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IDEAL-THEORETIC CHARACTERIZATIONS OF VALUATION

AND PRÜFER MONOIDS

FRANZ HALTER-KOCH

Abstract. It is well known that an integral domain is a valuation domain
if and only if it possesses only one finitary ideal system (Lorenzen r-system
of finite character). We prove an analogous result for root-closed (cancella-
tive) monoids and apply it to give several new characterizations of Prüfer
(multiplication) monoids and integral domains.

1. Introduction and Preliminaries

It is well known that a great part of classical valuation theory and the theory
of valuation rings can be formulated in a purely multiplicative context. For this
point of view, the reader is refered to [3], Chap. 15 ff and to the survey article [6].
The central notion in this purely multiplicative theory ist the that of a valuation
monoid, and the theory of ideal systems (Lorenzen r-systems) has to take the place
of ordinary ideal theory. The theory of ideal systems on a valuation monoid is very
simple. There the system of ordinary semigroup ideals is the only finitary ideal
system. It was proved by K.E. Aubert [1] that valuation rings can be characterized
by this property. In this note, we show that this is no longer the case for valuation
monoids, and we also show which additional condition is necessary.

This paper is organized as follows. In this first section we recall the neces-
sary facts from the theory of ideal systems. In section 2, we recall the results
of K. E. Aubert (Theorem 1) and give the promised characterization of valuation
monoids by means of their ideal systems (Theorem 2). In section 3 we global-
ize this characterization by means of spectral ideal systems in order to obtain
new ideal-theoretic characterizations of Prüfer monoids (Theorem 3) and Prüfer
domains (Theorem 4).

By a monoid D we always mean a commutative multiplicative semigroup pos-
sessing a unit element 1 ∈ D (such that 1a = a for all a ∈ D), a zero element
0 ∈ D (such that 0a = 0 for all a ∈ D), and satisfying the cancellation law (if
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a, b, c ∈ D and ab = ac, then either a = 0 or b = c). We set D• = D \ {0} and
denote by D× the group of invertible elements of D. By an quotient groupoid of
D we mean an overmonoid K ⊃ D such that K• is a quotient group of D•, that
means, K = {a−1b | a ∈ D•, b ∈ D}. For any subsets X, Y ⊂ K, we set

(X : Y ) = {z ∈ K | zY ⊂ X} and X−1 = (D : X) .

If D is an integral domain with quotient field K, then (disregarding the additive
structure) D is a monoid with quotient groupoid K.

We shall consider ideal systems (Lorenzen r-systems) on a monoid D as defined
in [3], and we shall throughout use the terminology and notations introduced
there. In particular, for an ideal system r on D, we denote by Ir(D) the set of
all r-ideals and by Ir,fin(D) the set of all r-finitely generated r-ideals of D. Ir(D)
and Ir,fin(D) are commutative semigroups with respect to the r-multiplication,
defined by I ·r J = (IJ)r (where IJ = {xy | x ∈ I, y ∈ J}). The ideal system
r is called finitely cancellative if Ir,fin(D) satisfies the cancellation law for the r-
multiplication. If q and r are ideal systems on D, we write q ≤ r and call q finer
than r, if Ir(D) ⊂ Iq(D) (equivalently: Xq ⊂ Xr for all X ⊂ D). An ideal system
r on D is called finitary if

Xr =
⋃

E∈Pfin(X)

Er for all X ⊂ D ,

where Pfin(X) denotes the set of all finite subsets of X .

On a monoid D, we consider the the ideal system v(D) of divisorial ideals and
the finitary ideal system t(D) and s(D), defined by Xv(D) = (X−1)−1, Xs(D) =
XD and Xt(D) =

⋃
{Ev(D) | E ∈ Pfin(X)}. Recall that, for any ideal system r

on D we have s(D) ≤ r ≤ v(D), and if r is finitary, then even r ≤ t(D). On
an integral domain D, we shall also consider the finitary ideal system d(D) of
ordinary ring ideals.

Let D be a monoid, r a finitary ideal system on D and K a quotient groupoid
of D. D is called r-closed if (J : J) = D for all non-zero r-finitely generated
r-ideals J of D, and D is called root-closed if, for all x ∈ K and n ≥ 1, xn ∈ D
implies x ∈ D. A monoid D is s(D)-closed if and only if it is root-closed, and
an integral domain D is d(D)-closed if and only if it is integrally closed. On an
r-closed monoid D, the finitary ideal system ra is defined by

Xra
=

⋃

B∈Pfin(D)
B∩D• 6=∅

((XB)r : B) for all X ⊂ D .

The ideal system ra is finitely cancellative, r ≤ ra, and the importance of the ideal
system ra is given by the following result.

