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ON THE OSCILLATORY INTEGRATION OF SOME ORDINARY
DIFFERENTIAL EQUATIONS

OCTAVIAN G. MUSTAFA

ABSTRACT. Conditions are given for a class of nonlinear ordinary differential
equations z” + a(t)w(z) = 0, t > to > 1, which includes the linear equation
to possess solutions z(t) with prescribed oblique asymptote that have an

oscillatory pseudo-wronskian z’(t) — @

1. INTRODUCTION

A certain interest has been shown recently in studying the existence of bounded
and positive solutions to a large class of elliptic partial differential equations which
can be displayed as

(1) Au+ f(z,u) + g(Jz))z- Vu=0, r € Gpr,

where Gg = {x € R" : |x| > R} for any R > 0 and n > 2. We would like to
mention the contributions [3], [, [8] — [11], [13}, 4], [I8] and their references in
this respect.

It has been established, see [8, [9], that it is sufficient for the functions f, g to be
Holder continuous, respectively continuously differentiable in order to analyze the
asymptotic behavior of the solutions to by the comparison method [15]. In fact,
given ¢ > 0, let us assume that there exist a continuous function A: [R,+oc0) —
[0,+00) and a nondecreasing, continuously differentiable function W: [0,(] —
[0, +00) such that

0< f(z,u) < A(|z|)W(u) forall z€Gg,uel0,(]
and W(u) > 0 when uw > 0. Then we are interested in the positive solutions
U=U (|z|) of the elliptic partial differential equation
AU+ A(lz|)W(U) =0,  z€Gg,
for the role of super-solutions to .
M. Ehrnstréom [I3] noticed that, by imposing the restriction

x-VU(x) <0, z € Gr,
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upon the super-solutions U, an improvement of the conclusions from the literature
is achieved for the special subclass of equations where g takes only nonnegative
values. Further developments of Ehrnstrom’s idea are given in [3], [T], [TT], [T4].

Translated into the language of ordinary differential equations, the research
about U reads as follows: given ¢y, ¢ > 0, find (if any) a positive solution z(t) of
the nonlinear differential equation

(2) 2" +a(t)w(z) =0, t>tg> 1,

where the coefficient a: [tg, +00) — R and the nonlinearity w: R — R are conti-
nuous and given by means of A, W, such that

(3) x(t) =cit +ca+0(1) when t— 400
and
) Wiz, t) = % fcl((f)) H=a') - @ <0, t>t.

The symbol o f) for a given functional quantity f has here its standard meaning.
In particular, by o(1) we refer to a function of ¢ that decreases to 0 as ¢ increases
to +o0.

The papers [2] [T, 22, 2], 20] present various properties of the functional quantity
W, which shall be called pseudo-wronskian in the sequel. Our aim in this note is
to complete their conclusions by giving some sufficient conditions upon a and w
which lead to the existence of a solution z to that verifies while having
an oscillatory pseudo-wronskian (this means that there exist the unbounded from
above sequences (t£),>1 and (t9),>1 such that 3, | <t} <t3, <t, <t3,4
and W(tF) > W(t2) = 0 > W(t,,) for all n > 1). We answer thus to a question
raised in [I} p. 371], see also the comment in [2] pp. 46-47].

2. THE SIGN OF W

Let us start the discussion with a simple condition to settle the sign issue of the
pseudo-wronskian.

Lemma 1. Given z € C?([ty, +00),R), suppose that z”(t) < 0 for all t > t.
Then W(z,-) can change from being nonnegative-valued to being negative-valued at
most once in [tg, +00). In fact, its set of zeros is an interval (possibly degenerate).

Proof. Notice that
d? 1 d
ﬁ[x(t)] = a[t)/v(x,t)] ,  t>t.
The function ¢ — tW(z, t) being nonincreasing, it is clear that, if it has zeros, it
has either a unique zero or an interval of zeros. ([

The result has an obvious counterpart.
Lemma 2. Given z € C?([tg, +00),R), suppose that =" (t) > 0 for all t > t.
Then, W(z,+) can change from being nonpositive-valued to being positive-valued at

most once in [tg, +00). Again, its set of zeros is an interval (possibly reduced to
one point).
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Consider that z is a positive solution of equation in the case where a(t) > 0
in [tg, +00) and w(u) > 0 for all u > 0. Then, we have

dw W
I :—?—a(t)w(z(t)), t>to,
which leads to
t
(5) W(zx,t) = % toWo —/ sa(s)w(z(s)) ds] ) Wo = W(x, o),
to

throughout [tg, +00) by means of Lagrange’s variation of constants formula.

