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A BRIEF REVIEW OF SUPERSYMMETRIC NON-LINEAR

SIGMA MODELS AND GENERALIZED COMPLEX GEOMETRY

ULF LINDSTRÖMA,B

Abstract. This is a review of the relation between supersymmetric non-
linear sigma models and target space geometry. In particular, we report on
the derivation of generalized Kähler geometry from sigma models with ad-
ditional spinorial superfields. Some of the results reviewed are: Generalized
complex geometry from sigma models in the Lagrangian formulation; Coor-
dinatization of generalized Kähler geometry in terms of chiral, twisted chiral
and semi-chiral superfields; Generalized Kähler geometry from sigma models
in the Hamiltonian formulation.
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1. Introduction

The construction of Generalized Complex Geometry (GCG), [13], [12] was moti-
vated partly by understanding generalized Calabi-Yau manifolds relevant to string-
physics. Since its introduction in mathematics, it has found several additional ap-
plications in physics [3]-[28]. Here we shall mainly be concerned with the special
case of Generalized Kähler Geometry (GKG) [12] and its relation to supersym-
metric nonlinear sigma models.

The history of this line of investigation goes back to the original realization of
the close relation between supersymmetric nonlinear sigma models and complex
geometry, some twenty-five years ago [32], [4]. The renewed interest is due to
Gualtierei’s proof that the bi-hermitean target-space geometry of Gates, Hull and
Roček [10] 1 may be mapped to GKG. The mapping is nontrivial, however. In
particular the sigma models are defined in terms of super-fields transforming in
the tangent space T of the target space T , whereas the definition of GKG also
requires the cotangent space T ∗. A direct relation between the sigma model and
GKG thus requires additional T ∗-fields. Such a model is also of interest from
another point of view; the second supersymmetry of [10] only closes on-shell, in
general. To obtain off-shell closure additional auxiliary superfields are needed.

This sets the scene for the investigation: The problem is to formulate a general-
ized (1, 1) nonlinear sigma model with superfields transforming in T ⊕T ∗, require
off-shell closure and read off the ensuing target space geometry. A related problem
is that of interpreting the geometry for the manifest (2, 2) models. The present
paper is a report on the results and difficulties of this program.

As the presentation is a review, we refer the reader to the references for details,
but sections 2-5 present the background needed to appreciate the problem. Section
6 review results from the N = (1, 1) sigma model point of view, while section 7
takes the starting point in N = (2, 2) models, reporting on the recent result re-
garding coordinatization of, and the existence of a potential for generalized Kähler
geometry. Finally, section 8 contains a brief summary of the recent understanding
of generalized Kähler geometry as the target space geometry in the Hamiltonian
formulation of the sigma model.

2. Sigma models

A N = (p, q) two-dimensional supersymmetric nonlinear sigma model is a theory
of maps φµ from a supermanifold M(2|p,q) to a target-space T ,

(2.1) φµ : M(2|p,q) 7−→ T ,

found by minimizing the action

(2.2) S =

∫

M

L(φ) +

∫

∂M

LB ,

where the form of the bulk Lagrange density L and the boundary term LB depend
on the number of supersymmetries. The boundary term is necessary is needed to

1See also [15]
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preserve symmetries of the bulk-action in the open case. 2 We shall be concerned
with closed sigma models in the two cases N = (1, 1) and φ real, with3

(2.3) L(φ) = ∂++φµEµν(φ)∂=φν ,

and N = (2, 2) and φ complex, with

(2.4) L(φ) = K(φ, φ̄) .

In (2.3), the target space geometry enters these expressions through the target
space metric Gµν and the antisymmetric B-field Bµν in the combination4

(2.5) Eµν(φ) ≡ Gµν(φ) + Bµν(φ) .

This also covers the N = (2, 2) action, since reducing (2.4) to N = (1, 1) com-
ponents yields special cases of (2.3), (2.5) where the metric and B-field are given
as derivatives of the potential K(φ, φ̄). We thus see that more super-symmetry
implies more restrictions on the target-space geometry. In two dimensions the
situation is (partly) summarized in the following table

Supersymmetry (0,0) or (1,1) (2,2) (2,2) (4,4) (4,4)

Background G, B G G, B G G, B

Geometry Riemannian Kähler bihermitian hyperkähler bihypercomplex

Table 1. The geometries of sigma-models with different supersymmetries.

