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UNDULOIDS AND THEIR GEOMETRY

MARIANA HADZHILAZOVA1, IVAÏLO M. MLADENOV1

AND JOHN OPREA2

Abstract. In this paper we consider non-compact cylinder-like surfaces called
unduloids and study some aspects of their geometry. In particular, making
use of a Kenmotsu-type representation of these surfaces, we derive explicit
formulas for the lengths and areas of arbitrary segments, along with a formula
for the volumes enclosed by them.

1. Introduction

The unduloids, which are members of the family of constant mean curvature sur-
faces, prove themselves ideal for modelling the interfaces that are used to explain
the very elongated myelin shapes which look like cylinders or strings of beads [3],
charged diblock copolymers [5] or pearling instabilities of fluid membrane tubes [1].
As mathematical objects, the unduloids were discovered and described in an ana-
lytical form a long time ago by Delaunay [2] as constant mean curvature surfaces
of revolution in R

3 that are generated by the trace of a focus of an ellipse which
rolls without sliding on the axis of revolution. Many years after that, Kenmotsu [9]
found and solved a complex non-linear differential equation which describes these
surfaces (up to integration). It should be noted also that the integrals which appear
in Delaunay’s approach are not even well defined while the parameters entering in
the Kenmotsu representation do not have a direct geometrical interpretation.

Elsewhere we have used an alternative approach for describing this class of
surfaces and have found their explicit parametrizations [10]. Here we will clarify
the geometrical meaning of the parameters entering in this parametrization and
present various results about the lengths, surface areas and volumes of appropriate
parts of these infinitely long surfaces.

2. Surface Geometry

A parametrized surface S : x(u, v) = (x(u, v), y(u, v), z(u, v)) is determined by
its first and second fundamental forms:

(1) I = E du2 + 2F dudv + Gdv2 , II = L du2 + 2M dudv + N dv2
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where the respective coefficients are given by

(2)
E = xu · xu , F = xu · xv , G = xv · xv

L = xuu · n , M = xuv · n , N = xvv · n .

Here n is the unit normal vector to S,

(3) n =
xu × xv

|xu × xv|
·

Intuitively, the metric coefficients E, F and G describe the stretching necessary
to map a piece of the plane up to the surface under the parametrization. As can
be seen from the definition, the coefficients L, M and N of II have more to do
with acceleration and, hence, curvature. Indeed, there are classical formulas which
describe two types of curvatures at every point of the surface. These are the Gauss
and mean (meaning “average”) curvatures, denoted by K and H respectively. The
formulas are

(4) K =
LN − M2

EG − F 2
and H =

EN + GL − 2FM

2(EG − F 2)
·

As usual, we will think of the axisymmetric surface S in Euclidean space by
specifying its meridional section, a curve u 7→ (x(u), z(u)) in the XOZ plane,
where we take u to be the so-called natural arclength parameter. Such a surface
can be presented in ordinary Euclidean space R

3 with a fixed orthonormal basis
(i, j,k), by making use of the parameter u and the angle v specifying the rotation
of the Y OZ plane via the vector-valued function

(5) x(u, v) = x(u)e1(v) + z(u)e2(v) , 0 < u ≤ L , 0 ≤ v < 2π .

Here the vector e2(v) is the new position of j after a rotation at some angle v

(6) e2(v) = cos vj + sin vk .

Since the rotation is about the first axis i, the vector representing it in (5) is a con-
stant, e1(v) = const = i. The pair {e1, e2} can be completed to the orthonormal
basis set (e1, e2, e3) in R

3 by letting the third vector e3(v) be the cross product
of the vectors e1(v) and e2(v):

e3(v) = e1(v) × e2(v) = i × e2(v) = − sin vj + cos vk .

We will deal only with surfaces of revolution which have parametrizations of the
general form (5) (up to permutation of coordinates). It is easy to compute that,
for such surfaces, we always have F = 0 = M (see, for instance [12]), so the formu-
las for Gauss and mean curvature reduce accordingly. More detailed specification
of the surface requires us to find some other important characteristics of the gen-
erating curve. This relies mostly on the derivatives of x(u, v). For example, the
tangent vector at each point of the generating curve is given by the first derivative
with respect to u,

(7) t(u, v) = xu(u, v) = x′(u)i + z′(u)e2(v) .

