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ON LEFT INVARIANT CR STRUCTURES ON SU(2)

ANDREAS ČAP

Abstract. There is a well known one–parameter family of left invariant CR
structures on SU(2) ∼= S3. We show how purely algebraic methods can be
used to explicitly compute the canonical Cartan connections associated to
these structures and their curvatures. We also obtain explicit descriptions of

tractor bundles and tractor connections.

1. Introduction

Three dimensional CR structures are among the examples of geometric struc-
tures for which Elie Cartan constructed an associated normal Cartan connection,
see [1]. The homogeneous model for this geometry is S3, viewed as a quotient
of the semisimple group G := PSU(2, 1) by a parabolic subgroup P , so three
dimensional CR structures form an example of a parabolic geometry.

This example is remarkable in many respects. On the one hand, it is sufficiently
complicated to incorporate many of the features of general parabolic geometries.
On the other hand, the low dimension of the group G and the fact that all im-
portant natural bundles are (either real or complex) line bundles, and hence all
sections can locally be viewed as functions, simplify matters considerably. In fact,
Cartan was even able to describe an algorithm for computing the essential cur-
vature invariant of such structures. Moreover, many questions that have to be
attacked using representation theory for general parabolic geometries can be eas-
ily solved directly in this case. An example for this is provided by the analysis of
possible dimensions of automorphism groups in [2].

Returning to the homogeneous model S3 = G/P , consider the compact sub-
group K = SU(2) ⊂ G. Acting with elements of K induces a diffeomorphism
K ∼= S3, so we can actually view the standard CR structure on S3 as a left invari-
ant structure on K. In this picture, the structure can be easily obtained from data
on the Lie algebra k of K. These data admit an evident one–parameter deforma-
tion, which gives rise to a one parameter family of left invariant CR structures on
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K. The aim of this article is to show that the canonical Cartan connections asso-
ciated to these CR structures can be computed using only linear algebra. On the
way, one also gets explicit formulae for their curvatures. Finally, we also describe
all tractor bundles and normal tractor connections explicitly. These developments
should also serve as a basis for a more detailed analysis of these structures and as
a prototype for dealing with general left invariant parabolic geometries.

Acknowledgment. I would like to thank Olivier Biquard for bringing this ex-
ample to my attention during a discussion at the Winter School in Srńı.

2. Left invariant CR structures on SU(2)

2.1. 3–dimensional CR structures. Recall that a CR structure on a 3–manifold
M is given by a complex line subbundleH ⊂ TM , which defines a contact structure
on M . The subbundle H ⊂ TM is called the CR subbundle. Equivalently, we have
a rank two subbundle H ⊂ TM endowed with a complex structure J : H → H
such that for one (or equivalently any) locally non vanishing section ξ ∈ Γ(H)
the vector fields ξ, J(ξ) and [ξ, J(ξ)] form a local frame for TM . In contrast to
higher dimensions, there is no condition of partial integrability or integrability in
dimension 3.

Given two CR structures, there is an evident notion of a (local) CR diffeomor-
phism. This is a (local) diffeomorphism f , such that for each point x the tangent
map Txf maps the CR subbundle to the CR subbundle and the restriction of Txf
to the CR subbundle is complex linear.

The basic examples for such structures are provided by generic real hypersur-
faces in two dimensional complex manifolds. If (M̃, J̃) is a two dimensional com-

plex manifold and M ⊂ M̃ is a real hypersurface, then for each x ∈M the tangent
space TxM has real dimension 3 and sits in TxM̃ , which is a two dimensional
complex vector space. Now Hx := TxM ∩ J̃(TxM) is a complex subspace of TxM̃ ,
which evidently must have complex dimension one. By construction, the spaces
Hx fit together to define a complex line subbundle H ⊂ TM , with the complex
structure J given by the restriction of J̃ . Generically, the subbundle H ⊂ TM
is maximally non–integrable, and hence defines a CR structure on M . From the
construction it is clear that a biholomorphism f : M̃ → M̃ which preserves the
hypersurface M restricts to a CR automorphism of M .