We shall focus on the (2, 2) case which we now briefly describe from an N =
(1, 1) superspace point of view.

3. The Gates-Hull-Roček geometry

Starting from the action (2.2) with the Lagrange density (2.3), we may ask under
which conditions there is an additional left and an additional right supersymmetry

(3.6) δφµ = ε+J
µ

(+)νD+φν + ε−J
µ

(−)νD−φν ,

where D± are the N = (1, 1) superspace covariant spinorial derivatives. In [10]
the answer to this was found to be that the target space geometry has to satisfy
the following requirements

(i) The tensors J(±)(φ) have to be complex structures, i.e., J2
(±) = −1 and

N(±) = 0, where N(±) denotes the corresponding Nijenhuis tensors.

2In fact, there is an intricate interplay between the preservation of symmetries and the possible
geometries of the sub-manifolds where the boundaries may lie (the D-branes) [1]-[17].

3We use bosonic light-cone coordinates ξ++ and ξ=. The double plus/minus notation is in
keeping with the 2d notation where a spinor θ has components θ+ and θ−.

4This is a slight abuse of notation, since the metric and B-field are the lowest components of
these superfield functions.
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(ii) The tensors J(±)(φ) also have to be covariantly constant with respect to

torsionful connections, ∇(±)J(±) = 0 where Γ(±) ≡ Γ(0) ± G−1H , Γ(0) is
the Levi-Civita connection and H = dB.

(iii) The metric G is hermitean with respect to both complex structures,
J t

(±)GJ(±) = G.

(iv) The complex structures preserve the torsion, i.e.,
J(±)HJ(±) = J(±)H .

The conditions (i)-(iv) are a consequence of invariance of the action (2.2) under
the second supersymmetry (3.6) and of closure of the algebra of that symmetry.
It is an important fact that the algebra only closes on-shell in general. If the
two complex structures commute it does close off-shell, however, and there is a
manifest (2, 2) description of the sigma model in terms of chiral and twisted chiral
(2, 2) superfields.

In [27], the conditions (i)-(iv) were reformulated in terms of the Poisson struc-
tures

(3.7) π(±) ≡ (J(+) ± J(−))G
−1 ,

a reformulation which anticipates the subsequent generalized complex geometry
description. Before we turn to the equivalence between the bihermitean geometry
and the GCG, we need to briefly introduce the latter.

4. Generalized complex geometry

Generalized complex geometry is introduced in [13] and elaborated on in [12].
A coordinate formulation useful for physicists is given in [24]. Here we only reca-
pitulate a few important facts.

The basic object in the definition of a GCG is the generalized complex structure
J . This is introduced in a manner which mimics the description of a complex
structure, namely as an automorphism of the sum of the tangent space and the
cotangent space

(4.8) J : T ⊕ T ∗ 7→ T ⊕ T ∗

which squares to minus one

(4.9) J 2 = −1 .

The projection operators

(4.10) Π± ≡ 1
2 (1 ± iJ )

are used to define integrability by requiring that

(4.11) Π∓

[

Π±(X + ξ), Π±(Y + η)
]

c
= 0 ,
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where X + ξ, Y + η ∈ T ⊕ T ∗ and the bracket is the Courant bracket defined by5

(4.12) [X + ξ, Y + η]c ≡ [X, Y ] + £Xη − £Y ξ −
1

2
d(ıXη − ıY ξ) .

For physics it is highly relevant that the group of automorphisms of the Courant
bracket apart from diffeomorphisms also includes b-ransforms, defined by

(4.13) eb(X + ξ) ≡ X + ξ + ıXb ,

for a closed two-form b.
As a final ingredient, the natural pairing I, defined by

(4.14) 〈X + ξ, Y + η〉 = ıXη + ıY ξ ,

is required to be hermitean with respect to J ;

(4.15) J tIJ = I .

Note that, apart from the last condition, the definition of an ordinary complex
structure is recovered by replacing the sum of the tangent an cotangent spaces by
the tangent space only and the Courant bracket by the Lie bracket.

