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Abstract. We develop an algebraic representation for ð1; 1Þ-knots using the mapping class
group of the twice punctured torus MCG2ðTÞ. We prove that every ð1; 1Þ-knot in a lens space
Lðp; qÞ can be represented by the composition of an element of a certain rank two free sub-
group of MCG2ðTÞ with a standard element only depending on the ambient space. As notable
examples, we obtain a representation of this type for all torus knots and for all two-bridge
knots. Moreover, we give explicit cyclic presentations for the fundamental groups of the cyclic
branched coverings of torus knots of type ðk; ck þ 2Þ.
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1 Introduction and preliminaries

The topological properties of ð1; 1Þ-knots, also called genus one 1-bridge knots, have
recently been investigated in several papers (see [1], [5], [6], [8], [9], [10], [12], [13], [14],
[15], [18], [19], [20], [21], [24], [25], [26]). These knots are very important in the light
of some results and conjectures involving Dehn surgery on knots (see in particular
[9] and [25]). Moreover, the strict connections between cyclic branched coverings of
ð1; 1Þ-knots and cyclic presentations of groups have been pointed out in [5], [12] and
[21].

Roughly speaking, a ð1; 1Þ-knot is a knot which can be obtained by gluing along
the boundary two solid tori with a trivial arc properly embedded. A more formal
definition follows. A set of mutually disjoint arcs ft1; . . . ; tbg properly embedded in a
handlebody H is trivial if there exist b mutually disjoint discs D1; . . . ;Db HH such
that ti VDi ¼ ti V qDi ¼ ti, ti VDj ¼ q and qDi � ti H qH for all i; j ¼ 1; . . . ; b and
i0 j. Let M ¼ H Uj H

0 be a genus g Heegaard splitting of a closed orientable 3-
manifold M and let F ¼ qH ¼ qH 0; a link LHM is said to be in b-bridge position

with respect to F if: (i) L intersects F transversally and (ii) LVH and LVH 0 are both



the union of b mutually disjoint properly embedded trivial arcs. The splitting is called
a ðg; bÞ-decomposition of L. A link L is called a ðg; bÞ-link if it admits a ðg; bÞ-
decomposition. Note that a ð0; bÞ-link is a link in S3 which admits a b-bridge pre-
sentation in the usual sense. So the notion of ðg; bÞ-decomposition of links in 3-
manifolds generalizes the classical bridge (or plat) decomposition of links in S3 (see
[7]). Obviously, a ðg; 1Þ-link is a knot, for every gd 0.

Therefore, a ð1; 1Þ-knot K is a knot in a lens space Lðp; qÞ (possibly in S3) which
admits a ð1; 1Þ-decomposition

ðLðp; qÞ;KÞ ¼ ðH;AÞUj ðH 0;A 0Þ;

where j : ðqH 0; qA 0Þ ! ðqH; qAÞ is an (attaching) homeomorphism which reverses
the standard orientation on the tori (see Figure 1). It is well known that the family
of ð1; 1Þ-knots contains all torus knots (trivially) and all two-bridge knots (see [16])
in S3.

In this paper we develop an algebraic representation of ð1; 1Þ-knots through ele-
ments of MCG2ðTÞ, the mapping class group of the twice punctured torus. In Sec-
tion 2 we establish the connection between the two objects. In Section 3 we prove
that every ð1; 1Þ-knot in a lens space Lðp; qÞ can be represented by an element of
MCG2ðTÞ which is the composition of an element of a certain rank two free sub-
group and of a standard element only depending on the ambient space Lðp; qÞ. This
representation will be called ‘‘standard’’. As a notable application, in Sections 4 and
5 we obtain standard representations for the two most important classes of ð1; 1Þ-
knots in S3: the torus knots and the two-bridge knots. Moreover, applying certain
results obtained in [5], we give explicit cyclic presentations for the fundamental groups
of all cyclic branched coverings of torus knots of type ðk; ck þ 2Þ, with c; k > 0 and k

odd.
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Figure 1. A ð1; 1Þ-decomposition.
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In what follows, the symbol Lðp; qÞ will denote any lens space, including S3 ¼
Lð1; 0Þ and S1 � S2 ¼ Lð0; 1Þ. Moreover, homotopy and homology classes will be
denoted with the same symbol of the representing loops.