The simplest example of this situation is provided by the unit sphere S3 ⊂ C2.
For x ∈ S3 we get TxS

3 = {y ∈ C2 : Re(〈x, y〉) = 0}. The maximal complex
subspace of this is Hx = {y ∈ C2 : 〈x, y〉 = 0}. One easily verifies directly that
this defines a contact structure on S3. Hence we have obtained a CR structure on
S3, called the standard structure. CR structures which are locally isomorphic to
the standard structure on S3 are called spherical.

Any element A ∈ U(2) defines a biholomorphism of C
2 which preserves the unit

sphere S3, and hence restricts to a CR automorphism of the standard CR structure
on S3. Of course, this action is transitive, so we see that S3 with its standard
structure is a homogeneous CR manifold. The group of CR automorphisms of
this structure however is larger than U(2). Identifying S3 with the space those
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complex lines in C3 which are isotropic for a Hermitian inner product of signature
(2, 1) leads to an faithful action of G := PSU(2, 1) on S3 by CR automorphisms.
Correspondingly, one obtains a diffeomorphism S3 ∼= G/P , where P ⊂ G is the
stabilizer of an isotropic line in C3.

2.2. Left invariant deformations of the standard structure. Restricting the
action of U(2) on S3 further to K := SU(2) we obtain a diffeomorphism K → S3,
which we can use to carry over the standard CR structure to K. In this picture,
multiplication from the left by any element of K is a CR automorphism, so we
have constructed a left invariant CR structure on K.

It is well known that left invariant structures on a Lie group can be described
in terms of the Lie algebra. Denoting by e ∈ K the unit element and by k = TeK
the Lie algebra of K, we get the fiber He ⊂ k of the subbundle. This must be
a complex subspace of complex dimension 1 in the real vector space k. By left
invariance, the fiber Hg in each point g ∈ K is spanned by the values LX(g) of
the left invariant vector fields generated by elements X ∈ He, and the complex
structure on Hg comes from the linear isomorphism X 7→ LX(g). Explicitly, k

consists of all trace–free skew Hermitian 2 × 2–matrices, i.e.

k =

{(

it −z
z −it

)

: t ∈ R, z ∈ C

}

,

and we will denote elements of k as pairs (it, z). Using the action on the first
vector in the standard basis of C2 to identify K with S3, we see that He =
{(0, z) : z ∈ C} ⊂ k. The fact that this defines a left invariant contact structure
on K is then immediate from the fact that [LX , LY ] = L[X,Y ] for all X,Y ∈ k and

from
[

(0, 1), (0, i)
]

= (−2i, 0). Indeed, the linear functional α : k → R defined by
α(it, z) = t defines a left invariant contact form for the contact structure H .

Now the crucial idea is that we can leave this left invariant contact structure
unchanged but deform the complex structure in the space He to obtain a family
(H, Jλ) of left invariant CR structures onK parametrized by a positive real number
λ. Namely, for λ > 0 we define Jλ(e)(0, u+iv) :=

(

0, i(λu+i 1
λ
v)
)

= (0,− 1
λ
v+iλu).

This extends to a left invariant complex structure on the contact subbundle H ⊂
TK, which in addition induces the standard orientation. The obvious question is
whether this is a true deformation of the standard CR structure, or whether one
just obtains (locally) isomorphic structures.

Notice that, viewed as CR structures on S3, the structures (H, Jλ) for λ 6= 1
are not invariant under the group U(2). Indeed the element ( 1 0

0 i ) ∈ U(2) fixes
the first vector in the standard basis. The tangent map of its action is given by
(it, z) 7→ (it, iz), which is complex linear for Jλ(e) if and only if λ = 1. Invariance
under U(2) would actually imply that the structure is spherical, since by a classical
result of Cartan, the automorphism group of a non–spherical CR structure has
dimension at most three. A simple proof of this result can be found in [2].
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3. The canonical Cartan connections

3.1. Three dimensional CR structures and Cartan geometries. Three di-
mensional CR structures can be equivalently described as Cartan geometries,
which in particular implies that the curvature gives a complete obstruction to
being spherical. We first have to describe the group G = PSU(2, 1) and its Lie
algebra g = su(2, 1) in a bit more detail. Consider the Hermitian form on C3

defined by
(

(z0, z1, z2), (w0, w1, w2)
)

7→ z0w2 + z2w0 + z1w1 .