The integrand in being nonnegative-valued, we regain the conclusion of
Lemma [i} In fact, if T € [tg, +00) is a zero of W(z,-) then it is a solution of the
equation

(6) toWo :/ sa(s)w(z(s)) ds.

to
On the other hand, if the pseudo-wronskian of x is positive-valued throughout
[to, +00) then it is necessary to have

+oo
(7) (toWo >) / sa(s)w(z(s)) ds < +oo.
to

It has become clear at this point that whenever the equation has a positive
solution z such that Wy < 0, the functional coefficient a is nonnegative-valued and
has at most isolated zeros and w(w) > 0 for all u > 0, the pseudo-wronskian W
satisfies the restriction . Now, returning to the problem stated in the Introduction,
we can evaluate the main difficulty of the investigation: if the positive solution x
has prescribed asymptotic behavior, see formula or a similar development, then
we cannot decide upfront whether or not Wy < 0. The formula @ shows that there
are also certain difficulties to estimate the zeros of the pseudo-wronskian.

3. THE BEHAVIOR OF W

Let us survey in this section some of the recent results regarding the pseudo-wrons-
kian.

It has been established that its presence in the structure of a nonlinear differential
equation

(8) 2+ f(t,z,2’) =0, t>tg>1,

where the nonlinearity f: [t, +00) x R? — R is continuous, allows for a remarkable
flexibility of the hypotheses when searching for solutions with the asymptotic
development (or similar).

Theorem 1 ([22] p. 177]). Assume that there exist the nonnegative-valued, conti-
nuous functions a(t) and g(s) such that g(s) > 0 for all s > 0 and zg(s) < g(a'=%s),
where x >ty and s > 0, for a certain « € (0,1). Suppose further that

+oo +oo d
‘f(t,;v,x')|§a(t)g(;v’—£D and / @ds</ o
t to § cHWoltd ™™ g(u)
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Then the solution of equation given by exists throughout [tg,+00) and has
the asymptotic behavior

(9) xz(t)=c-t+o(t), 2'(t) =c+o(l) when t— +oo

for some ¢ = c(x) € R.

To compare this result with the standard conditions in asymptotic integration
theory regarding the development (9)), see the papers [2] [I} 24] and the mono-
graph [19].

Another result is concerned with the presence of the pseudo-wronskian in the
function space L!((tg, +00),R).

Theorem 2 ([I, p. 371]). Assume that f does not depend explicitly of ' and
there exists the continuous function F : [tg, +00) X [0, 4+00) — [0, 400), which is
nondecreasing with respect to the second variable, such that

|f(t,:z:)|§F(t,|ti|) and /t:mt[lJrln(;)]F(mcH;)dt<s

for certain numbers ¢ # 0 and € > 0. Then there exists a solution x(t) of equation
defined in [to, +00) such that

z(t)=c-t+o(l) when t— +oco and W(x,) € L.

The effect of perturbations upon the pseudo-wronskian is investigated in the
papers [2] 22] 21].

Theorem 3 ([22] p. 183]). Consider the nonlinear differential equation
(10) o’ + f(tz,2) =p(t),  t=to =1,

where the functions f: [tg, +00) x R? — R and p: [tg, +o0) — R are continuous
and verify the hypotheses

+oo
) / ta(t) dt < 400

to

and

1 t
tligloot/to sp(s)ds =C € R—{0}.
Then, given xg € R, there exists a solution z(t) of equation defined in [to, +00)
such that

x(to) =z and lim W(x,t)=C.

t——+oo
In particular,

x(t)

1m =
t—+oo tint

A slight modification of the discussion in [2I, Remark 3], see [2], p. 47], leads to
the next result.
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Theorem 4. Assume that f in does not depend explicitly of x' and there exists
the continuous function F': [tg,+00) X [0, +00) — [0, +00), which is nondecreasing
with respect to the second variable, such that