2 (1, 1)-knots and MCG2(T )

Let Fg be a closed orientable surface of genus g and let P ¼ fP1; . . . ;Png be a finite
set of distinguished points of Fg, called punctures. We denote by HðFg;PÞ the group
of orientation-preserving homeomorphisms h : Fg ! Fg such that hðPÞ ¼ P. The
punctured mapping class group of Fg relative to P is the group of the isotopy classes
of elements of HðFg;PÞ. Up to isomorphism, the punctured mapping class group
of a fixed surface Fg relative to P only depends on the cardinality n of P. Therefore,
we can simply speak of the n-punctured mapping class group of Fg, denoting it by
MCGnðFgÞ. Moreover, for isotopy classes we will use the same symbol of the repre-
senting homeomorphisms.

The n-punctured pure mapping class group of Fg is the subgroup PMCGnðFgÞ of
MCGnðFgÞ consisting of the elements pointwise fixing the punctures. There is a
standard exact sequence

1 ! PMCGnðFgÞ ! MCGnðFgÞ ! Sn ! 1;

where Sn is the symmetric group on n elements. A presentation of all punctured
mapping class groups can be found in [11] and in [17].

In this paper we are interested in the two-punctured mapping class group of the
torus MCG2ðTÞ. According to previously cited papers, a set of generators for
MCG2ðTÞ is given by a rotation r of p radians which exchanges the punctures and
the right-handed Dehn twists ta; tb; tg around the curves a; b; g respectively, as de-
picted in Figure 2. Since r commutes with the other generators, we have

MCG2ðTÞGPMCG2ðTÞlZ2:

T

P1 P2

α

g

b

Figure 2. Generators of MCG2ðTÞ.
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The following presentation for PMCG2ðTÞ has been obtained in [22]:

hta; tb; tg j tatbta ¼ tbtatb; tatgta ¼ tgtatg; tbtg ¼ tgtb; ðtatbtgÞ4 ¼ 1i: ð1Þ

The group PMCG2ðTÞ (as well as MCG2ðTÞ) naturally maps by an epimorphism
to the mapping class group of the torus MCGðTÞG SLð2;ZÞ, which is generated by
ta and tb ¼ tg. So we have an epimorphism

W : PMCG2ðTÞ ! SLð2;ZÞ

defined by WðtaÞ ¼
1 0

1 1

� �
and WðtbÞ ¼ WðtgÞ ¼

1 �1

0 1

� �
.

The group kerW will play a fundamental role in our discussion. In order to inves-
tigate its structure, let us consider the two elements tm ¼ tbt

�1
g and tl ¼ tht

�1
a , where

th is the right-handed Dehn twist around the curve h depicted in Figure 3. The e¤ect
of tm and tl is to slide one puncture (say P2) respectively along a meridian and along
a longitude of the torus, as shown in Figure 3. Observe that, since h ¼ t�1

m ðaÞ, we
have th ¼ t�1

m tatm.
The following result can be obtained from [3, Theorem 1] and [2, Theorem 5] by

classical techniques.

Proposition 1. The group kerW is freely generated by tm ¼ tbt
�1
g and tl ¼ tht

�1
a , where

th ¼ t�1
m tatm.

Now, let KHLðp; qÞ be a ð1; 1Þ-knot with ð1; 1Þ-decomposition ðLðp; qÞ;KÞ ¼
ðH;AÞUj ðH 0;A 0Þ and let m : ðH;AÞ ! ðH 0;A 0Þ be a fixed orientation-reversing
homeomorphism, then c ¼ jmjqH is an orientation-preserving homeomorphism of
ðqH; qAÞ ¼ ðT ; fP1;P2gÞ. Moreover, since two isotopic attaching homeomorphisms

m

l

T T

T T

g b

α

h

Figure 3. Action of tm and tl .
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produce equivalent ð1; 1Þ-knots, we have a natural surjective map from the twice
punctured mapping class group of the torus MCG2ðTÞ to the class K1;1 of all ð1; 1Þ-
knots

Y : c A MCG2ðTÞ 7! Kc A K1;1:

If WðcÞ ¼ q s

p r

� �
, then Kc is a ð1; 1Þ-knot in the lens space Lðjpj; jqjÞ [4, p. 186],

and therefore it is a knot in S3 if and only if p ¼G1.
As will be proved in Section 3, we have the following ‘‘trivial’’ examples:

i) if either c ¼ 1 or c ¼ tb or c ¼ tg, then Kc is the trivial knot in S1 � S2;

ii) if c ¼ ta, then Kc is the trivial knot in S3.

Moreover, it is possible to prove that if c ¼ tatbtatatgta, then Kc is the knot

S1 � fPgHS1 � S2, where P is any point of S2. So, in this case, Kc is a standard
generator for the first homology group of S1 � S2.