Then the first and last vector in the standard basis are isotropic, while the second
one has positive length, so this form has signature (2, 1). A direct computation
shows that for this form we get

g =











α+ iβ w iψ
x −2iβ −w
iϕ −x −α+ iβ



 : α, β, ϕ, ψ ∈ R, x, w ∈ C







We obtain a grading g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 of g by




g0 g1 g2

g−1 g0 g1

g−2 g−1 g0



 .

The associated filtration is defined by gi = gi ⊕ · · · ⊕ g2, so we have

g = g−2 ⊃ g−1 ⊃ · · · ⊃ g2 ,

and [gi, gj ] ⊂ gi+j . The parabolic subgroup P ⊂ G is the stabilizer of an isotropic
line, for which we take the line generated by the first basis vector. The Lie algebra
of P then evidently is given by p = g0 = g0 ⊕ g1 ⊕ g2. In particular the filtration
{gi} is invariant under the adjoint actions of p and P .

Definition. (1) A Cartan geometry of type (G,P ) on a smooth manifold M is a
principal P–bundle p : G →M together with a one form ω ∈ Ω1(G, g) such that

• (rg)∗ω = Ad(g)−1 ◦ ω for all g ∈ P , where rg denotes the principal right
action of g.

• ω(ζA) = A for all A ∈ p, where ζA denotes the fundamental vector field
with generator A.

• ω(u) : TuG → g is a linear isomorphism for all u ∈ G.

(2) A morphism between two Cartan geometries (G → M,ω) and (G̃ → M̃, ω̃) is

a principal bundle homomorphism Φ : G → G̃ such that Φ∗ω̃ = ω. Note that since
both ω and ω̃ are bijective on each tangent space, this implies that Φ is a local
diffeomorphism.
(3) The homogeneous model of the geometry is the principal bundle G → G/P
together with the left Maurer–Cartan form ωMC .

Given a Cartan geometry (p : G →M,ω) of type (G,P ) on M , we can form the
associated bundle G ×P (g/p). The map G × (g/p) → TM given by (u,X) 7→ Tup ·
(

ω(u)−1(X)
)

descends to an isomorphism G×P (g/p) ∼= TM . Now g/p contains the

P–invariant subspace g−1/p, so this gives rise to a subbundle H ⊂ TM . Moreover,
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g−1/p ∼= C and since P consists of complex matrices, this complex structure is
invariant under the adjoint action of P . Therefore, it makes the associated bundle
H = G ×P (g−1/p) into a complex line bundle. If H is a contact structure, then
we obtain a three dimensional CR structure on M .

3.2. Regularity and normality. To characterize when H is a contact structure,
we need the curvature κ ∈ Ω2(G, g) of ω. This is defined by κ(ξ, η) = dω(ξ, η) +
[ω(ξ), ω(η)]. In the case of the homogeneous model, κ vanishes identically by the
Maurer–Cartan equation. Conversely, it can be shown that any Cartan geometry
with vanishing curvature is locally isomorphic to the homogeneous model. Now
we call a Cartan geometry of type (G,P ) regular if and only if κ(ξ, η) has values
in g−1 ⊂ g provided that ω(ξ) and ω(η) have values in g−1.

Suppose that this condition is satisfied and that ξ and η are local lifts of vector
fields ξ and η on M . Then the fact that ω(ξ) and ω(η) have values in g−1 exactly
means that ξ and η are sections ofH ⊂ TM . By definition of the curvature and the

assumptions we see that −ω
(

[ξ, η])+[ω(ξ), ω(η)
]

has values in g−1. Since [ξ, η] lifts

[ξ, η], we see that the latter bracket cannot have values in H unless
[

ω(ξ), ω(η)
]

has values in g−1. One immediately verifies that the bracket in g induces a non–
degenerate map g−1/p × g−1/p → g/g−1. Hence we see that regularity of the
Cartan geometry ensures that we obtain an underlying CR structure.

