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A NOTE ON BIDIFFERENTIAL CALCULI AND

BIHAMILTONIAN SYSTEMS

PARTHA GUHA

Abstract. In this note we discuss the geometrical relationship between bi-
Hamiltonian systems and bi-differential calculi, introduced by Dimakis and
Möller–Hoissen.

1. Introduction

It is known that practically all the classical integrable systems may be described
in terms of a pair of compatible Poisson structures on the phase space. Such
a pair is called a bihamiltonian structure. Several interesting features of integrable
systems can be described in terms of bihamiltonian structure.

In this note we will establish a link between the bi-differential calculi and bi-
Hamiltonian systems. The proximity between these subjects has long been leg-
endary, yet little has been written about this. Here I hope to shed some light on
this issue.

In a series of paper Dimakis and Müller–Hoissen [2,3] and the references therein,
have shown how to generate conservation laws in completely integrable systems
by using a bi-differential calculus. Their papers are quite interesting. But the
mathematical foundation of these papers are not clear, for example, they never
considered the geometry behind their bi-differential formalism. Some attempts
have been made by Crampin et. al [1]. They clarified the geometry behind the
formalism of Dimakis and Müller–Hoissen.

In this article, I further investigate the geometrical structure of the bidifferential
calculi and bicomplex formalism.

The paper is organized as follows. In next section we discuss about background
material. In section 3 we discuss about the bidifferential calculi and its connection
to bi-Hamiltonian systems [4].
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2. Background

Let M be a smooth manifold. The cotangent bundle of a manifold M is a vector
bundle T ∗M := (TM)∗, the (real) dual of the tangent bundle TM .

A differential form or an exterior form of degree k is a section of the vector
bundle ∧kT ∗M , the space of all k-forms, will be denoted by Ωk(M). We put
Ω0(M) = C∞(M,R), then the space

Ω(M) := ⊕n
k=0Ω

k(M)

is a graded commutative algebra. Let Derk Ω(M) the space of all (graded) deriva-
tion of degree k, so that D ∈ Derk Ω(M) satisfies D : Ω(M) −→ Ω(M) with
D(Ωl(M)) ⊂ Ωk+l(M). For k = 1 we obtain the ordinary exterior derivative d.

We consider the space Ω(M,TM) = ⊕m
k=0Ω

k(M,TM) of all tangent bundle
valued differential form on M . Also Ω(M,TM) is a graded Lie algebra with the
Frölicher-Nijenhuis bracket

[·, ·] : Ωk(M,TM)× Ωl(M,TM) −→ Ωk+l(M,TM) .(1)

The Frölicher-Nijenhuis operator δ is given by

δ : Ωk(M,TM) −→ Ωk+1(M,TM) .(2)

If d : Ωk(M) −→ Ωk+1(M) be the exterior derivative the operator δ(K) for
K ∈ Ωk(M,TM) can be expressed as

δ(K) := (−1)k−1dc(K) ∧ A

where c is the contraction map

c : Ωk(M,TM) −→ Ωk−1(M) ,(3)

such that c(φ⊗X) = iXφ, and A ∈ Ω1(M,TM).

3. Bidifferential calculi and bihamiltonian structure

In this section we will address our recipe. We will build an inductive scheme
with the help of the exterior derivative d and another degree 1 derivation operator
dA, this is given below:
Construction of dA. : Let us consider an action of ∧A:

∧A : C∞(∧kT ∗M) −→ C∞(∧k+1T ∗M ⊗ TM).(4)

Combining (3) and (4) we define a new degree 0 operator

A(c) := c ◦ ∧A ,(5)

so that A(c) : C∞(∧kT ∗M) −→ C∞(∧kT ∗M).
Hence, we think A(c) as a homomorphism of the module of differential forms.

Also, from the definition A(c) can be identified with a tensor field of rank (1, 1).
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Definition 3.1.

dA := A(c)d .(6)

It is clear that dA is a degree 1 operator.

The basic step in the construction of Dimakis and Müller–Hoissen is to define
inductively a sequence of (l − 1)-th forms

{µk} k = 0, 1, 2, . . .

for which closed l-forms are exact by the rule given by

Lemma 3.2.

dµk+1(M) = dAµ
k(M) µk ∈ C∞(∧lT ∗M) .(7)

According to Frölicher-Nijenhuis theory, an operator dA associated to some
(1, 1) tensor A, anticommutes with d. The necessary and sufficient condition for
dA to satisfy d2

A = 0 is that the Nijenhuis tensor must be zero.

Claim 3.3.

d2 = dA
2 = 0 .

ddA + dAd = 0 .

It is easy to see that

ddAµ
k = −dAdµ

k = −dAdAµ
k+1 = −dA

2µk+1 = 0 .(8)

This scheme is consistent provided ddAµ
0 = −dAdµ

0 = 0.
Thus all the µks are defined on the space Ω(M)/B(M) of differential forms

modulo exact forms. These defined a generalized Poisson structure, the graded
Poisson bracket. In the case of one form, entire picture coincides with the Poisson
geometry.

3.1 Connection to the Poisson-Nijenhuis manifold

and bi-Hamiltonian systems.

