms among
these quadratic modules, we need the following lemma.
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Lemma 1.7. (i) If p is odd, then for any u € pZ,, there exists a unique element a € Z,
such that a = 1 mod p and a> — a = u mod q.

(ii) If p = 2, then for any odd t and even u in Z,, there exist unique even a and odd b
in Z, such that a*> + ta = b> + th = u mod q.

Proof. (i) Let @ and b be elements of 1 + pZ,. Then we have a®> — a = b*> — b mod ¢ if
and only if (¢ —b)(a+b—1) =0modg. Since a+b—1=1modp, this implies
a = b mod q. Therefore a® — a takes all u € pZ, as a runs through 1 + pZ,.

(ii) The proof is similar to that of (i), hence omitted. O

Using Lemma 1.7, we obtain the following.

Proposition 1.8. (i) For any o« and f in pZ,, the quadratic modules of type [« f] and
[0,0] are isomorphic.

(i) If p = 2, then the quadratic modules of type [y,d] and [1,1] are isomorphic for
any y and 6 in Z .

(i) Suppose p is odd, and let & be a non-square element of Z,. Then for each { € Z,
the quadratic module of type [(] is isomorphic to that of type [1] or [¢], depending on
whether { is a square or not.

Proof. (i) Let {e}, 2} be the distinguished basis of the quadratic module of type [0, 0].

By Proposition 1.7 (i) and (ii), there exists unique « € Z, such that ¢ = 1 mod p and

a’> —a = —af mod q. Put

e] = ae; + a Ve, and e, = fey + es.

Then since

{e],€)} therefore forms another basis. Clearly, we have f(e]) =a, f(e5) =p and
By(efret) = 1.

(ii) Let {e1, e2} be the distinguished basis of the quadratic module of type [1, 1].
Then it follows from Proposition 1.7 (ii) that there exist @ and unique even b in Z,
such that > + a = y — 1 mod ¢ and 3yb? — 3b = (2a + 1)’6 — 1 mod ¢. Put

ej=ae; +e; and €)= (2a+ DU = ab — 2b)e; + bes.
Since b is even,

det(a Qa+ D1 = ab - 2b)>
1 b
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is odd, so that {e],e}} is a basis. First, we have f(e]) =a® +a+ 1 =y modg. Also,
since

2a+ 1)Br(e],e)) =2a(l —ab —2b) + (2a+ 1)ab + (1 —ab — 2b) +2(2a + 1)b
€1 €2
—2a+1,

we have By (e, e;) = 1. Finally, it follows that

(2a+ 1)*f(e;) = (1 —ab —2b)* + 2a+ 1)(1 — ab — 2b)b + (2a + 1)*b?
=3(@*+a+1)b*-3b+1
= 3yb> —3h+ 1 mod g
= (2a+ 1)%6 mod g,

so that f(e}) = 0.
(iif) This is trivial, since Z; is a cyclic group if p is odd. O

Combining Theorem 1.5, Proposition 1.4 and Proposition 1.8, we conclude that:

Theorem 1.9. (i) Suppose n = 2m is even. If p is odd, then there are two inequivalent
non-degenerate quadratic forms f," and f,~ on Z;mz

LX) =xix2 4 4 Xomo1X0m,

- 2 2
S (x) = x1x0 + -+ Xom-3Xom—2 + X3, | — X3,

Jor x = (X1,X2,...,Xom) € Zj’”, where ¢ is a non-square element of Z,,.
If p = 2, then there are also two inequivalent non-degenerate quadratic forms f+ and
14 q g q r
f— on Z2m.
r q °
f;Jr(x) = X1X2 + -+ Xom—1X2m,
- 2 2
f; (X) =X1X2+ -+ Xom3Xom-—2 + Xom—1 + Xom—1Xom + Xom
2
Jor x = (X1,X2,...,Xom) € Zq’”.
(i) Suppose n=2m+1 is odd. If p is odd, then there are two inequivalent non-
degenerate quadratic forms f, and f! on Z>"*':
g q r q
2
,fr(x) =X1X2 + -+ Xom—1Xom + Xom+1s

, 2
fr (X) =x1%2 + -+ - + Xopm—1 Xom + EXmt1

Jor x = (x1,X2, ..., Xom41) € Z;’”“, where ¢ is a non-square element of Z,,.
If p = 2, then there is no non-degenerate quadratic form on Z;m“.
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In what follows, we denote the orthogonal groups of f,*, f~ and f; by GO;, (Z,),
GO;,,(Z;) and GOyyy1(Z,), respectively. It is easy to see that the orthogonal group

0(Z§m+17ﬁ") is isomorphic to GOypy1(Z,).