It is a general theorem, that any three dimensional CR structure arises as the
underlying structure of a Cartan geometry of type (G,P ). However, there are
many non–isomorphic Cartan geometries having the same underlying CR struc-
ture. To get rid of this freedom, one has to put an additional normalization
condition on (the curvature of) the Cartan connection ω. Under this additional
condition, the Cartan geometry is then uniquely determined up to isomorphism.
See [3] for a discussion of all these issues and [6] for proofs, both in the realm of
general parabolic geometries.

We will not need the detailed form of the normalization condition, but only
some of its consequences. These follow from the fact that one may relate the
values of the curvature of a regular normal Cartan geometry to certain explicitly
computable Lie algebra cohomology groups. In the case of three dimensional CR
structures, these conditions imply that κ(ξ, η) has values in g1 ⊂ g for all ξ and
η. Moreover, if both ω(ξ) and ω(η) have values in g−1, then κ(ξ, η) has to vanish
identically. Finally, projecting the values of κ to g1/g2 ∼= g1, one obtains the
harmonic curvature, which still is a complete obstruction to the CR structure
being spherical.

3.3. The case of left invariant structures. Let us now consider one of the left
invariant CR structures (H, Jλ) on K = SU(2). As an ansatz, we use the trivial

principal P–bundle G := K × P . For X ∈ k, define L̂X := (LX , 0) ∈ X(G). The

second part of the ansatz is that ω(L̂X) is constant along K×{e}. The motivation
for this ansatz is as follows. For any k ∈ K, the left translation by k defines a CR
automorphism of K, which leaves each LX invariant. These automorphisms lift
to the canonical principal bundle in a way compatible with the canonical Cartan
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connection. Fixing an identification of the fiber of the Cartan bundle over e ∈ K
with P , we can use these lifts to trivialize the Cartan bundle and in such a way
that ω(L̂X) is constant along K × {e}.

Consider a linear map ϕ : k → g such that the composition with the projection
g → g/p with ϕ is a linear isomorphism. Any tangent vector in (k, g) ∈ K × P
can be uniquely written as

(

LX(k), LA(g)
)

for some X ∈ k and A ∈ p. Hence we

can define ω ∈ Ω1(K × P, g) by

ω
(

LX(k), LA(g)
)

:= Ad(g−1)
(

ϕ(X)
)

+A .

By the assumption on ϕ this defines a linear isomorphism on each tangent space,
and using that the principal right action is just multiplication from the right in
the second factor and that ζA = (0, LA) for each A ∈ p, one immediately verifies
that this defines a Cartan connection.

We can also immediately compute the curvature κ of this connection. Since
κ is horizontal and P–equivariant, it suffices to compute κ(L̂X , L̂Y )(k, e) for all
X,Y ∈ k and k ∈ K. Now by definition,

κ(L̂X , L̂Y ) = dω(L̂X , L̂Y ) +
[

ω(L̂X), ω(L̂Y )
]

= −ω
(

[L̂X , L̂Y ]
)

+
[

ω(L̂X), ω(L̂Y )
]

.

Using [LX , LY ] = L[X,Y ] we see that, along K × {e}, the function κ(L̂X , L̂Y ) is
constant and equal to

[

ϕ(X), ϕ(Y )] − ϕ([X,Y ]
)

.

Hence the curvature exactly expresses the obstruction against ϕ being a homo-
morphism of Lie algebras.

It remains to express the fact that the Cartan connection ω induces the “right”
underlying CR structure in terms of the linear map ϕ. Returning to the notation
of 2.2, we denote elements X ∈ k as pairs (it, z) for t ∈ R and z ∈ C. Then L(it,z)

lies in the contact subbundle H if and only if t = 0, so to get the right contact
subbundle, ϕ(it, z) must lie in the subspace g−1 ⊂ g if and only if t = 0. Given
this, we get an induced linear map k ⊃ He → g−1. Composing with the natural
projection, we get a linear isomorphism k → g−1/p ∼= C. The condition that we
get the induced complex structure Jλ exactly means that via this isomorphism the
(fixed) standard complex structure on g−1/p induces the complex structure Jλ(e)
on He.

