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A NOTE ON BIDIFFERENTIAL CALCULI AND
BIHAMILTONIAN SYSTEMS

PARTHA GUHA

ABSTRACT. In this note we discuss the geometrical relationship between bi-
Hamiltonian systems and bi-differential calculi, introduced by Dimakis and
Moller-Hoissen.

1. INTRODUCTION

It is known that practically all the classical integrable systems may be described
in terms of a pair of compatible Poisson structures on the phase space. Such
a pair is called a bihamiltonian structure. Several interesting features of integrable
systems can be described in terms of bihamiltonian structure.

In this note we will establish a link between the bi-differential calculi and bi-
Hamiltonian systems. The proximity between these subjects has long been leg-
endary, yet little has been written about this. Here I hope to shed some light on
this issue.

In a series of paper Dimakis and Miiller—Hoissen [2,3] and the references therein,
have shown how to generate conservation laws in completely integrable systems
by using a bi-differential calculus. Their papers are quite interesting. But the
mathematical foundation of these papers are not clear, for example, they never
considered the geometry behind their bi-differential formalism. Some attempts
have been made by Crampin et. al [1]. They clarified the geometry behind the
formalism of Dimakis and Miiller—Hoissen.

In this article, I further investigate the geometrical structure of the bidifferential
calculi and bicomplex formalism.

The paper is organized as follows. In next section we discuss about background
material. In section 3 we discuss about the bidifferential calculi and its connection
to bi-Hamiltonian systems [4].
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2. BACKGROUND

Let M be a smooth manifold. The cotangent bundle of a manifold M is a vector
bundle T*M := (T M)*, the (real) dual of the tangent bundle T'M.

A differential form or an exterior form of degree k is a section of the vector
bundle AFT*M, the space of all k-forms, will be denoted by QF(M). We put
QO(M) = C>°(M,R), then the space

QM) = @p_oQ* (M)
is a graded commutative algebra. Let Dery Q(M) the space of all (graded) deriva-
tion of degree k, so that D € Dery Q(M) satisfies D : Q(M) — Q(M) with
D(QY(M)) € QFF(M). For k = 1 we obtain the ordinary exterior derivative d.

We consider the space Q(M,TM) = @7 QF(M,TM) of all tangent bundle
valued differential form on M. Also Q(M,TM) is a graded Lie algebra with the
Frolicher-Nijenhuis bracket

(1) [ @ Q¥M,TM) x QY(M, TM) — QY (M, TM) .
The Frolicher-Nijenhuis operator § is given by
(2) § = QF(M, TM) — QFY(M, TM).

Ifd : QF(M) — QFFY(M) be the exterior derivative the operator 6(K) for
K € QF(M,TM) can be expressed as

S(K) = (=1)*"tde(K) A A
where c is the contraction map
(3) c: QF (M, TM) — QF1 (M),
such that ¢(¢ ® X) =ix¢, and A € QY (M, TM).

3. BIDIFFERENTIAL CALCULI AND BIHAMILTONIAN STRUCTURE

In this section we will address our recipe. We will build an inductive scheme
with the help of the exterior derivative d and another degree 1 derivation operator
d 4, this is given below:

Construction of d4. : Let us consider an action of AA:
(4) AA @ C¥(AFT*M) — C(AMIT*M @ TM).

Combining (3) and (4) we define a new degree 0 operator
(5) Ac) :=co NA,

so that A(c) : C°(AFT*M) — C®(AFT*M).
Hence, we think A(c) as a homomorphism of the module of differential forms.
Also, from the definition A(c) can be identified with a tensor field of rank (1, 1).
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Definition 3.1.
(6) da = Ac)d.

It is clear that d4 is a degree 1 operator.

The basic step in the construction of Dimakis and Miiller—Hoissen is to define
inductively a sequence of (I — 1)-th forms

{v*}  k=0,1,2,...
for which closed [-forms are exact by the rule given by
Lemma 3.2.
(7) dpf T (M) = dapk(M)  pF e CE(NTM).

According to Frolicher-Nijenhuis theory, an operator d4 associated to some
(1,1) tensor A, anticommutes with d. The necessary and sufficient condition for
da to satisfy d%4 = 0 is that the Nijenhuis tensor must be zero.

Claim 3.3.

d*=ds*=0.
ddg +dad=0.
It is easy to see that
(8) ddap® = —dadp® = —dadap = —d 2P = 0.

This scheme is consistent provided ddp® = —dadu® = 0.

Thus all the p*s are defined on the space Q(M)/B(M) of differential forms
modulo exact forms. These defined a generalized Poisson structure, the graded
Poisson bracket. In the case of one form, entire picture coincides with the Poisson
geometry.