+oo
|f(t, )| < F(t,|z]) and /t sF(&IP(s)Hggg{q(T)})dsgq(t>, t>to,

for a certain positive-valued, continuous function q(t) possibly decaying to 0 as
t — 4o00. Here, P is the twice continuously differentiable antiderivative of p, that
is P"(t) = p(t) for allt > to. Suppose further that

[tW(P’ t) [tW(P’ t)
q(t) q(t)
Then equation has a solution x(t) throughout [ty,+00) such that

x(t) = P(t)+o(1) when t— 400
and W(x, ) oscillates.

lim sup ] <—-1.

t——+oo

]>1 and liminf

t——+oo

Finally, the presence of the pseudo-wronskian in the structure of a nonlinear
differential equation can lead to multiplicity when searching for solutions with the
asymptotic development .

Theorem 5 (|20, Theorem 1]). Given the numbers xg, x1, ¢ € R, with ¢ # 0, and
to > 1 such that tox, — xo = ¢, consider the Cauchy problem
" 1 /
= = g(tz’ — t>th>1

(11) € tg(I $), /_ 0=+,

x(to) = Xo, o (to) =2,
where the function g: R — R is continuous, g(c) = g(3¢) =0 and g(u) > 0 for all
u # c. Assume further that

/20 du (3¢c)— du
— <+ and —— =4
c+ g(u) 2c g(u)

Then problem has an infinity of solutions x(t) defined in [ty,+00) and develo-
pable as

z(t) =c1it +co+0o(l) when t— 400
for some ¢y = c1(x) and ca = ca(x) € R.

The asymptotic analysis of certain functional quantities attached to the solutions
of equations , and , as in our case the pseudo-wronskian, might lead
to some surprising consequences. Among the functional quantities that gave the
impetus to spectacular developments in the qualitative theory of linear/nonlinear
ordinary differential equations we would like to refer to

K(x)(t) =z(t)2'(t),  t>to,
employed in the theory of Kneser-solutions, see the papers [6] [7] for the linear and

respectively the nonlinear case and the monograph [19], and
“+o0

HW(x) = /t z(s)w(z(s)) ds.

0
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The latter quantity is the core of the nonlinear version of Hermann Weyl’s
limit-point/ limit-circle classification designed for equation , see the well-docu-
mented monograph [5] and the paper [23].

4. THE NEGATIVE VALUES OF W

We shall assume in the sequel that the nonlinearity w of equation verifies
some of the hypotheses listed below:

(12) lw(z) —w(y)| < klz—y|, where k>0,
and
(13) w(0) =0, w(z)>0 when z>0, lw(zy)| < w(|z|)w(ly|)

for all z, y € R. We notice that restriction implies the existence of a majorizing
function F', as in Theorem [2] given by the estimates
|| |z
£t 2)] = |a(t) w(z)| < |a(t)] ~w(t)w(7) - F(t, T) .
We can now use the paper [24] to recall the main conclusions of an asymptotic

+oo
integration of equation (2). It has been established that whenever [ tw(t)|a(t)| dt <
¢

0
400, all the solutions of have asymptotes and their first derivatives are
developable as

(14) '(t)=ci+o(t™") when t— +o0.

Consequently, W(z,t) = —cat =1 +0(t 1) for all large ¢’s. In this case (the functional
coefficient a has varying sign), when dealing with the sign of the pseudo-wronskian,
of interest would be the subcase where co = 0. Here, the asymptotic development
does not even ensure that W is eventually negative. Enlarging the family of

+oo
coefficients to the ones subjected to the restriction [ tw(t)|a(t)| dt < 400, where
to

e €10,1), the developments , become
(15) z(t)=ct+o(t'°), 2/(t)=c+o(t™°), ceR,

yielding the less precise estimate W(z,t) = o(t~¢) when ¢t — +o0o. We have again
a lack of precision in the asymptotic development of W(z,-) with respect to the
sign issue. We also deduce on the basis of , that some of the coefficients a
in these classes verify , a fact that complicates the discussion.