Every element c of MCG2ðTÞ can be written as c ¼ c 0rk, k A f0; 1g, where
c 0 A PMCG2ðTÞ. Since r can be extended to a homeomorphism of the pair ðH;AÞ,
the ð1; 1Þ-knots Kc and Kc 0 are equivalent. So, for our discussion it is enough to
consider the restriction

Y 0 ¼ YjPMCG2ðTÞ : c A PMCG2ðTÞ 7! Kc A K1;1:

3 Standard decomposition

In this section we show that every ð1; 1Þ-knot KHLðp; qÞ admits a representation
by the composition of an element in kerW and an element which only depends on
Lðp; qÞ. A representation of this type will be called ‘‘standard’’. Note that a similar
result, using a rank three free subgroup of MCG2ðTÞ, has been obtained in [6, The-
orem 3].

First of all, we deal with trivial knots in lens spaces. Let T be the subgroup of
PMCG2ðTÞ generated by ta and tb. There exists a disk DHH, with AVD ¼
AV qD ¼ A and qD� AHT , such that DV a ¼ DV b ¼ q. So any element of T
produces a trivial knot in a certain lens space. On the other hand, any trivial knot in
a lens space admits a representation through an element of T, as will be proved in
Proposition 3.

We need a preparatory result.

Lemma 2. Let K be a ð1; 1Þ-knot in Lðp; qÞ. Then, for each r; s A Z such that

qr� ps ¼ 1 there exists c A PMCG2ðTÞ, with WðcÞ ¼ q s

p r

� �
, such that K ¼ Kc.
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Proof. Let K ¼ K
c

, with WðcÞ ¼ q s

p r

� �
. Since qr� ps ¼ 1, there exist c A Z such

that r ¼ rþ cp and s ¼ sþ cq. If c ¼ ct�c
b , we have Kc ¼ K

c
, since t�c

b can be ex-
tended to a homeomorphism of the pair ðH;AÞ. Moreover WðcÞ ¼ WðcÞWðt�c

b Þ ¼
q s

p r

� �
1 c

0 1

� �
¼ q sþ cq

p rþ cp

� �
. r

For integers p; q such that 0 < q < p and gcdðp; qÞ ¼ 1 consider the sequence of
equations of the Euclidean algorithm (with r0 ¼ p, r1 ¼ q):

r0 ¼ a1r1 þ r2

r1 ¼ a2r2 þ r3

..

.

rm�2 ¼ am�1rm�1 þ rm

rm�1 ¼ amrm;

with r1 > r2 > � � � > rm�1 > rm ¼ 1.
The ai’s are the coe‰cients of the continued fraction

p

q
¼ a1 þ

1

a2 þ 1
a3þ���þ 1

am

:

In the following we will use the notation p=q ¼ ½a1; a2; . . . ; am�.

Proposition 3. The trivial knot in S3 ¼ Lð1; 0Þ is represented by c1;0 ¼ tbtatb.
The trivial knot in S1 � S2 ¼ Lð0; 1Þ is represented by c0;1 ¼ 1.
Let p; q be integers such that 0 < q < p and gcdðp; qÞ ¼ 1. If p=q ¼ ½a1; a2; . . . ; am�,

then the trivial knot in the lens space Lðp; qÞ is represented by

cp;q ¼
ta1
a t�a2

b . . . tama if m is odd;

ta1
a t�a2

b . . . t�am
b tbtatb if m is even:

(

Proof. Since all the involved homeomorphisms belong to T, all the knots are trivial.
It is easy to check (see also [4, p. 186]) that, for suitable r; s A Z, we have:

q s

p r

� �
¼

1 0

a1 1

� �
1 a2

0 1

� �
. . .

1 0

am 1

� �
if m is odd;

1 0

a1 1

� �
1 a2

0 1

� �
. . .

1 am

0 1

� �
0 �1

1 0

� �
if m is even.

8>>><
>>>:
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Since Wðtaia Þ ¼
1 0

ai 1

� �
, Wðtaib Þ ¼

1 �ai

0 1

� �
, and WðtbtatbÞ ¼

0 �1

1 0

� �
, the state-

ment is obtained. r

Now we can prove the result announced at the beginning of this section.

Theorem 4. Let K be a ð1; 1Þ-knot in Lðp; qÞ. Then there exist c 0;c 00 A kerW such that

K ¼ Kc, with c ¼ c 0cp;q ¼ cp;qc
00.