In the local basis (∂µ, dxν), the generalized complex structure and the pairing
metric take the form

(4.16) J =

(

J P

L K

)

, I =

(

0 1d

1d 0

)

,

where d is the dimension of the manifold and the blocks are maps between the
possible combinations of T and T ∗. A b-transform acts on J according to

(4.17) Jb =

(

1 0
b 1

)

J

(

1 0
−b 1

)

.

To appreciate the scope of GCG, it is useful to note that a b-transform may take us
from a J representing ordinary complex geometry to one representing symplectic
geometry. Generalized complex geometry contains both types of geometries as
special cases.

An important special case of a GCG, called a generalized Kähler geometry
(GKG), is defined in [12]. It involves two commuting generalized complex struc-
tures J1 and J2 and requires that the metric formed from these,

(4.18) G ≡ −J1J2 ,

is positive definite. When J1 represents the ordinary complex structure of Kähler
geometry and J2 represents the Kähler form, then G is made from the Kähler
metric. It is this generalized Kähler geometry which is of interest for the sigma
models, and we now turn to that relation.

5In the presence of a closed three-form H, the Courant bracket can be modified (twisted) by
adding a term ıX ıY H
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5. Sigma models realizations

In [12] it is shown that there is a map between the bihermitean geometry of
section 3 and the generalized complex geometry of section 4. The geometric data
J(±), G, B always defines a GKG with generalized complex structures

(5.19) J1,2 = − 1
2

(

J(+) ± J(−) −(ω−1
(+) ∓ ω−1

(−))

ω(+) ∓ ω(−) −(J t
(+) ± J t

(−))

)

,

where ω(±) are the symplectic forms corresponding to J(±). Up to b-transforms
and diffeomorphims, the inverse is also true. We emphasize that the relation is
independent of an actual sigma model realization, closure of the algebra etc. This
relation, however, tells us that if we add fields transforming as co-vectors of the
target space T we have a chance of realizing the GKG directly from a (generalized)
sigma model. To keep the physical degrees of freedom the same as in the original
sigma model, the new fields should be auxiliary. This is also what we expect if the
algebra of non-manifest supersymmetries is to close in the generalized model.

In fact, if we turn to the (2.2) models and their reduction to (1, 1) we discover
some of the necessary structure. Namely, a (2.2) sigma model written in terms
of semi(anti) chiral superfields6 X, X will contain spinorial auxiliary fields when
reduced to (1, 1). This is an example of the kind of models we are looking for,
and will be discussed in more detail below. A (1, 1) generalized sigma model with
auxiliary spinorial superfields S±µ transforming in T ∗ reads [23]

(5.20) S =

∫

M

d2ξd2θ
(

S+µEµν(φ)S−ν + S(+µD−)φ
µ
)

.

Here Eµν is the inverse of Eµν defined in (2.5), but this condition may be relaxed
and S may be studied on its owen with no assumption of invertibility. The most
general ansatz for the second supersymmetry (in terms of left and right transfor-
mations) reads

δ(±)φµ = ǫ±
(

D±φνJ (±)µ
ν − S±νP (±)µν

)

δ(±)S±µ = ǫ±
(

i∂
++
=

φνL(±)
µν − D±S±νK(±)ν

µ + S±νS±σN (±)νσ
µ

+ D±φνD±φρM (±)
µνρ + D±φνS±σQ(±)σ

µν

)

δ(±)S∓µ = ǫ±
(

D±S∓νR(±)ν
µ + D∓S±νZ(±)ν

µ + D±D∓φνT (±)
µν

+ S±ρD∓φνU (±)ρ
µν + D±φνS∓ρV

(±)ρ
µν

+ D±φνD∓φρX(±)
µνρ + S±νS∓ρY

(±)νρ
µ

)

,(5.21)

a considerable complication as compared to the case with no auxiliary fields (3.6)
above which contains only the first term on the right hand side of the first row.
The many higher rank tensors and the many differential and algebraic equations
resulting from invariance of the action (5.20) and closure of the algebra, make

6Introduced in [8].
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the general analysis cumbersome.7 We next discuss some examples and some
simplifications.

6. Examples

In this section we discuss sigma model realization of generalized complex geom-
etry in some examples. It constitutes a brief recapitulation of the results of [24]
and [6].