Having all this at hand, we can prove the main technical result of this article:

Theorem. For fixed λ > 0, the linear map ϕλ : k → g defined by

ϕλ(it, u+ iv) :=









1+λ2

4λ
it − 5−3λ2

4
√

λ
u− 3−5λ2

4λ
√

λ
iv −15+34λ2−15λ4

16λ2 it√
λu+ 1√

λ
iv − 1+λ2

2λ
it 5−3λ2

4
√

λ
u− 3−5λ2

4λ
√

λ
iv

it −
√
λu+ 1√

λ
iv 1+λ2

4λ
it









induces a linear isomorphism k → g/p. It has the property that ϕλ(He) ⊂ g−1,

and via the induced isomorphism He → g−1/p the induced complex structure on

He is Jλ(e). Finally, the map κλ : k × k → g defined by

κλ(X,Y ) := [ϕλ(X), ϕλ(Y )] − ϕλ([X,Y ])
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has values in g1 and vanishes on He ×He.

Explicitly, κλ satisfies

κλ

(

(it, 0), (0, u+ iv)
)

=







0 − 3t(λ4−1)

2λ2
√

λ
(v − iλu) 0

0 0 3t(λ4−1)

2λ2
√

λ
(v + iλu)

0 0 0







and this completely determines κλ.

Proof. From the definition of ϕλ it is evident that it induces a linear isomorphism
k → g/p and that it maps elements of He, which are characterized by it = 0 to

g−1. Then the isomorphism He → g−1/p is given by u + iv 7→
√
λu + i 1√

λ
v,

so the complex structure on g−1/p evidently induces Jλ(e) on He. It is then
straightforward but tedious to check that κλ has values in g1 and vanishes on
He × He as well as the explicit formula. That this expression determines κλ

follows since by skew symmetry and vanishing of κλ on He ×He we obtain

κλ

(

(it, z), (it′, z′)
)

= κλ

(

(it, 0), (0, z′)
)

− κλ

(

(it′, 0), (0, z)
)

. �

3.4. Digression: How to get the formula for ϕλ. The result of Theorem 3.3 is
all that is needed in the sequel. Since the proof does not explain how the formula
for ϕλ was obtained (although really doing the computation gives some hints),
we will briefly discuss this. As a spin off, this will show that ϕλ is essentially
uniquely determined by the four properties listed in Theorem 3.3. The main point
is that there is some evident non–uniqueness around, and dealing with this is the
key step to determine ϕλ. Recall that for any element g ∈ P , the adjoint action
Ad(g) : g → g preserves the filtration. In particular, it preserves g1 and g−1

as well as p and therefore induces a linear isomorphisms on g/p and g−1/p. One
immediately checks that the second of these isomorphisms is complex linear. From
these observations it is evident, that if ϕ : k → g is a linear map which satisfies
the four properties of Theorem 3.3 and g ∈ P is arbitrary, then also Ad(g) ◦ϕ has
these properties.

To deal with this freedom, we need a bit more information on the group P .
Note first that there is a subgroup G0 ⊂ P consisting of all g ∈ P for which
Ad(g) : g → g even preserves the grading. It is a general result (see [6, Proposition
2.10]) that G0 has Lie algebra g0 and any g ∈ G can be uniquely written in the
form g = g0 exp(Z1) exp(Z2) for g0 ∈ G0 and Zi ∈ gi. For our choice of G and P ,
one immediately verifies that the (complex) linear automorphism on g−1/p induced
by Ad(g) depends only on g0 and one obtains an isomorphism G0 → C \ {0} in
this way.

But now any linear isomorphism He → g−1/p, which induces Jλ(e) on He can
be written (identifying g−1/p with the matrix component in the first column of
the second row) as the composition of a complex linear automorphism of g−1/p

with u+ iv 7→
√
λu+ 1√

λ
iv.