Proof. By Lemma 2, there exists c, with WðcÞ ¼ Wðcp;qÞ, such that K ¼ Kc. It suf-
fices to define c 0 ¼ cc�1

p;q and c 00 ¼ c�1
p;qc. r

A representation c A PMCG2ðTÞ of a ð1; 1Þ-knot will be called standard if c is of
the type described in the previous theorem.

We point out that ð1; 1Þ-knots admit di¤erent (usually infinitely many) standard
representations. For example, tcm represents the trivial knot in S1 � S2, for all
c A Z.

4 Representation of torus knots

In this section we give a standard representation for all torus knots in S3. Let
K ¼ tðk; hÞ be a torus knot of type ðk; hÞ. Then gcdðk; hÞ ¼ 1, and we can assume
that K lies on the boundary T ¼ qH of a genus one handlebody H canonically em-
bedded in S3. The homology class of K is hl þ km, where l and m respectively denote
a longitude and a meridian of T . By slightly pushing (the interior of ) an arc A 0 HK

outside H and K � A 0 inside H, we obtain an obvious ð1; 1Þ-decomposition of K .
Observe that 0 < jkj < h can be assumed without loss of generality (see [4, p. 45]).

In the next statement bxc denotes the integral part of x.

Theorem 5. The torus knot tðk; hÞHS3 is the ð1; 1Þ-knot Kc with:

c ¼
Yh
i¼1

ðtbði�1Þk=hc�bik=hc
m t�1

l Þtbtatb;

where tm ¼ tbt
�1
g and tl ¼ t�1

m tatmt
�1
a .

Proof. Up to isotopy, we can suppose that the arc A ¼ Kc � intðA 0Þ lies on qH, as
in Figure 4. The arc A can be transformed into an arc ~AA in such a way that ~AAUA 0 is
a trivial knot in S3, represented by the standard homeomorphism c1;0 ¼ tbtatb, via a
suitable sequence of homeomorphisms tl and tm, according to the following algo-
rithm. Consider the sequence of equations:
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k ¼ q1hþ r1;

2k ¼ q2hþ r2;

..

.

hk ¼ qhhþ rh;

where 0c ri < h, for i ¼ 1; . . . ; h. Moreover, define q0 ¼ 0. So qi ¼ bik=hc, for i ¼ 0;
1; . . . ; h. Now define the homeomorphisms ci ¼ tlt

qi�qi�1
m , for i ¼ 1; . . . ; h. Figure 5

depicts the e¤ect of tl and tltm on A. As a consequence, the homeomorphism f ¼
chch�1 . . .c1 transforms the arc A into the arc ~AA (Figure 6 shows the case tð5; 7Þ),
and therefore we have c1;0 ¼ fc. So f�1c1;0 represents the torus knot tðk; hÞ. r

For example, tð5; 7Þ ¼ Kc, with c ¼ t�1
l ðt�1

m t�1
l Þ2t�1

l ðt�1
m t�1

l Þ3
tbtatb (see Figure 6).

As a consequence, we obtain a cyclic presentation for the fundamental group for
all cyclic branched coverings of a particular class of torus knots.

H

A

A'

Figure 4.

l

l m

Figure 5.
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Proposition 6. The fundamental group of the n-fold cyclic branched covering of the

torus knot tðk; ck þ 2Þ, with k > 1 odd and c > 0, admits the cyclic presentation GnðwÞ,
where w is equal to

Yðk�3Þ=2

i¼0

� Ycðk�1Þ=2

j¼0

x1�iðckþ2Þþjk

Ycðkþ1Þ=2

l¼0

x�1
ckðk�1Þ=2�iðckþ2Þ�lk

� Ycðk�1Þ=2

m¼0

x1�ðk�1Þðckþ2Þ=2þmk

(subscripts are taken modulo n).

l

l m

l m

l

l m

l m

l m

Figure 6. Trivialization of tð5; 7Þ.
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Proof. Let r ¼ ðk � 1Þ=2. From Theorem 5 we have tðk; ck þ 2Þ ¼ Kc with
c ¼ ðt�c

l t�1
m Þrt�1

l ðt�c
l t�1

m Þ rt�c
l t�1

m t�1
l tbtatb. Applying [5, Proposition 1], we obtain

p1ðS3 � tðk; ck þ 2ÞÞ ¼ ha; g j rða; gÞi, with rða; gÞ ¼ ðg�1acrþ1g�1a�cðrþ1Þ�1Þrg�1acrþ1.
Then H1ðS3 � tðk; ck þ 2ÞÞ ¼ ha; g j a� kgi. Since, up to equivalence, of ðgÞ ¼ 1, we
have of ðaÞ ¼ k. We set a ¼ xgk, therefore p1ðS3 � tðk; ck þ 2ÞÞ ¼ hx; g j rðx; gÞi,

with rðx; gÞ ¼ ðg�1ðxgkÞ1þcðk�1Þ=2g�1ðg�kx�1Þ1þcðkþ1Þ=2Þðk�1Þ=2g�1ðxgkÞ1þcðk�1Þ=2. The
statement derives from a straightforward application of [5, Theorem 7]. r