6.1. (1, 0) → (2, 0): A toy model. In [24] we study the simpler question of just
one extra (left) supersymmetry, going from N = (1, 0) to N = (2, 0). The first
case we look at is the toy model defined by the action

(6.22) S =

∫

M

d2ξdθS+µ∂=φµ .

This is a topological model, whose second supersymmetry reads

δφµ = ǫ+
(

D+φνJµ
ν − S+νPµν

)

δS+µ = ǫ+
(

∂++φνLµν − D+S+νKν
µ + S+νS+ρN

νρ
µ

+ D+φνD+φρMµνρ + D+φρS+νQν
µρ

)

(6.23)

We show that invariance of the action (6.22) under the transformations (6.23) and
closure of the algebra of those transformations is equivalent to

(6.24) J =

(

J P

L K

)

,

being a generalized complex structure. The higher rank tensors in (6.23) are
expressible as derivatives of those occurring in (6.24). Hence, in this case the
model exactly determines the target space geometry to be GCG. In fact this still
holds true if we add a Wess-Zumino term, provided that the Courant bracket is
modified to its twisted version.

6.2. (1, 0) → (2, 0): The sigma model. The (1, 0) sigma model action reads

(6.25) S =

∫

M

d2ξdθ
(

D+φµS=µ − S+µ∂=φµ − S+µS=νEµν
)

,

where the auxiliary fields are one spinor and one vector field. The ansatz for the
second supersymmetry is given by expressions which is are obvious modifications
of (5.21), in particular they define the tensors J , P , L, K, R, T and Z.

Here the analysis of the algebraic and differential conditions is already very
involved. In [24] we are able to show that they are satisfied for generalized complex
geometry, and that they precisely correspond to GCG under some additional weak
assumptions, but we fail to show that they lead uniquely to GCG.

7In [23] a solution for the transformations (5.21) respecting certain discrete symmetries of
(5.20) was found. This solution was extended to the G = 0 case in [5].
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Perhaps this is not too surprising, given the many first order actions possible.
E.g., for the (1, 1) model, the action (5.20) may be replaced by

(6.26) S =

∫

d2ξd2θ
(

S̃+µẼµν S̃−ν + D+φµEµνD−φν
)

,

and when Ẽµν is invertible the two are equivalent (related via field redefinitions).
There is also the question of canonical coordinates, i.e., coordinates where the
natural pairing metric takes the form (4.16). The action (6.22) turned out to
be formulated in such coordinates, but in principle the fields in (6.25) might be
related to the canonical coordinates via a coordinate transformation in TT ⊕T ∗T .

One additional interesting observation made in [24] is that the algebraic condi-
tions for the model (6.25) may be summarized in a formula for a 3d × 3d matrix;

(6.27)





R T Z

0 J P

0 L K





2

= −13d .

This indicates that the underlying geometry of the general model (5.20) might be
best formulated using two copies of the cotangent space, rather than one. This
hypothesis is tested in the next example.

6.3. (1, 1) → (2, 2) The symplectic model. In [7] we study a special case of the
action (6.26), namely the case when the target space metric Gµν is zero, i.e.,

(6.28) S =

∫

d2ξd2θ
(

S+µΠµνS−ν + D+φµBµνD−φν
)

,

with Πµν antisymmetric and invertible. (Without the assumption of invertibility,
this is a (1, 1) Poisson sigma model.) We find that the full target space geometry
has a neat formulation in terms of 3d×3d matrices defined on M ≡ TT ⊕(T ∗T+⊕
T ∗T−), where plus and minus just label two copies of the cotangent bundle. The
condition (6.27) now translates into the existence of the two commuting (almost)
complex structures
(6.29)

J(+) =





J (+) −P (+) 0
−L(+) K(+) 0

T (+) −Z(+) R(+)



 J(−) =





J (−) 0 −P (−)

T (−) R(−) −Z(−)

−L(−) 0 K(−)



 ,

with respect to which the (degenerate) “metric”

G = Gt = 1
2





0 0 0
0 0 Π
0 Πt 0



 ,(6.30)

is hermitean

(6.31) J(±)tGJ(±) = G , J(±)2 = −1 , [J(+),J(−)] = 0 .