Proposition 1. Let D be a monoid and r a finitary ideal system on D. Then r
is finitely cancellative if and only if D is r-closed and r = ra.
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Proof. If r is finitely cancellative, then [3], Theorem 13.3 shows that (J : J) =
D for all J ∈ Ir,fin(D) and hence D is r-closed. If D is r-closed, then D is
r-cancellative if and only if r = ra by [3], Theorem 19.1.

We shall now consider the ideal system sa on a root-closed monoid more closely
and use it to characterize valuation monoids. For a subset X of a monoid and
n ≥ 1, we set

Xn = {x1 · . . . · xn | xν ∈ X} and X [n] = {xn | x ∈ X} .

Proposition 2. Let D be a root-closed monoid and X ⊂ D.

1. Xsa
= {x ∈ D | xn ∈ Xn for some n ≥ 1} .

2. (Xn)sa
= (X [n])sa

.

Proof. 1. By [3], Proposition 19.3.

2. Since X [n] ⊂ Xn, it is sufficient to show that Xn ⊂ (X [n])sa
. If x =

x1 · . . . · xn ∈ Xn (where xν ∈ X), then

xn = xn
1 · . . . · xn

n ∈ (X [n])n

and therefore x ∈ (X [n])sa
by definition.

2. Valuation monoids

A monoid D is called a valuation monoid if, for all a, b ∈ D, either a ∈ bD or
b ∈ aD. An integral domain is a valuation domain if its multiplicative monoid is a
valuation monoid. The following theorem gathers the known facts concerning the
ideal theory of valuation monoids.

Theorem 1. If D is a valuation monoid, then s(D) = t(D) (and consequently
this is the only finitary ideal system on D).

If D is an integral domain and s(D) = d(D), then D is a valuation domain.

Proof. The first assertion is proved in [3], Theorem 15.3, and the second one
follows by [1], Theorem 1 or [3], Ex. 15.2.

Note that assetion 2. of Theorem 2 generalizes to rings with zero divisors,
see [1], Lemma 3 or [4], Lemma 5.3. The following example however shows the
existence of a monoid possessing but one ideal system and yet not being a valuation
monoid.

Example. A monoid D satisfying s(D) = v(D) (and thus admitting only one
ideal system at all) which is yet not a valuation monoid.

We consider the multiplicative monoid

D = {2n,−2n | n ≥ 1} ∪ {0, 1} ⊂ (Z, ·) .

Since 2 /∈ (−2)D and −2 /∈ 2D, D is not a valuation monoid. Let M = D \ {1}
be the maximal s-ideal of D. Then the non-principal s-ideals of D are the ideals
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2nM for n ≥ 0. Indeed, if J is a non-principal s-ideal of D and n ≥ 1 is minimal
such that 2n ∈ J or −2n ∈ J , then (as J is not principal) {2n,−2n} ⊂ J and
therefore J = 2n−1M . Hence it suffices to prove that M is a v-ideal. It is easily
checked that K = {2n,−2n | n ∈ Z} ∪ {0} is a quotient groupoid of D, M−1 =
{2n,−2n | n ≥ 0} ∪ {0} and Mv = (M−1)−1 = M .

Theorem 2. For a monoid D, the following assertions are equivalent:

a) D is a valuation monoid.
b) D is root-closed, and s(D) = t(D).
c) D is root-closed, and s(D) = s(D)a.

Proof. a) =⇒ b) By Theorem 1, since every valuation monoid is root-closed.
b) =⇒ c) Obvious, since s(D) ≤ s(D)a ≤ t(D).
c) =⇒ a) If a, b ∈ D•, then Proposition 2 implies

ab ∈ ({a, b}2)s(D) = ({a, b}[2])s(D) = ({a2, b2})s(D) = a2D ∪ b2D

and therefore ab ∈ a2D or ab ∈ b2D, whence b ∈ aD or a ∈ bD.

3. r-Prüfer monoids and domains

We recall the notion of spectral ideal systems from [4]. Let D be a monoid, and
let r and q be finitary ideal systems on D such that q ≤ r. Then r[q] : P(D) → P(D)
is defined by

Xr[q] =
⋃

E∈Pf (D)
Er=D

(Xq : E) =
⋂

P∈r-max (D)

(Xq)P for X ⊂ D ,

where r-max (D) denotes the set of all r-maximal r-ideals of D, and (·)P =
(D \ P )−1(·) denotes the localization with respect to D. For the convenience
of the reader we recall the main properties of r[q], for details see [4], section 3.

Proposition 3. Let D be a monoid, and let r and q be finitary ideal systems on
D such that q ≤ r.