3.1 Connection to the Poisson-Nijenhuis manifold
and bi-Hamiltonian systems.
In this section we will state the correspondence with the bi-Hamiltonian systems.
Let us consider a manifold M with symplectic structures wy. Then wy induces a
nondegenerate Poisson structure from the following canonical identification:
WO(Xfa Xg) = Aoil(d.ﬁ dg) .
Our basic structure (wp, A(c)) induces a second Poisson structure on M. This
is given by
(9) Av(df, dg) = Mo(A(c)df, dg),
where A(c) : T*"M — T*M.
Given two vector bundle morphisms
Ing, Iy T"M — TM ,
we can determine the mixed (1,1) tensor (recursion operator)

A = JAOJXl1 .
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By abusing notation, let us denote the adjoint of A(c) by A, it acts on the
vector fields.

Definition 3.4. Let A be a tensor field of type (1,1) on a manifold M. The
Nijenhuis torsion of A is a tensor field N(A) of type (1,2) given, for any pair
(X,Y) of vector fields on M, by

(10)  N(A)(X,Y) = [AX, AY] - A([AX, Y] + [X, AY] - A[X,Y]),

N(A) = 3[A, A] for the Frolicher-Nijenhuis bracket.

The tensor field A would be called Nijenhuis operator if its Nijenhuis torsion
N (A) vanishes.

The torsion of A vanishes as a consequence of the assumption that Ay and Aq
are a pair compatible Poisson tensors.

Thus we obtain two Poisson bivectors Ag(df,dg) and A;(df,dg), satisfying
[Ai, A;j] =0, where [, ] is the Schouten-Nijenhuis bracket. In this way we construct
a Poisson-Nijenhuis manifold. A Poisson-Nijenhuis manifold is a bihamiltonian
manifold.

Thus we define two symplectic structures

wo(Xy, Xy) = Ao~ (df,dg) and wi(Xy,X,) = A1 "(df,dg) on M.
We have the following exact sequence
(11) 00— H°(M,R) — C>®(M,R) L w(M) 2 H' (M,R) — 0
Here ~(n) is the cohomology class of i,w, and V(M) consists of all vector fields £
with Lew = 0.
Thus we have two Poisson structures.

{f,g}0 = Ao(df,dg),
{f, 9} = Ai(df, dg) = Ao(A™(df), dg)
(12) = Ao(df, A" (dg)) = —A(Xy) f = —daf(X,).
Hence, we say, a bi-differential calculus endows M with a Poisson-Nijenhuis
structure, and A plays the role of recursion tensor [5].

3.2 Graded Poisson Structure.

In our case all the p*-s are graded objects, differential forms. Now, if we replace
f by pF*1 in equation (11), then from the inductive definition of the function ",
we obtain

(13) {'auk+1}1 = {_“uk}o.

The graded Poisson bracket for differential forms in the context of general-
ized Hamiltonian systems has been studied extensively by Peter Michor [6]. He
extended the Poisson exact sequence to

(14) 0— H°(M,R) — Q(M)/B(M) L Q,(M;TM) 2 H*(M,R) — 0.
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Theorem 3.5 (Michor). Let (M,A) be a Poisson manifold. Then the space
Q(M)/B(M) of differential forms modulo exact forms there exists a unique graded
Poisson bracket {-,-}4r, which is given the quotient modulo B(M) of

{qb? w}gr = ZH¢d1/’ I

or
{fodft A+~ Ndfi, godgr A -+~ Ndgi}gr
(15) = Y (=D {fig;¥dfo A -dfi- - Adfi, Adgo A+ -dg; - Adgs,

2
such that H : Q(M)/B(M) — Q(M;TM) is a homomorphism of graded Lie
algebras.

The functions p* form a Lenard scheme.

There is an alternative bihamiltonian approach to dynamical systems. In this
approach one starts with two compatible Poisson brackets {.,.}: and {.,.}2 on
M. The two Poisson brackets are compatible if the bracket A1{.,.}1 + A2{.,.}2 is
Poisson for A\; and As. One can construct based on these brackets a dynamical
systems which is Hamiltonian with respect to any one of these brackets. The
construction of dynamical systems based on the brackets is called Lenard Scheme.
It provides a family of function in involution (w.r.t. any linear combination of the
brackets).

Proposition 3.6. The functions j* which obey the Lenard scheme are in involu-
tion with respect to both Poisson brackets.

Proof. By using repeatedly the recursion relation we obtain,
{1y = {0, 1" o
{1 1Yo
{7
={@ = = T T =0, O

Hence their property of being in involutions then follows from the general ar-
gument (explained in the third lecture in [5]).
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