This looks a lot like the bi-hermitean geometry of section 3, only lifted to M.
Indeed, we also define a (torsion-free, flat and diagonal) connection Γ such that

(6.32) ∇J(±) = 0 .
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In fact, taken into account the degeneracy due to Gµν = 0, we do recover a lifted
version of the bi-hermitean geometry. The details may be found in [7], here we
just note that the b-transform also arises naturally in this context; it is part of
the gauge-transformations related to the connection Γ. It should be interesting to
extend this analysis to no-zero Gµν and, if possible, to elucidate the relation to
GCG.

7. The manifest N = (2, 2) models

The discussion so far has been concerned with finding the restrictions on the
target-space that result from requiring invariance of an N = (1, 1) action under
additional supersymmetries as well as closure of the corresponding algebra. When
the algebra closes it should in principle be possible to find a (2, 2) superspace
formulation. This leads to the question of what is the most general (2, 2) superfield
formulation that corresponds to the (1, 1) sigma models. As may be inferred from
the preceding discussion of these models, this is tantamount to asking how to
coordinatize ker

[

J(+), J(−)

]

⊕coker
[

J(+), J(−)

]

using (2, 2) superfields. (The reason
for this split is that we already know how to coordinatize the kernel, as mentioned
in section 3.) The mathematical problem of how to choose coordinates for this
space has been around for a long time [29] [11], but was resolved only recently in
[26]. Before stating the results of that paper we have to define the relevant (2, 2)
superfields.

7.1. N = (2, 2) superfields. Denoting the 2d spinorial (2, 2) covariant derivatives
by D± and D±, the following constraints characterize the (2, 2) superfields:
Chiral φ, anti-chiral φ̄, (2, 2) superfields are defined by

(7.33) D±φ = D±φ̄ = 0 .

Twisted chiral χ and twisted antichiral χ̄ superfields are defined by

(7.34) D+χ = D−χ = D+χ̄ = D−χ̄ = 0 .

Left or right semi-chiral XL,R and left or right anti semi-chiral XL,R superfields
are defined by [8]:

(7.35) D̄+XL = 0 D−X̄R = 0 ,

and the hermitean conjugate relations.

7.2. N = (2, 2) actions and their reduction. A general N = (2, 2) action
involving the fields defined in subsection 7.1 reads

(7.36) S =

∫

d2ξd2θd2θ̄K(φ, φ̄, χ, χ̄, XL, XL, XR, XR) .

To compare this action to the (1, 1) action (5.20), we need to reduce it to (1, 1)
superfield form. To this end we define the (1, 1) covariant derivatives D± and
second supersymmetry charges

(7.37) D± = D± + D̄± , Q± = i(D± − D̄±) ,
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and the (1, 1) component fields

φ ≡ (φ1 + iφ2)| XL ≡ XL| ΨL− ≡ Q−XL|
χ ≡ (χ1 + iχ2)| XR ≡ XR| ΨR+ ≡ Q+XR| ,(7.38)

where the vertical bar denotes setting the second fermi-coordinate, θ2, to zero.
The reduction is then achieved by writing the Lagrangian as

(7.39) D2Q2K(φ, φ̄, χ, χ̄, XL, XL, XR, XR)| = D2K(φi, χi, XL,R, ΨL−, ΨR+) .

The set φi, χi, XL,R, i = 1, 2 is identified with the scalar fields φ in (5.20), while
the auxiliary fields ΨL−, ΨR+ still need a redefinition8. The details of this may be
found in [25]. Eliminating the auxiliary fields then bring us to the class of sigma
models studied in [10] before we have auxiliary spinors transforming in T ∗.

In [10] and in [18], it is shown that precisely when the two complex structures
commute, [J(+), J(−)] = 0, there is a (2, 2) description of the sigma model in terms
of chiral and twisted chiral superfields. I.e., ker(J(+) + J(−)) ⊕ ker(J(+) − J(−)) is
precisely coordinatized by those fields. (The split of the kernel of the commutator
corresponds to the two types of fields.) This is the case when all semi-chiral fields
are set to zero in (7.36):

(7.40) S →

∫

d2ξd2θd2θ̄K(φ, φ̄, χ, χ̄) .