Hence if we want ϕ to induce a linear isomorphism k → g/p, mapHe → g−1, and
induce Jλ(e), then we may assume the lower two rows of the first column of ϕ(it, u+
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iv) have the form

(√
λu+ 1√

λ
iv + tz0

ist

)

for some z0 ∈ C and some s ∈ R \ {0}.

(Of course, this also determines the second component in the last row.) Making
this ansatz also reduces the freedom to composition with Ad

(

exp(Z1) exp(Z2)
)

.
Having made this ansatz, one can already compute the g−2–component of the
restriction of κ to He ×He and vanishing of this forces s = 1.

Next we observe taking the bracket with a nonzero element of g−2 induces a lin-
ear isomorphism g1 → g−1. Using this, we see that composing with Ad

(

exp(Z1)
)

for an appropriate choice of Z1 we can require z0 = 0 in the above ansatz, and
this reduces the freedom to composition with Ad

(

exp(Z2)
)

. To get rid of this
freedom, we observe that bracketing with a nonzero element of g−2 induces a lin-
ear isomorphism from g2 to the (one–dimensional) space of real diagonal matrices
contained in g. Hence we can eliminate all the freedom of composition with Ad(g)

by the ansatz that the first column of ϕ(it, u+iv) has the form





uz0 + vz1 + ist√
λu+ 1√

λ
iv

it





for elements z0, z1 ∈ C and s ∈ R. Having made this ansatz, one can compute
the complete g−2 component of κ and the g−1 component of the restriction to
He ×He, and vanishing of these forces z0 = z1 = 0.

Now one can, step by step, take ansatzes for the remaining components of
ϕ(it, u + iv) and determine components of κ. In the end, one finds out that the
conditions on κ in Theorem 3.3 are sufficient to uniquely pin down the formula for
ϕλ.

3.5. The canonical Cartan connections. It is now easy to show that the map
ϕλ from Theorem 3.3 leads to the canonical Cartan connection for (K,H, Jλ).

Corollary. (1) For some λ > 0, consider the left invariant CR structure (H, Jλ)
on K = SU(2) from 2.2. Then the regular normal parabolic geometry associated

to this structure is (K × P → K,ωλ), where

ωλ

(

LX(k), LA(g)
)

= Ad(g−1)
(

ϕλ(X)
)

+A

with ϕλ : k → g the map from Theorem 3.3.

(2) The CR structure (H, Jλ) is spherical if and only if λ = 1, i.e. if and only if

it equals the standard structure.

Proof. (1) From 3.3 we know that the formula for ωλ defines a Cartan connection
on the trivial bundle K × P . The conditions on ϕλ in Theorem 3.3 which do
not involve κλ exactly say the this Cartan connection induces the CR structure
(H, Jλ) on K. Hence to prove (1), it remains to show that ωλ is normal. The
formula for κλ in Theorem 3.3 gives us the restriction of the curvature of ωλ

to K × {e}. By equivariancy of the normalization condition it suffices to show
normality of this restriction in order to prove that ωλ is normal. Since κλ has
values in g1 and the restriction to He ×He vanishes, it is homogeneous of degree
≥ 4, and the component of degree 4 maps (k/He) ×He to g1. Identifying g1 with
the component in the second column of the first row of a matrix, this component
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is complex linear in the second variable (with respect to Jλ). It is well known
(and easy to see) that the one dimensional space of such maps exactly constitutes
the harmonic part in degree 4, so in particular such maps lie in the kernel of the
Kostant codifferential. Since maps of homogeneity ≥ 5 automatically have that
property, normality follows.
(2) This is now evident since κλ vanishes if and only if λ4 = 1. �

Notice that we can use the same construction replacing G by the three–fold
covering SU(2, 1) and P by the stabilizer of a line in that group. Such an extension
is necessary for example if one wants to have a standard tractor bundle, compare
with [7]. In the picture of CR geometry, such an extension is associated to the
choice of a third root of a certain complex line bundle. In our case, this bundle is
trivial, so this poses no problem.