In equation (7), and elsewhere in this paper, the prime denotes a derivative with
respect to the meridional arclength parameter u. Let us also introduce θ(u), which
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measures the angle between the tangent vector t and i. Then, the coordinates x(u)
and z(u) depend on θ(u) via the equations

x′(u) = cos θ(u)(8)

z′(u) = sin θ(u).(9)

Using these equations, we can express the tangent vector as

(10) t(u, v) = cos θ(u)i + sin θ(u)e2(v) .

By differentiating the last relation with respect to the parameter u, we get

(11) xuu = −(sin θ(u)i − cos θ(u)e2(v)) θ′(u) .

Next, we compute the first and second order derivatives of x(u, v) with respect to
v:

xv = z(u)(e2(v))v = z(u)e3(v)(12)

xvv = z(u)(e3(v))v = −z(u)e2(v)(13)

and finally, the mixed derivative

(14) xuv = xvu = cos θ(u)e3(v) .

Another important object that we will need to know is the unit normal vector,
which is easily found to be

(15) n(u, v) = sin θ(u)i − cos θ(u)e2(v) .

The last couple of relations are sufficient to obtain the coefficients of the first
fundamental form of S,

(16) E = xu · xu = 1, F = xu · xv = 0, G = xv · xv = z2(u) .

We also find the second fundamental form of S to be

L = n · xuu = −θ′(s) , M = n · xuv = 0

(17)

N = n · xvv = z(u) cos θ(u) .

Once we have these, we can easily find the mean curvature H of S. We now make
use of the standard formula for H (see (4)) which appears in the textbooks on
classical differential geometry (see, for example, [12]),

H =
1

2
(kµ + kπ)

where

(18) kµ = L/E = −θ′(u) and kπ = N/G =
cos θ(u)

z(u)

are the principal curvatures along the respective meridional and parallel directions,
to express the mean curvature in the form

(19) H = −
1

2

(

θ′(u) −
cos θ(u)

z(u)

)

.
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3. Unduloid Geometry

Elsewhere (see [10]) the following result was shown.

Theorem 3.1. The profile curve of an unduloid has a parametrization

x(u) = aF
(µu

2
−

π

4
, k

)

+ cE
(µu

2
−

π

4
, k

)

(20)

z(u) =
√

m sin µu + n

where

(21) µ =
2

a + c
, k2 = (c2 − a2)/c2 , m = (c2 − a2)/2 , n = (c2 + a2)/2

and the elliptic integrals of the first kind F (ϕ, k) and second kind E(ϕ, k) are
functions of the two real parameters a and c.

From the representation specified in (5), any profile curve (x(u), z(u)) produces
a surface of revolution of the form

(22) x(u, v) =
(

x(u), z(u) cos v, z(u) sin v
)

, u ∈ R , 0 ≤ v < 2π .

If we insert the explicit expressions from (20) into this representation and vary
appropriately the free parameters a and c, we can produce four of the six families
of surfaces in Delaunay list: namely, unduloids, nodoids, spheres and cylinders
(more details can be found in [4] and [9]).

Having the explicit form of the parametrization generated by the meridional
section of the surface, we can easily find corresponding geometrical characteristics.
To do this, we need only the first and second fundamental forms of the surface

Figure 1: A half of the meridional sec-
tion of a finite segment of the unduloid.

Figure 2: An open part of the unduloid
generated by a partial revolution of the
profile curve shown on the left.
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under consideration. In our case, these forms are

I = du2 +
1

2

(

a2 + c2 + (c2 − a2) sin
( 2u

a + c

))

dv2(23)

II =
(c − a)(c − a + (a + c) sin( 2u

a+c ))

(a + c)(a2 + c2 + (c2 − a2) sin( 2u
a+c))

du2(24)

+
1

2

(

a + c + (c − a) sin
( 2u

a + c

))

dv2

and we are led to

kµ =
(c − a) (c − a + (a + c) sin( 2u

a+c ) )

(a + c) (a2 + c2 + (c2 − a2) sin( 2u
a+c) )

(25)

kπ =
a + c + (c − a) sin( 2u

a+c )

a2 + c2 + (c2 − a2) sin( 2u
a+c )

(26)

and we have

Theorem 3.2. The respective mean and Gauss curvatures of the unduloid having
profile curve as in Theorem 3.1 are

H =
1

a + c
(27)

and

K =

1 −

(

a c

z2(u)

)2

(a + c)2
(28)

where z(u) is as in Theorem 3.1.