The question of the co-kernel of the commutator now arises. Is it completely
described by turning on the semi chiral fields or are there still other (2, 2) fields
needed? The answer, given in [26] is that this is indeed enough. It follows that
the full generalized Kähler geometry may be described by coordinates that are chi-

ral, twisted chiral and semi-chiral superfields and that the GKG has a potential

(K) which determines the metric and the B-field (in a non-linear manner). A
surprising result is further that K has an interpretation as a generating func-
tion for certain symplectomorphisms. Important ingredients in this derivation are
the reformulation in [27] of the bi-hermitean constraints in terms of the Poisson
structures (3.7) and the introduction in [14] of a third Poisson structure

(7.41) σ := [J+, J−]G−1 .

8. Recent development

In looking for the target space geometry of the generalized sigma model (5.20),
or (6.26) we face the problem of non-uniqueness of the auxiliary field coupling. In
fact, starting from the (2, 2) form (7.36) we find only a sub-class of the actions
described by (5.20). The fact that the auxiliary fields are world-sheet spinors also
doubles the number of degrees of freedom that we need to describe the cotangent
bundle. So far these problems have prevented a complete determination of the
target space for the action (5.20), and there are even hints that the geometry it
corresponds to may be larger than GCG. It is thus gratifying that there exists
a Hamiltonian approach to the sigma models where these problems are largely

8As can be seen from the number of auxiliary spinors, this is not the general case of (5.20),
however.
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overcome. Briefly, the Hamiltonian for the sigma model will contain only one
“extra” field rather than two and the form of the Hamiltonian is essentially fixed.

This development was initiated in [30], where it is shown that there is a direct
relation between generalized complex geometry and a the Hamiltonian formulation
of sigma models. This discussion is model independent, and the particular case of
certain poisson sigma models has since been discussed in [9].

Recently this development was completed in [6] where we show that generalized
Kähler geometry is precisely the target space geometry when you require a second
closing supersymmetry in the Hamiltonian formulation. From this formulation we
also derive the correspondence (5.19) to the bi-hermitean geometry of [10].
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[10] Gates, S. J., Hull, C. M. and Roček, M., Twisted multiplets and new supersymmetric non-

linear sigma models, Nuclear Phys. B248 (1984) 157.

[11] Grisaru, M. T., Massar, M., Sevrin, A. and Troost, J., The quantum geometry of N = (2, 2)
non-linear sigma-models, Phys. Lett. B412, 53 (1997) [arXiv:hep-th/9706218].

[12] Gualtieri, M., Generalized complex geometry, Oxford University DPhil thesis, [arXiv:math.
DG/0401221].

[13] Hitchin, N., Generalized Calabi-Yau manifolds, Quart. J. Math. 54, No. 3 (2003), 281–308,
[arXiv:math.DG/0209099].

[14] Hitchin, N., Instantons, Poisson structures and generalized Kähler geometry, [arXiv:math.
DG/0503432].



318 U. LINDSTRÖM
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[18] Ivanov, I. T., Kim, B. B. and Roček, M., Complex structures, duality and WZW models in

extended superspace, Phys. Lett. B343 (1995) 133 [arXiv:hep-th/9406063].

[19] Kapustin, A., Topological strings on noncommutative manifolds, Int. J. Geom. Methods

Mod. Phys. 1 (2004) 49 [arXiv:hep-th/0310057].

[20] Kapustin, A. and Li, Y., Topological sigma-models with H-flux and twisted generalized com-

plex manifolds, arXiv:hep-th/0407249.

[21] Lindström, U., Rocek, M. and van Nieuwenhuizen, P., Consistent boundary conditions for

open strings, Nuclear Phys. B 662, 147 (2003) [arXiv:hep-th/0211266].

[22] Lindström, U. and Zabzine, M., “N = 2 boundary conditions for non-linear sigma models
and Landau-Ginzburg JHEP 0302, 006 (2003) [arXiv:hep-th/0209098].

[23] Lindström, U., Generalized N = (2, 2) supersymmetric non-linear sigma models, Phys. Lett.
B587, 216 (2004) [arXiv:hep-th/0401100].

[24] Lindström, U., Minasian, R., Tomasiello, A. and Zabzine, M., Generalized complex mani-

folds and supersymmetry, Comm. Math. Phys. 257, 235 (2005) [arXiv:hep-th/0405085].
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