1. r[q] is a finitary ideal system on D satisfying q ≤ r[q] ≤ r.
2. If P ∈ r-max (D), then r[q]P = qP .
3. r[q] = r holds if and only if rP = qP for all P ∈ r-max (D). In particular,

q[q] = q.
4. r-max (D) = r[q]-max (D).

We recall the definition of an r-Prüfer monoid. A monoid D with a finitary
ideal system r is called an r-Prüfer monoid if every non-zero r-finitely generated
r-ideal is r-invertible (equivalently, Ir,fin(D) is a groupoid with respect to the
r-multiplication). In [3], Chap. 17 several ideal and valuation theoretic charac-
terizations of r-Prüfer monoids are given. We only note that D is an r-Prüfer
monoid if and only if, for every P ∈ r-max (D), DP is a valuation monoid. By
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definition, D is a valuation monoid if and only if D is an r-local r-Prüfer monoid.
In particular, every s-Prüfer monoid is a valuation monoid.

The following theorem characterizes r-Prüfer monoids by the equality of several
spectral ideal systems.

Theorem 3. Let D be a monoid, r a finitary ideal system on D and s = s(D).
Then the following assertions are equivalent:

a) D is an r-Prüfer monoid.
b) D is an r[s]-Prüfer monoid.
c) D is r-closed, and r[q] = ra for every finitary ideal system q on D such that

q ≤ r.
d) D is r-closed, and r[s] = ra.

Proof. a) ⇐⇒ b) Obvious, since r-max (D) = r[s]-max (D) (by Proposition 3).

a) =⇒ c) If D is r-Prüfer, then r is finitely cancellative and hence r = ra by
Proposition 1. By [3], Theorem 17.1, D is r-closed. Let now q be a finitary ideal
system on D such that q ≤ r. For all P ∈ r-max (D), DP is a valuation monoid
and therefore rP = qP by Theorem 1, and Proposition 3 implies r[s] = r = ra.

c) =⇒ d) Obvious.

d) =⇒ a) If P ∈ r-max (D), then r[s]P = sP = (ra)P = (rP )a by [3], Ex. 19.2.
Since (rP )a ≥ (sP )a, we obtain sP = (sP )a, and since sP = s(DP ), Theorem 3
implies that DP is a valuation monoid.

Now we turn to integral domains. Let D be an integral domain and r a finitary
ideal system on D satisfying r ≥ d = d(D). D is called an r-Prüfer domain
(or a Prüfer r-multiplication domain) if D is an r-Prüfer monoid. D is called
a Prüfer domain, if D is a d-Prüfer domain, and D is called a PVMD (Prüfer
v-multiplication domain) if D is a t(D)-Prüfer domain.

Theorem 4. Let D be an integral domain, d = d(D), s = s(D), and let r be
a finitary ideal system on D such that d ≤ r. Then the following assertions are
equivalent:

a) D is an r-Prüfer domain.
b) r[s] = r.
c) D is r-closed, and r[d] = ra.

Corollary. An integral domain D is a Prüfer domain if and only if d(D) is finitely
cancellative.

Proof. The Corollary follows from the Theorem with r = d, observing d[d] = d
and Proposition 1. However, the Corollary is well known (see [3], Theorem 17.3),
and we shall use it as a tool in the proof of Theorem 4.

a) =⇒ b) See [4], Proposition 5.4 for a more general result.

a) =⇒ c) By Theorem 3.
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c) =⇒ a) If P ∈ r-max (D), then (using [3], Ex. 19.2)

dP = r[d]P = (ra)P = (rP )a ≥ (dP )a ≥ dP ,

and therefore dP = d(DP ) is finitely cancellative. By the Corollary, DP is a (local)
Prüfer domain and hence a valuation domain.

r-Prüfer monoids and domains can also be characterized by properties of their
overmonoids and overrings, see [5] and [2].
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[2] Garcia, J. M., Jaros, P. and Santos, E., Prüfer ∗-multiplication domains and torsion theories,
Comm. Algebra 27 (1999), 1275–1295.

[3] Halter-Koch, F., Ideal Systems, Marcel Dekker 1998.

[4] Halter-Koch, F.,Construction of ideal systems having nice noetherian properties, Commuta-
tive Rings in a Non-Noetherian Setting (S. T. Chapman and S. Glaz, eds.), Kluwer 2000,
271–285.

[5] Halter-Koch, F., Characterization of Prüfer multiplication monoids and domains by means

of spectral module systems, Monatsh. Math. 139 (2003), 19–31.

[6] Halter-Koch, F., Valuation Monoids, Defining Systems and Approximation Theorems, Semi-
group Forum 55 (1997), 33–56.

Institut für Mathematik, Karl-Franzens-Universität Graz

Heinrichstraße 36, 8010 Graz, Austria

E-mail: franz.halterkoch@uni-graz.at