Proof. The formula for H follows easily by adding the principal curvatures and
dividing by 2. The formula for K will be proved using Maple in §5. �

The formulas above for the principle curvatures show that, if we take a = 0,
c = 0, and c = a, we indeed get spheres in the first two cases and a cylinder in the
third — in full agreement with the classification presented in [9]. Notice also that
combining (18), (20) and (26) allows us to write down the last relation in the form

(29) cos θ(u) =
z(u)

a + c
+

ac

(a + c)z(u)

which, according to Eells [4], should be recognized as the Gauss map or general
equation describing the Delaunay surfaces. As we shall see very soon, all formulas
above are indispensable in problems such as finding the length, surface area or
volume of the unduloid.

Before we find these quantities, let’s give a geometrical interpretation of the
numerical parameters a and c which appear in the formulas above. Note first
that, as sinµu oscillates between −1 and +1, the function z(u) in (20) takes
values between a and c. Since sinµu = −1 corresponds to the minimum of z(u)
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and sinµu = 1 to its maximum, it follows that c ≥ a. However, for the non-
degenerate unduloids in which we are interested, we have the strict inequality
c > a. This condition will be assumed from now on.

Because we are interested in finding the corresponding coordinates of the points
depicted in Fig. 1, we choose A as a starting point, for which we have

(30)
2ů

a + c
= −

π

2
=⇒ ů = −

π(a + c)

4
·

The arclength of the curve from A to any other point B with coordinate u is given
by the integral

(31) L(A, B) =

∫ u

ů

dũ = u − ů = u +
π(a + c)

4
·

In particular, we have the

Proposition 3.3. The distance along the meridian from the point A to the point

C, for which u = π(a+c)
4 , is given by the formula

L(A, C) =
π(a + c)

2
·

Therefore, the path from one minimum of the profile curve to the next one along
the surface of the unduloid (or of one full period) is of length π (a + c).

Figure 3: The area of the striped
part of the unduloid surface S is
given by the formula (37).

Figure 4: The dotted domain
presents the volume enclosed by the
unduloid surface and the two disks
through the points A and B.

Next we turn to the problem of finding the area A(A, B) of the unduloid surface
confined between the two respective circles passing through the points A and B
(i.e. the striped region in Fig. 3). We have

Theorem 3.4. The surface area A of one complete period of the unduloid is

A = 4π (a + c) c E(k)

where E(k) denotes the complete elliptic integral of the second kind, E(π/2, k).
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Proof. We calculate surface area in the standard way from the metric of the
surface.

(32) A(S) = A(A, B) =

∫∫

S

dA(S) =

∫ 2π

0

∫ u

ů

√

EG − F 2 dũdṽ .

In our case the explicit form of the last integral on the right is (in the notation of
(21))

(33)

∫ 2π

0

∫ u

ů

√

m sinµũ + n dũdṽ .

After performing the trivial integration with respect to the angular variable v, we
obtain a factor of 2π and end up with the problem of evaluating the integral

(34)

∫ u

ů

√

m sinµũ + n dũ .

The integral can be converted into a standard elliptic integral of the second kind
by making the substitutions

(35) sin µũ = 1 − 2 sn2(t̃, k) , dũ = − (a + c)dn(t̃, k)dt̃ ,

where sn(t̃, k) and dn(t̃, k) are Jacobian elliptic functions with argument t̃ and
elliptic modulus k. (Details about elliptic functions, their integrals, and properties
can be found in [8]). Choosing k2 = 2m/(m + n) = (c2 − a2)/c2, we end up with
the canonical form of the elliptic integral of the second kind E(ϕ, k). We then
have

(36)
A(A, B) = −2π(a + c)c

∫ t

t̊

dn2(t̃, k)dt̃

= 2π(a + c)c
(

E(am(̊t, k), k) − E(am(t, k), k)
)

.