The next result establishes the existence of a positive solution to subjected
to , for the largest class of functional coeflicients: € = 0. By taking into
account Lemmas and the non-oscillatory character of equation when the
nonlinearity w verifies , we conclude that for an investigation within this class
of coefficients a of the solutions with oscillatory pseudo-wronskian it is necessary
that a itself oscillates. Also, when a is non-negative valued we recall that the
condition

—+oo
/ a(t)dt < 400

to
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is necessary for the linear case of equation to be non-oscillatory, see [16], while
in the case given by w(z) = 2*, € R, with A > 1 (such an equation is usually
called an Emden-Fowler equation, see the monograph [19]) the condition

(16) /+°° ta(t) dt = +o0

to

is necessary and sufficient for oscillation, see [4]. In the case of Emden-Fowler
equations with A € (0,1) and a continuously differentiable coefficient a such that
a(t) > 0 and o/(t) < 0 throughout [tg, +00), another result establishes that equation
has no oscillatory solutions provided that condition fails, see [I7].

Regardless of the oscillation of a, it is known [I, p. 360] that the linear case
of equation has bounded and positive solutions with eventually negative
pseudo-wronskian.

Theorem 6. Assume that the nonlinearity w verifies hypothesis (13) and is non-

decreasing. Given c, d > 0, suppose that the functional coefficient a is nonnegative-
-valued, with eventual isolated zeros, and

+oo d
/to w(t) a(t) dt < et d)”

Then, the equation has a solution x such that Wy = 0,

t
(17) c—dgsc’(t)<xT)§c+d forall t>to
and
e )
(18) tl}riloox(t)—tl}gloo =

Proof. We introduce the set D given by
D = {u € C([to,+00),R) : ct < u(t) < (c+ d)t for every t > to}.

A partial order on D is provided by the usual pointwise order “<”, that is, we
say that v; < ve if and only if v1(¢) < vo(t) for all ¢t > ¢y, where vy, v € D. It is
not hard to see that (D, <) is a complete lattice.

For the operator V': D — C([to, +00),R) with the formula

Vuw)(t) = t{c+ /tJrOO s% /ts Ta(t) w(u(r)) des}, ue D, t>1g,
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the next estimates hold

c< V(zi)(t)ch/t+0012/sTa(T)'w(T)w(uS_T)) dr ds

o0 1
c+ sup {w({)}/ /’TU) T)drds
£€[0,c+d] t to

= c+wlc+d) [% /t rw(r) a(r) dr + /;oo w(r) a(r) dT}

to

IA

+oo
§c+w(c+d)/ w(t)a(r)dr <c+d
to
by means of (13). These imply that V(D) C D.
Since ¢-t < V(c-t) for all t > tg, by applying the Knaster-Tarski fixed point
theorem [12] p. 14], we deduce that the operator V has a fixed point ug in D. This

is the pointwise limit of the sequence of functions (V”(c . IdI))n>1, where V! =V,
Vrtl = VoV oand I = [tg, +00). -

We deduce that

ty 1 (* t
up(t) = [V(ug)]'(t) = ”°t< ) _ ; / ra(r) w(ug(r)) dr < ”‘)t( ),
to

when ¢ > t, and thus (I7), hold true.

The proof is complete. O

5. THE OSCILLATORY INTEGRATION OF EQUATION
Let the continuous functional coefficient a with varying sign satisfy the restriction
+oo
/ t|a(t)| dt < +oo.
to

We call the problem studied in the sequel an oscillatory (asymptotic) integration

of equation .

Theorem 7. Assume that w verifies , w(0) = 0 and there exists ¢ > 0 such
that

(19) L >0> L,

where

+o0 +o0
t d t d
L¢ = limsup Ji  sw(es)a(s) 3’ ¢ _ liminf I +O:w(cs) a(s) s
totos [T s2la(s)| ds itoo  [F0 200 (5)| ds

Then the equation (2|) has a solution x(t) with oscillatory pseudo-wronskian such
that

(20) x(t)=c-t+o(l) when t— +oco.
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Proof. There exist n > 0 such that L§ > 5, L¢ < —n and two increasing,
unbounded from above sequences (t,)n>1, (t")n>1 of numbers from (tg, +00) such
that t™ € (tn,tn41) and

“+ o0 400
(21) tn/ sw(es) a(s)ds + kn/ s%|a(s)|ds < 0
tn t”
and
+00 +oo
(22) t”/ sw(es) a(s)ds — kn/ s%a(s)|ds >0
tn tn
for all n > 1.