2 The character tables

2.1 The relations of X(O(Zj, f),Z;). As in the introduction, let %(O(Z(’;, f),Z;’)
denote the symmetric association scheme obtained from the action of O(Z, /) <X Z;
on Z;. That is, the relations of X(O(Z;, f),Z) are the orbits of O(Zy, f) X Z; in its
natural action on Z; x Zj. Since the stabilizer of an element of Z; in O(Z,, /') <X Z;
is isomorphic to O(Zj, f), the relations of X(O(Z,, /), Z;) are in one-to-one corre-
spondence with the orbits of O(Z, /) on Z;.

For quadratic modules over fields, there is a very famous theorem known as Witt’s
extension theorem (see e.g. [14]). Knebusch [9] proved that a similar result also holds
for quadratic modules over any local ring. In our case, this result is stated as follows.

Theorem 2.1 ([9, Satz 5.1]). Let f be a non-degenerate quadratic form on Zj. Suppose
that W is a direct summand of Z; and t : W — Z is an isometry. Then there exists an
extension g € O(Zy, f) of t, i.e. aly = 1.

We use Theorem 2.1 to determine the relations of X(O(Z,, 1), Z;)).
Lemma 2.2. Let [ be a non-degenerate quadratic form on Z;. Then for any element x
of Z; such that ord J(x)=0and ae Z, (0 <1<r), there exists an element y of Z,
such that X=y modp’ IZ” and f(y) = f(x)+ p~a

Proof. Since By is non-degenerate and X # 0, there exists an element z € Z, such that
By(x,2) # 0, or equivalently, By(x,z) € Z, . Notice that for any b, c € Z, we have

bBy(x,2) + p"'b’f (2) = ¢By(x,2) + p"'¢*f (z) mod p'
if and only if
(b—c){Br(x,z) + p"'(b+¢)f(z)} =0mod p'.
Since By (x,z) + p"~'(b+ ¢) f(z) # 0 mod p, this implies b = ¢. Therefore, there exists
a unlque element ¢ of Z,: such that ¢By(x,z) + p''*f(z) = amod p'. Clearly, y =
x+p’ lez e Z "is a des1red element. |
Remark 2.3. In fact, with the notation of Lemma 2.2, the above proof shows the

existence of an element z € Z; such that for all veZ; with v=xmodp"™ ’Z;’,
Sf(v+ p"~cz) (c € Z,) are distinct and

{flv+ prJCZ) lceZ,} = f(x)+ pHZq.
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Proposition 2.4. Let [ be a non-degenerate quadratic form on Z. Then for two non-
zero elements x and y of Zj, there exists an automorphism o € O(Z;’ , f) such that

a(x) = y if and only zford )(x) = ordl(,’>(y) and f(%x) = f(i,y) mod p"~! where
/= ord ) (x). ! !

Proof. The “only if” part is obvious. Assume / = ord,g") (x) = ord,g’)( y) (<r) and

f (#x) =f (1 y) mod p"~'. Then by Lemma 2.2, there exists an element u of Z;

such that u = p L xmod p™ ]Z” and f(u) = f (ﬁy). Since Z,u and Zq#y are direct
summands of Z:} by Corollary 1.2, it follows from Theorem 2.1 that there exists
o€ O(Z}, f) such that o(u) = #y. Then we have a(x) = p'o(u) = y. O

In the next subsection, we calculate the character table of ¥(GO,,,(Z,), Z;'”). The
discussions are almost parallel to those in Medrano et al. [13] and DeDeo [8]. In §2.3
and §2.4, the results for X(GO (Zq),Zg’”) and %(GOZ,”H(ZL,),Z;’"“) are stated

2m
without detailed proofs.

2.2 The character table of X¥(GO;,,(Z,), sz) By Proposition 2.4, the relations of
X(GO,,,(Z,), sz) are given as follows.

(x,y) e Ry & x =,
(x,y) € RE'()I Sx—ye A%

forO</<randaeZ,, where A . is an orbit of GO, (Z,) on Z;’” defined by

. , /1 .
A}’i: {erj’”|ord§,)(x)=l,f,, (?x> =amodp /}
={pulue AE{;’)}.