For example, the fundamental group of the n-fold cyclic branched covering of
tð5; 7Þ admits the cyclic presentation GnðwÞ, where

w ¼ x15x20x25x
�1
24 x

�1
19 x

�1
14 x

�1
9 x8x13x18x

�1
17 x

�1
12 x

�1
7 x�1

2 x1x6x11:

5 Representation of two-bridge knots

In this section we give a standard representation for all two-bridge knots in S3. Let
bða=bÞ be a non-trivial two-bridge knot in S3 of type ða; bÞ. Then we can assume
gcdða; bÞ ¼ 1, a odd, b even and 0 < jbj < a, without loss of generality (see [4, Ch.
12B]). It is known that bða=bÞ admits a Conway presentation with an even number
of even parameters ½2a1; 2b1; . . . ; 2an; 2bn� (see Figure 7), satisfying the following re-
lation:

a

b
¼ 2a1 þ

1

2b1 þ 1
2a2þ���þ 1

2bn

:

Theorem 7. The two-bridge knot bða=bÞHS3 having Conway parameters ½2a1; 2b1; . . . ;
2an; 2bn� is the ð1; 1Þ-knot Kc with:

c ¼ tbtatbt
�bn
m tane . . . t�b1

m ta1
e ;

where te ¼ t�1
l tmtlt

�1
m is the right-handed Dehn twist around the curve e depicted in

Figure 8.

Proof. Figure 8 shows the result of the application of t�bn
m tane . . . t�b1

m ta1
e . By applying

c1;0 ¼ tbtatb we obtain the two-bridge knot with Conway parameters ½2a1; 2b1; . . . ;
2an; 2bn�.

2a1

2b1
2an

n2b

Figure 7. Conway presentation for two-bridge knots.
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εe
-bn
m

an -b
m

2 a2t

2a1

2b1

2bn

2an

2b1

2a1

A

e

12a

b

g

et
a1

m
1-b

t

Figure 8. Standard representation of two-bridge knots.
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Now we show that te ¼ t�1
l tmtlt

�1
m (note that no disk bounded by e and properly

embedded in H is disjoint from A). Referring to Figure 9, the following ‘‘lantern’’
relation t2

g td1
td2

¼ tetbtz holds (see [23]). So we obtain z ¼ tatgt
�1
b t�1

a ðgÞ and therefore

tz ¼ tatgt
�1
b t�1

a tgtatbt
�1
g t�1

a . Since td1
¼ td2

¼ 1 we have te ¼ t2
g t

�1
z t�1

b ¼ t2
g tatgt

�1
b t�1

a t�1
g �

tatbt
�1
g t�1

a t�1
b . Now, using the relations of (1) we get

te ¼ t2
g tatgt

�1
b t�1

a t�1
g tatbt

�1
g t�1

a t�1
b ¼ tgtatgtat

�1
b t�1

a t�1
g tatbt

�1
g t�1

a t�1
b

¼ tgtatgt
�1
b t�1

a tbt
�1
g tatbt

�1
g t�1

a t�1
b ¼ tgtat

�1
b tgt

�1
a t�1

g tbtatbt
�1
g t�1

a t�1
b

¼ tgtat
�1
b t�1

a t�1
g tatbtatbt

�1
g t�1

a t�1
b ¼ tgt

�1
b t�1

a tbt
�1
g tatbtatbt

�1
g t�1

a t�1
b

¼ tgt
�1
b t�1

a tbt
�1
g tatatbtat

�1
g t�1

a t�1
b ¼ tgt

�1
b t�1

a tbt
�1
g tatatbt

�1
g t�1

a tgt
�1
b

¼ t�1
m t�1

a tmtatatmt
�1
a t�1

m ¼ t�1
m t�1

a tmtatmt
�1
m tatmt

�1
a t�1

m

¼ t�1
h tatmtht

�1
a t�1

m ¼ t�1
l tmtlt

�1
m : r

For example, the figure-eight knot bð5=2Þ, which has Conway parameters ½2; 2�, is the
knot Kc with c ¼ tbtatbt

�1
m te (see Figure 10).
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