A little bit more work shows that the Jacobian amplitude function, am(t, k), which
appears above can be replaced by π/4 − µu/2, so that

(37)

A(A, B) = 2π(a + c)c (E(π/4 − µů/2, k)− E(π/4 − µu/2, k))

= 2π(a + c)c (E(k) − E(π/4 − µu/2, k))

= 2π(a + c)c (E(k) + E(µu/2 − π/4, k))

where E(k) denotes the complete elliptic integral of the second kind E(π/2, k).
Again, the formula for the area of half of the period of the unduloid surface sim-
plifies considerably. We obtain

(38) A(A, C) = 2π(a + c)cE(k) ,

which means that the area A of the complete period is 4π(a + c)cE(k). �

Finally, let’s find the volume of the unduloid segment enclosed between the two
disks passing through the points A and B (i.e. the dotted region in Fig. 4). We
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have

(39)

V(A, B) = π

∫ u

ů

z2(ũ) dx(ũ)

=
π

a + c

∫ u

ů

(

√

(m sin µũ + n)3 + ac
√

m sin µũ + n
)

dũ .

Making the same substitutions as before (see (35)), we reduce the problem to the
evaluation of two integrals whose integrands are powers of the Jacobian elliptic
function dn:

(40) V(A, B) = −πc3

∫ t

t̊

dn4(t̃, k)dt̃ − πac2

∫ t

t̊

dn2(t̃, k)dt̃ .

Since we have already evaluated the second integral (see (36) and (37)), it is simply
a question of calculating the first. We obtain

∫ t

t̊

dn4(t̃, k)dt̃ =
1

3

[

k2sn(t, k)cn(t, k)dn(t, k)

− (1 − k2)F (am(t, k), k) + 2(2 − k2)E(am(t, k), k)
]∣

∣

t

t̊
.

Going back to the original variable u and the geometrical parameters a and c, the
right-hand side of the formula above can be rewritten as

1

3

[c2 − a2

2c3
z(u) cosµu −

a2

c2
F (

π − 2µu

4
, k) +

2(a2 + c2)

c2
E(

π − 2µu

4
, k)

]∣

∣

∣

u

ů
.

Therefore, we have

V(A, B) =
[π(2(a2 + c2)c + 3ac2)

3
E

(2µu − π

4
, k

)

−
πa2c

3
F

(2µu − π

4
, k

)

−
π(c2 − a2)

6
z(u) cosµu

]
∣

∣

∣

u

ů
.(41)

We then simply evaluate the limits of integration to obtain

(42) V(A, C) =
πc

3

(

(2a2 + 3ac + 2c2)E(k) − a2K(k)
)

,

and note that we have

Theorem 3.5. The volume V of one period is V = 2V(A, C).

Before we end this section, we want to make the following geometro-mechanical
observation: The distance L along the X-axis between the points A′ and D′ (which
the points A and D marking one complete period project to), is

(43) L = 2cE(k) + 2aK(k) .

This equation, taken together with the equation for the volume, V = 2V(A, C),
leads to a linear system for the complete elliptic integrals K(k) and E(k). Hence,
by making direct measurements, we are able to find the values of these integrals.
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4. Parallel Surfaces of Unduloids and Maple

We can use the unduloid parametrization provided by Theorem 3.1 to not only
plot unduloids, but to create certain surfaces associated to them.

Definition 4.1. If M ⊆ R
3 is a surface, then the parallel surface at t associated

to M is the surface

Mt = M + tN

where N is a unit normal (either inward or outward) of M.

Recall the following standard result.

Proposition 4.2 (see [12, Exercise 3.2.6]). If Mt = M+ tN is a parallel surface
of M, then the Gauss and mean curvatures are given by the formulas

Kt =
K

1 − 2Ht + Kt2
, Ht =

H − Kt

1 − 2Ht + Kt2

where K and H are the Gauss and mean curvatures of M. In particular, if M
has constant mean curvature H 6= 0, then M1/(2H) has constant Gauss curvature
K1/(2H) = 4H2.