In this section we will state the correspondence with the bi-Hamiltonian systems.
Let us consider a manifold M with symplectic structures ω0. Then ω0 induces a
nondegenerate Poisson structure from the following canonical identification:

ω0(Xf , Xg) = Λ0
−1(df, dg) .

Our basic structure (ω0, A(c)) induces a second Poisson structure on M . This
is given by

Λ1(df, dg) = Λ0(A(c)df, dg),(9)

where A(c) : T ∗M −→ T ∗M .
Given two vector bundle morphisms

JΛ0
, JΛ1

: T ∗M −→ TM ,

we can determine the mixed (1, 1) tensor (recursion operator)

A = JΛ0
J−1

Λ1
.
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By abusing notation, let us denote the adjoint of A(c) by A, it acts on the
vector fields.

Definition 3.4. Let A be a tensor field of type (1, 1) on a manifold M . The
Nijenhuis torsion of A is a tensor field N(A) of type (1, 2) given, for any pair
(X,Y ) of vector fields on M , by

N(A)(X,Y ) = [AX,AY ] −A([AX, Y ] + [X,AY ] −A[X,Y ]) ,(10)

N(A) = 1

2
[A,A] for the Frölicher-Nijenhuis bracket.

The tensor field A would be called Nijenhuis operator if its Nijenhuis torsion
N(A) vanishes.

The torsion of A vanishes as a consequence of the assumption that Λ0 and Λ1

are a pair compatible Poisson tensors.
Thus we obtain two Poisson bivectors Λ0(df, dg) and Λ1(df, dg), satisfying

[Λi,Λj ] = 0, where [ , ] is the Schouten-Nijenhuis bracket. In this way we construct
a Poisson-Nijenhuis manifold. A Poisson-Nijenhuis manifold is a bihamiltonian
manifold.

Thus we define two symplectic structures

ω0(Xf , Xg) = Λ0
−1(df, dg) and ω1(Xf , Xg) = Λ1

−1(df, dg) on M.

We have the following exact sequence

0 −→ H0(M,R) −→ C∞(M,R)
H
−→ V(M)

γ
−→ H1(M,R) −→ 0(11)

Here γ(η) is the cohomology class of iηω, and V(M) consists of all vector fields ξ
with Lξω = 0.

Thus we have two Poisson structures.

{f, g}0 = Λ0(df, dg) ,

{f, g}1 = Λ1(df, dg) = Λ0(A
∗(df), dg)

= Λ0(df,A
∗(dg)) = −A(Xg)f = −dAf(Xg) .(12)

Hence, we say, a bi-differential calculus endows M with a Poisson-Nijenhuis
structure, and A plays the role of recursion tensor [5].

3.2 Graded Poisson Structure.

In our case all the µk-s are graded objects, differential forms. Now, if we replace
f by µk+1 in equation (11), then from the inductive definition of the function µk,
we obtain

{·, µk+1}1 = {·, µk}0 .(13)

The graded Poisson bracket for differential forms in the context of general-
ized Hamiltonian systems has been studied extensively by Peter Michor [6]. He
extended the Poisson exact sequence to

0 → H0(M,R) → Ω(M)/B(M)
H
−→ Ωω(M ;TM)

γ
−→ H∗+1(M,R) → 0 .(14)
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Theorem 3.5 (Michor). Let (M,Λ) be a Poisson manifold. Then the space

Ω(M)/B(M) of differential forms modulo exact forms there exists a unique graded

Poisson bracket {·, ·}gr, which is given the quotient modulo B(M) of

{φ, ψ}gr = iHφ
dψ ,

or

{f0df1 ∧ · · · ∧ dfk, g0dg1 ∧ · · · ∧ dgl}gr

=
∑

i,j

(−1)i+j{fi, gj}df0 ∧ · · · d̂fi · · · ∧ dfk ∧ dg0 ∧ · · · d̂gj · · · ∧ dgk ,(15)

such that H : Ω(M)/B(M) −→ Ω(M ;TM) is a homomorphism of graded Lie

algebras.

The functions µk form a Lenard scheme.
There is an alternative bihamiltonian approach to dynamical systems. In this

approach one starts with two compatible Poisson brackets {., .}1 and {., .}2 on
M . The two Poisson brackets are compatible if the bracket λ1{., .}1 + λ2{., .}2 is
Poisson for λ1 and λ2. One can construct based on these brackets a dynamical
systems which is Hamiltonian with respect to any one of these brackets. The
construction of dynamical systems based on the brackets is called Lenard Scheme.
It provides a family of function in involution (w.r.t. any linear combination of the
brackets).

Proposition 3.6. The functions µk which obey the Lenard scheme are in involu-

tion with respect to both Poisson brackets.

Proof. By using repeatedly the recursion relation we obtain,

{µj , µk}1 = {µj , µk−1}0

= −{µk−1, µj}0

= −{µk−1, µj+1}1

= {µj+1, µk−1}1 = · · · = {µj+k+1, µ−1}1 = 0 .

Hence their property of being in involutions then follows from the general ar-
gument (explained in the third lecture in [5]).
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