Notice that the k"

lLa —

|A .| are the valencies of X(GO;,,(Z,), Zj’”).

Proposition 2.5. For 0 </ <rand a e Z,., we have

K0 Al = {0 £ 1), if pka,
lLa = 1"Mal = (r=1-1)(2m-1) m=1 _ 1 m o q o
P (p )(p"+1), if pla.

In particular, ¥(GO,,,(Z,), ij) is a symmetric association scheme of class

p(p"—1)

r r—1 _
P p =

if m > 1, and of class
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P = N+ -+ -1 =p 1
ifm=1.

Proof. Since |A, a| = |A | we only have to prove the equality when / = 0. If r = 1,
then it is easy to see that the assertion is true (cf. [10, §3.3]). Now, suppose r > 1.
Then for an element x of Z;’”, we have ordl(,’> (x) = 0 if and only if x # 0, from which
it follows that

{x e Zj’” | ordé") (x) =0, £ (x) = amod p}|

B
p(rfl)Zm . (pmfl _ 1)([)”” + l)’ if p‘a

By Remark 2.3, |A{,| is obtained by dividing the right-hand side of (1) by p""'. O

Medrano et al. [13] and DeDeo [8] determined the graph spectra of the graphs
(Rg)u, sz) (ae qu) completely for many cases. We apply this method in the calcu-
lation of the character table of X(GO,,,(Z,), sz)

Let V) be the complex vector space of the functlons ¢ Zj’” — €. For each
0</<randaeZ, ., we define the adjacency operator A , on V') by

AVpx) =Y oy

x—yeAy,

for all p € V). We will decompose V") into the direct sum of the maximal common
eigenspaces of the A( )

For brevity, we denote the associated bilinear form By~ of f,~ simply by B, . Also,
we use the notation

e (a) = exp(2av—la/p")

fora e Z,. For each u € Zfl”’, define a linear character e!” Zj’" — C by

e (x) = e (B; (u,))

u

for x € Zj’”. Then, since B, is non-degenerate, the e,(f)’s are distinct and they form an
orthonormal basis of V(") with respect to the inner product

on V),
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Proposition 2.6 (cf. [13, Proposition 2.2]). For each element u of Z , the function el

() (r)

is a common eigenfunction of the A, ’s, and the eigenvalue of A correspondzng to e,

is given by
au= 3 A 2)
zeA;’)
Proof. Note that
W= ¥ 0= Y &= (L £@)dw. o
ey ey

Our next problem is to evaluate the eigenvalues /1, au

Proposition 2.7 (cf. [13, Theorem 2.3]). (i) For 0 </ <r, a€eZ, and ue Zj’”, we

have /L; 2: u= )(()ral)

(i) For a e Zyand u e Zj’”, we have

D] if u=0
" _ 0,ab
sa,u m—1) 1 (r—k .

pkm ”A(().,u,()upk)u’ if u#0,
where k = ord;")(u).

Proof. (i) This is clear from the definition of A;r[)l

(ii) The assertion is trivial when k =0 or k = r (i.e. u = 0) therefore, we assume
1 <k<r sothatr>2.

We write a = a’ 4+ p"'a”, with a’ € Z,-1 and a” € Z,. For each z =z’ + p
sz with z’ € Zz,’”, and z” € sz we have

r— IZHE

57 (@) = £+ p" B (2, 2") mod p',
since r > 2. Now, let
M={z'ez) |ord| V(') =0,/ (z') = a’ mod p"'},
and for each z’ € M let
N(E)={"¢€ Z;m | B (z',z") =a" — y mod p}

where f~(z/) =a’'+ p"'y with y e Z,. Then since z/ # 0 mod p and B] = B, is
non-degenerate, we have |N(z)| = p>"~!, from which it follows that
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au= D 2 A+
z'eMz"eN(z')

1
Z e <Br <p _pu,zl+prlzll>)

zle M 2! GN(Z/)

_ 2m—14(r-1)
=7 0,a,(1/p)u’