We have seen that the parametrization derived from Theorem 3.1 leads to
constant mean curvature H = 1/(a + c), so if we take the parallel surface with
t = (a+c)/2, we will obtain a surface of constant Gauss curvature Kt = 4/(a+c)2.
While this abstract result is interesting, we are unaware of any explicit depictions
of this phenomena. Here we will see how Maple can be used to see this connection
between constant mean and Gauss curvature surfaces in all its beauty.

> with(LinearAlgebra):with(plots):

Maple 10 has a flaw in its EllipticE procedure. The correction is as follows. Just
click on it.

> ‘evalf/Elliptic/Ell_E‘:= parse(StringTools:
-Substitute(convert(eval(‘evalf/Elliptic/Ell_E‘),
string),"F_0","E_0")):

We need the following procedures to create the unit normal for a given parametriza-
tion.

> EFG := proc(X)
local Xu,Xv,E,F,G;
Xu := <diff(X[1],u),diff(X[2],u),diff(X[3],u)>;
Xv := <diff(X[1],v),diff(X[2],v),diff(X[3],v)>;
E := DotProduct(Xu,Xu,conjugate=false);
F := DotProduct(Xu,Xv,conjugate=false);
G := DotProduct(Xv,Xv,conjugate=false);
simplify([E,F,G]);
end:

> UN := proc(X)
local Xu,Xv,Z,s;
Xu := <diff(X[1],u),diff(X[2],u),diff(X[3],u)>;
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Xv := <diff(X[1],v),diff(X[2],v),diff(X[3],v)>;
Z := CrossProduct(Xu,Xv);
s:=VectorNorm(Z,Euclidean,conjugate=false);
simplify(<Z[1]/s|Z[2]/s|Z[3]/s>,sqrt,trig,symbolic);
end:

Now let’s make a parallel surface to the unduloid with constant Gauss curvature.
Note that µ = 1

2 H , so we just need to multiply the unit normal by µ and add this to
the unduloid. Of course, we can add or subtract, so the procedure allows the user
to input +1 or -1 for the input pm. The input +1 takes the unduloid to a surface
of constant Gauss curvature inside the unduloid, while -1 takes the unduloid to a
surface of constant Gauss curvature outside the unduloid.

> und_par:=proc(a,c,pm,orient1,orient2)
local sty1,sty2,k,mu,m,n,phi,ulimup,ulimdown,undy,
undyplot,parallelsurf;
if pm=1 then sty1:=‘wireframe‘;sty2:=‘patch‘;fi;
if pm=-1 then sty2:=‘wireframe‘;sty1:=‘patch‘;fi;
k:=sqrt(c^2-a^2)/c;
mu:=2/(a+c);
m:=(c^2-a^2)/2;
n:=(c^2+a^2)/2;
phi:=mu*u/2-Pi/4;
ulimup:=fsolve(sin(phi)=1,u);
ulimdown:=fsolve(sin(phi)=0,u);
undy:=<(a*EllipticF(sin(phi),k)+c*EllipticE(sin(phi),k))|
sqrt(m*sin(mu*u)+n)*cos(v)|sqrt(m*sin(mu*u)+n)*sin(v)>;
undyplot:=plot3d(subs({u=u(t),v=v(t)},convert(undy,list)),
u=-ulimdown..ulimup,v=0..2*Pi,scaling=constrained,
style=sty1);
parallelsurf:=plot3d(subs({u=u(t),v=v(t)},
convert(undy+pm*1/mu*UN(undy),list)),u=-ulimdown..ulimup,
v=0..2*Pi,scaling=constrained,style=sty2);
display(undyplot,parallelsurf,orientation=[orient1,
orient2]);
end:

Here are some examples of unduloids and their parallel surfaces of constant Gauss
curvature. Compare with the plots of constant Gauss curvature surfaces in [12,
Chapter 3].

> und_par(0.2,0.4,1,48,73);

> und_par(0.2,1.2,1,43,78);

> und_par(0.2,0.4,-1,48,73);

> und_par(0.2,1.2,-1,43,78);

The final two commands show spheres and their parallel surfaces (which, of course,
are also spheres!). We leave the actual pictures to the reader.