3.6. Tractors and tractor calculus. As an indication how the description of
the canonical Cartan connection in Corollary 3.5 can be used further, we discuss
tractor bundles and compute normal tractor connections. We will work here in
the setting that G = SU(2, 1) and P ⊂ G is the stabilizer of a line. Recall that
for a representation V of the group G, one obtains a tractor bundle by restricting
the representation to P ⊂ G and forming the associated bundle to the canonical
Cartan bundle. While sections of these bundles are unusual geometric objects,
they have the advantage that they carry canonical linear connections induced by
the canonical Cartan connection.

Proposition. For some λ > 0 consider the left invariant CR structure (H, Jλ)
on K = SU(2) from 2.2, and let V be a representation of G = SU(2, 1). Then the

associated tractor bundle T → K is canonically trivial, so Γ(T ) ∼= C∞(K,V ). In

this identification, the tractor connection ∇T is determined by

∇T
LX
f = LX · f + ρ

(

ϕλ(X)
)

◦ f ,
for f : K → V , where LX ∈ X(K) denotes the left invariant vector field generated

by X ∈ k and ρ : g → L(V, V ) is the derivative of the representation of G on V .

Proof. Since the canonical Cartan bundle is trivial, so is the associated bundle
T . Explicitly, the identification Γ(T ) → C∞(K,V ) is given by restricting the
P–equivariant function G = K × P → V corresponding to a section to the subset
K × {e}. In terms of equivariant functions, the tractor connection can be easily
described explicitly, see [5, Section 3]: For the equivariant map h : G → V corre-

sponding to s ∈ Γ(T ), a vector field ξ on K and a lift ξ̃ ∈ X(G) of ξ, the covariant

derivative ∇T
ξ s is represented by the function ξ̃ · h+ ρ

(

ω(ξ)
)

◦ h.
Putting ξ = LX , we can use (LX , 0) for ξ̃. This has the particular advantage

that its flow leaves the subset K×{e} ⊂ K×P invariant. Therefore, putting f :=
h|K×{e} we see that ((LX , 0) · h)|K×{e} = LX · f . For the second term, restriction

to K × {e} makes no problems anyhow, so the formula for ∇T follows. �

As a concrete example, let us describe how the three dimensional family of in-
finitesimal automorphisms corresponding to the left translations by elements of K
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are represented within adjoint tractors. This means that we consider the repre-
sentation V = g, and the resulting tractor bundle is the adjoint tractor bundle A.
The canonical Cartan connection induces an isomorphism between Γ(A) and the
space of right invariant vector fields on G, see [4]. Infinitesimal automorphisms of a
Cartan geometry are described by such vector fields, and they are characterized by
a simple differential equation, see [4, Proposition 3.2]. We will verify this equation
for the three dimensional family of infinitesimal automorphisms corresponding to
left translations on K.

The construction of the canonical Cartan connection on G = K ×P for the left
invariant CR structure (H, Jλ) on K shows that for each k′ ∈ K the map (k, g) 7→
(k′k, g) is the lift of the left translation by k′ to an automorphism of the parabolic
geometry (G, ωλ). The infinitesimal generators of this three parameter group of
automorphisms are of course the vector fields (RX , 0) for X ∈ k, where RX denotes
the right invariant vector field. Let sX ∈ Γ(A) be the corresponding section, i.e. the
smooth equivariant function corresponding to sX is ωλ

(

(RX , 0)
)

. Since RX(k) =
LAd(k−1)X(k) we see that the smooth function fX : K → g corresponding to sX is

given by fX(k) = ϕλ(Ad(k−1)X). From the proposition above, we conclude that
∇A

LY
sX corresponds to the function

LY · ϕλ

(

Ad(k−1)X
)

+
[

ϕλ(Y ), ϕλ(Ad(k−1)X)
]

.

Now the first term can be computed as

d
dt
|t=0ϕλ

(

Ad
(

exp(−tY )
)

Ad(k−1)X
)

= −ϕλ

(

[Y,Ad(k−1)X ]
)

.

Hence we see that ∇A
LY
sX corresponds to the function κλ

(

Y,Ad(k−1)(X)
)

which
represents the curvature of ωλ evaluated on the vector fields LY and RX . This is
exactly the infinitesimal automorphism equation from [4, Proposition 3.2].
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