By repeating the same argument, we obtain the desired result. |

By virtue of Proposition 2.7, we only have to evaluate ;~<<)’;L.u for ue Zj’” with
ordjf)(u) =0. '

In the case of fields, the character tables of the association schemes of affine type
are described by using the Kloosterman sums ([12], [5]). In the process of studying

)vé')a »» we will encounter the Kloosterman sums over rings. Let « be a linear character

of the multiplicative group Z;. Then for a,b € Z,, we define the Kloosterman sum
K" (x| a,b) by

K"(x|a,b) =Y x(p)e(ay+byh).

yeZ;
Note that these sums are completely evaluated by Sali¢ [15] when r > 1 and k=1

(see also [8]).
We shall need to evaluate the following exponential sum:

foryeZ;.
Proposition 2.8. For any element y of Z;', we have QE,” =(=1)"¢g™.

Proof. First of all, it is easy to see that

Y o) =q.

U1, eZq

Therefore, if p is odd, then we have to show that

Y i —ed)y) = (-1)q,

v, €Z,

where, as usual, ¢ is a non-square element in Z;. However, this equality directly fol-
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lows from the evaluation of the Gauss sums (cf. [6, p. 26, Theorem 1.5.2], see also
[13, Corollary 2.7]):

<%> Vh, if h=1mod4,

(%> V=h, if h=3mod4, G)

h—1
gish) =Y exp(2av/—1ij> /h) =
Jj=0

where i and /1 are any coprime integers with 4 > 0 and 4 odd, and (%) is the Jacobi
symbol.
If p = 2, then in this case we have to show that

o = 3 (0 + o+ 6d)y) = (—1)'g. (4)

U1,02 EZq
Now, let v; be an odd element of Z,. Then, by Lemma 1.7 (ii) it follows that
{viv2 + v% | vy : 0odd} = {vjv2 + v% |vy :even} = 27Z,,,

so that if » > 1, then we have

> (@] +owa k) = Y (6] + o +03)p) = 0.

vp:0dd vy:even

In this way, we obtain

cu;’) = Z eV (d(w? +wiwy +w3)y) = 4co§r’2)7

Wi, w2 €Zyr-1

if r = 3. Therefore, (4) follows from an easy calculation:

This completes the proof of Proposition 2.8. O
Theorem 2.9 (cf. [13, Theorem 2.9]). Let a be an element of Z,. Then for any u € Zj’”

with ordl(,">(u) = 0, we have the following.
() If r > 1, then we have

A= (=) VKO a, £ ()

(i) If r = 1, then we have
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Zota = —2" K (1 a £y () = Go(@)
where op(a) is defined by

Sp(a) = 1 if a=bmodp,
P00 if ab mod p.

Proof. We regard AO ,asa functlon in a, then it has the Fourier expansion with re-
spect to the linear characters {el" (ay)}76 z, o Zg:

—oyar )

VEZq

for all a € Z,, where the coefficients Cy)(u) are given by

=3 = S (B w2 + £ (2))

bez, ez
ord{(2)=0
We write
) 1
w= 7 2t ) (5)
where

ZC(’ —ay), ZC ay).

ply PAY

First of all, assume r > 1. We evaluate ) _,. Setting y = p{ with { € Z,,1, we obtain

Y= > ) D () - a))

- 2m (el
zeZ; CEL, -1

ord‘("") (2)=0
Py el(z)

summed over z € Zfl’” such that ord )(z) =0 and £ (z) =amodp"!. If we let
z=z +plz" withze sz"l and z" € 12’” then this sum is equal to

PN S B ),

e ZZm
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where the first sum 1s over z' € Z, such that ord D(z)=0 and f7,(z") =
a mod p™~!. Since ord )(u) = 0, this is in turn equal to 0

Now, we evaluate 22 Since B (u,z) + f7(z)y = [~ (z+ y )y — £ (w1 if
p Xy, we have

- Z{Z e <f;<v>y)}e<"><—ay ),

)28 v

where the inner sum on the right is over v e Z;’” such that v # y=y mod pZé’”.

However, since r > 1, it follows from Remark 2.3 that

Z (S () =0,

where the sum on the left is over v € Z;’” such that v = yI=u mod ij’”. Hence, we
have

o= Qe (—ay — £ ) = (=1)"q"K (1] a, f;” (),

Ay

by Proposition 2.8.