> und_par(0,1.2,1,43,78);

> und_par(0,1.2,-1,43,78);
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Figure 5: Unduloids and their +1 parallel constant K surfaces.

Figure 6: Unduloids and their -1 parallel constant K surfaces.

We have seen in [11] that forces in nature can produce shapes such as undu-
loids. It is also true that pressure-like forces tend to push out (or in) along the
normal to a surface. Therefore, we might ask whether there are instances in nature
where constant mean curvature surfaces spontaneously transform themselves into
surfaces of constant Gauss curvature?

5. Appendix: Maple Proof of K Formula

In Theorem 3.2, we gave a formula for the Gauss curvature of the unduloid in
terms of the function z(u). We verify this now by using Maple. The following give
the principal curvatures for the unduloid.

> k[mu]:=(c-a)*(c-a+(c+a)*sin(2*u/(c+a)))
/((c+a)*(c^2+a^2+(c^2-a^2)*sin(2*u/(c+a))));

kµ =
(c − a) (c − a + (c + a) sin( 2 u

c+a))

(c + a) (c2 + a2 + (c2 − a2) sin( 2 u
c+a ))
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> k[pi]:=(c+a+(c-a)*sin(2*u/(c+a)))/
(c^2+a^2+(c^2-a^2)*sin(2*u/(c+a)));

kπ =
c + a + (c − a) sin( 2 u

c+a )

c2 + a2 + (c2 − a2) sin( 2 u
c+a)

We compute the Gauss curvature two ways: first by taking the product of the
principal curvatures and second, by the formula for Gauss curvature given Theo-
rem 3.2.

> K:=simplify(k[mu]*k[pi],symbolic,trig);

K =
(c − a) (c − a + (c + a) sin( 2 u

c+a )) (c + a + (c − a) sin( 2 u
c+a ))

(c + a) (c2 + a2 + (c2 − a2) sin( 2 u
c+a ))2

> K2:=simplify(eval((1-(a*c/z^2)^2)/(a+c)^2,
z=sqrt((c^2-a^2)/2*sin(2*u/(c+a))+(c^2+a^2)/2)));

(44) K2 = (a3 − 2 a3 sin(
2 u

c + a
) + a3 sin(

2 u

c + a
)2

− a2 c + 2 a2 sin(
2 u

c + a
) c − a2 sin(

2 u

c + a
)2 c − a c2

− a sin(
2 u

c + a
)2 c2 − 2 a sin(

2 u

c + a
) c2 + c3 + sin(

2 u

c + a
)2 c3

+ 2 sin(
2 u

c + a
) c3)

/

((c + a) (−c2 − a2 − sin(
2 u

c + a
) c2 + sin(

2 u

c + a
) a2)2)

To verify that these are the same, we compute the following to be zero.

> simplify(K-K2);

0

Therefore, since the difference in the expressions for K vanishes, we see that
the beautiful formula for Gauss curvature,

(45) K =

1 −

(

a c

z2(u)

)2

(a + c)2

in Theorem 3.2 holds.
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(1980), 147–153.

[10] Mladenov, I., Oprea, J., Unduloids and their closed geodesics, In: Proceedings of the Fourth
International Conference on Geometry, Integrability and Quantization, Coral Press, Sofia,
2003, 206–234.

[11] Mladenov, I., Oprea, J., The Mylar balloon: New viewpoints and generalizations, In: Ge-
ometry, Integrability and Quantization VIII, SOFTEX, Sofia, 2007, 246–263.

[12] Oprea, J., Differential Geometry and Its Applications, Mathematical Association of Amer-
ica, Washington D. C., 2007.

1 Institute of Biophysics, Bulgarian Academy of Sciences

Acad. G. Bonchev Str., Bl. 21

1113 Sofia, Bulgaria

E-mail : murryh@obzor.bio21.bas.bg, mladenov@obzor.bio21.bas.bg

2 Department of Mathematics, Cleveland State University

Cleveland, OH 44115 U.S.A.

E-mail : j.oprea@csuohio.edu