By substituting the above evaluations to (5), we conclude that the eigenvalue 2
is written in the desired form.

Finally, when r = 1, we can evaluate )»f) 21 , in exactly the same way, but we omit

the details. |

0,a,u

To summarize:

Theorem 2.10. For 0 <k <randbeZ, «, let

W= @ e

(r)
ue A,

Then V,fr,), is a maximal common eigenspace of the adjacency operators A;rt)l (0<
[ <r,aeZ,-1). Moreover, we have the direct sum decomposition:

ri=vle @ W)
0<k<r ’
bGZ[',-,k

where V<r (Ee(()' is the trwtal maxzmal common eigenspace. With these parameter-
izations, the (k,b;l,a)-entry plu(k b) of the character table P(GO,,,(Z,), sz) of

X(GO,,,(Z,), Z;’”) (i.e. the eigenvalue ofA corresponding to Vk( 2) is given by
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prem=1). (— l)rk1<r klle(rk1(1|ab) if k+l<r—1,

(r) _ )= e pm KW (1 a, b) + do(a)} ifk+l=r—1,
plaa(k’b)i (r—=1-1)2m—1) | ,m—1( m .
p pm(p"+ 1), if k+1>=rand pka,
p(rflfl)(mel) . (pmfl _ 1)(pm + 1)7 lf k+1>rand p|a.

In particular, ¥(GO,,,(Z,), ng) is self-dual.

Proof. All but the last statement follow from the above calculations. Obviously,
xi—el) (xe sz) defines an isomorphism between ¥(GO;,,(Z,), Z;’") and its dual.
O

Example 2.11. The character table P = P(GO;, (Z4),Z7") of X(GO,, (Zs),
Z;™) (m > 1) is given by

1 2¥m2am 4 1) 22ml(am=l _[y(2m 4 1) 23m2(2m 4 1)

1 _2211171 0 22m71

1 0 221 0
P=11 22m-1 0 —22m-!

1 0 —p2m-l 0

1 _23m72 22mfl(2mfl _ 1) _23m72

1 23m—2 _22m—l (2m—1 + 1) 23m—2

22n771(2m71 _ 1)(2m =+ 1) 2m71(2m 4 1) (2mfl _ 1)(2)17 4 1)

0 _2m71 2;7171 -1
_22mfl 2m71 _2m71 —1
0 _2m—1 2m—l -1 ,
22m—1 2m—1 _2m—l -1
22m—](2m—l _ 1) 2111—1(2m + 1) (2m—1 _ 1)(2m + 1)

_22m71(2mfl + 1) 211171(2m 4 1) (2m71 _ 1)(2m 4 1)

where the row and column indices are ordered as (0), (0, 1), (0,2), (0, 3), (0,0), (1, 1),
(1,0).

2.3 The character table of 3€(G0 (Zq), sz) It follows from Proposition 2.4 that
the relations of ¥(GO;, (Z,), Z ™) are given as follows.

(x,y) € Rg') S x=y,

(x,y) € R;'()J Sx—ye H;rt)l

for 0 </ < rand a € Z,, where I1}") is an orbit of GO, (Z,) on Z)" defined by
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r . 1 3
Hgl = {x ez)"| ordlg”(x) =1f" (plx> =amodp” l}

r—I
={pujue Hé,a )}.

The valencies k,(7 \1'[ .| are given by
PG |H(,~)| _ {p(rl H2m-1) | . pm- 1(pm ~1), if pka,
la la p(r—l 1)(2m—1) (pm 1+1)( 1)’ if p|a,

for 0 </ <rand aeZ,-. In particular, ¥(GO3, (Z,), Zfl’") is a symmetric associa-
tion scheme of class

r r—1 _p(pr_l)
P =

Theorem 2.12. The association scheme ¥(GO;, (Z,), Z2’”) zs self-dual. For k,le
{0,1,....,r—1},a€Z, 1 and b € L, «, the (k,b;l, a) -entry p, a(k b) of the character
table P(GO3, (Z,), Zz’") f%(GOIm( ) Z ") is given by

pkam=1) . p(r=k=)(m—1) g(r—k=I) (1 |a,b), if k+1<r—1,

Kem=1) . {pm=tKW(1|a,b) —6o(a)}, if k+1=r—1,

(r=1=1)@m=1) . pm=1(pm _ 1), if k+1>rand pka,
( (p" '+ 1)(pm = 1), if k+1>rand pla.

p;.rz)z(k7 b) = P
' V4

).
p(l —I-1)(2m—1) |

Example 2.13. The character table P = P(GO}, (Z4),Z3") of ¥(GO;, (Z4),Z3™) is

2m
given by

1o 23m2(om—1) 22 tem=t4)2m—1) 23 2(2m 1)
1 0 22m-1
1 0 22m-1 0
P=|1 g2m-1 0 —2m-1
1 0 —p2ml 0
1 23m—2 _22m—1 (zm—l + 1) 23m—2
1 _23m—2 22m—1(2m—] _ 1) _23m—2
22mtemt 4 y2m —1) 2mtem—1) 2m 4+ 1)@2m-1)
0 2ml —om ]
_22;1171 _2m71 szl —1
0 pm—1 _pm=1 _ 1 ,
22;1171 72;1171 szl —1
—22m=1(am=1 4 1) 2m=tem—1) 2" R 1)

22mfl(2m71 _ 1) 2m71(2m _ 1) (2m71 4 1)(2m _ 1)
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where the row and column indices are ordered as (0), (0,1), (0,2), (0, 3), (0,0), (1, 1),
(1,0).

Remark 2.14. We can observe that the character tables of ¥(GO,(Z,), sz) and
X(G0;,,(Z,),Z]") are closely related with each other. In the case of fields, the char-
acter table of X(GO;,,(F,), IFz'”) is obtained from that of X¥(GO;,,(IF,), IFz'") essen-
tially by the replacement q’” Ui —g 1 (see [10]). In [4], this phenomenon was
called an Ennola type duality. The situation is slightly complicated, but it seems
possible to regard our examples as a variation of Ennola type duality.

2.4 The character table of X(GOy,+1(Z,), Z;’””), with ¢ odd. In this subsection,
we always assume that ¢ = p” is odd. The relations of the association scheme
X(GOyu1(2y), Z;’”“) are given as follows.

(xay)ERg,) @x:y,

(x,) R, & x—ye&])

)

for0 </<randaeZ,-, where E;fa is an orbit of GOy11(Z,) on Zﬁ”’“ defined by

r 1 )
E}Z = {x ez;" |0rd,(]’)(x) = l,ﬁ(;x) =a modp’_l}

/
={p u|ue_((]ra>}.

The valencies k;rgl — |21 are given by

pUr=t=02m . pm(pm 1) if pya and a : square,
={ pl (p™ —1), if pyaand a:nonsquare, (6)

p(r—l 1)2m | (pZm ), if pla

4
r—1—1)2m . pm

for'O < I <rand a€Z,-. In particular, X(GOyp11(Z,), Z;’”“) is a symmetric as-
sociation scheme of class

. . "—1
p'_i'_p’_l_‘__i_p:pi(p )

p—1

Let y be the quadratic character of Z, that is, y(a) = (%) for a € Z. Then, we
have the following:

Theorem 2.15. The association scheme X(GOyuy1(Z,), sz+1) is self-dual. For k,l €
{0,1,...;,r—1},a€Z, 1 and b € Z, «, the (k,b;l,a)-entry p( (k,b) of the character

la

table P(GO2y11(Zy), sz+1) of %(GOZmH( )5 sz+1) is given as follows.
) If p=1mod4, then
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kam . p(rfkfl)(me1)/2K(r7k71)(1 ‘a’ b)’ lf k+l<r—1
and r — k — [ : even,

kam . p(rfkfl)(mel)/ZK(rfkfl) (X | a, b)’ lf k+1l<r—1

Py, b) = and r —k — 1 : odd,
pP {pPm=D2KEW (4| a,b) —do(a)}, if k+1=r—1,
Q} if k+1>r

where k( is defined in (6).
(ii) If p = 3 mod4, then

p2km .p(r—k—l)(Zm—l)/zK(r—k—l)(1 ‘a7 b), lf k+l<r—1and
r—k—1[: even,

_kam . \/__‘Tp(rfkfl)(me1)/2K(r7k71) (X | a,b), lf k+1<r—1and

(k) = r—k—1:odd,
2km {/_pzml/zK ( |ab)+(50( )} Fhtl=r—1,
H% i k+l>r
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