Assume further that

oo 2 n
la(T)|dr < ———
/tn ) dr <

and introduce the complete metric space S = (D, J) given by
D= {y € C([to, +00),R) : t|y(t)| < n for every t > to}
and

(Y1, 12) = sup {tly1(t) —y2(O)|}, v, 92€D.

For the operator V: D — C([tg, +00),R) with the formula

V(y)(t):1/t+oosa(s)w<s[c—/s+ooy(T)dTDds, ye D, t>1,

t T

the next estimates hold (notice that |w(x)| < k|z| for all z € R)

+oo “+o0o T
(23) t‘V(y)(t)| < k/t sﬂa(s)’ [c—i—n/ jl_—z} ds <n
and
Feo oo dr
VO - V| <k [ 2lawl( [ ) ds )
< B 2l ds < (g1, 0)
> tO \ = C+77 Y1,Y2) -

These imply that V(D) C D and thus V: S — S is a contraction.
From the formula of operator V' we notice also that

(24) lim tV(y)(t)=0 forall yeD.
t—-+00

Given yg € D the unique fixed point of V', one of the solutions to has the
+oo
formula xo(t) = t{c - % ds} for all t > ty. Via and L’Hospital’s rule, we
t
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provide also an asymptotic development for this solution, namely

t——+oo t——+oo S

== lim tV(yo)(t) =0.

+oo
lim [zo(t) —c-t]=— lim t/ bo(s) ds = -, liﬂ_n tyo(t)
t e

The estimate

(tyo(t) —/tm ds‘ < k/m / |y°§ il dT} ds

<m7tL Sla(s)|ds,  t>to,
accompanied by , , leads to
(25) Yo(tn) = W(zo,tn) <0 and yo(t") = W(zo,t") > 0.
The proof is complete. O

Remark 1. When Equation is linear, that is w(z) = « for all € R, the
formula can be recast as
t 7 s%a(s) ds t [T s2a(s) ds

Ly =limsup “ft——+-"—>0> liminff— =
t—o00 f s2|a(s)| ds t=too [T s2la(s)| ds

We claim that for all ¢ # 0 there exists a solution x(t) with oscillatory pseudo -wrons-
kian which verifies . In fact, replace ¢ with ¢y in the formulas , . ) for
a certain ¢y subjected to the 1nequahty min{L;,—-L_} > ’Z) It is ObVlOllb that,

when L = —L_ = +o0, formulas (21]), (22)) hold for all ¢y, > 0. Given ¢ € R—{0},
there exists A # 0 such that ¢ = Acg. The solution of Equation ([2)) that we are

+oo
looking for has the formula x = X\ - zg, where zo(t) = t{co - f yOT(S) ds} for all
t

t >ty and yq is the fixed point of operator V' in D. Its pseudo-wronskian oscillates
as a consequence of the obvious identity

)\-W(Cbo,t):W(.’L',t), tZto.

Example 1. An immediate example of functional coefficient a for the problem of
linear oscillatory integration is given by a(t) = t~2e~!cost, where t > 1.
We have

/+Oo 2 1 i t oo 2‘ | t
s%a(s) ds = —= cos (t + f)e_ and / s%la(s)|ds < e~
t V2 4 t
throughout [1, +00) which yields Ly = 400, L_ = —o0.
Sufficient conditions are provided now for an oscillatory pseudo-wronskian to be
in LP((to, +00),R), where p > 0. Since . HI_P W(z,t) = 0 for any solution z(¢) of
— 100

equation with the asymptotic development , 7 we are interested in the
case p € (0,1).
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Theorem 8. Assume that, in the hypotheses of Theorem[7, the coefficient a verifies

the condition

26 o ! Ht? t)| dt 0,1
(26) /*0 [W] la(t)| dt < 400 for some pe€ (0,1).

s?|a

Then the equation has a solution x(t) with an oscillatory pseudo-wronskian in

LP and the asymptotic expansion ,

33

Proof. Recall that yq is the fixed point of operator V. Then, formula implies

that N
1 o0
lyo(t)| < k(c+n)- 2/ s°la(s)| ds, t>tg.
t

Via an integration by parts, we have

T 1-p +oo P
g | o< 2] [ o]

T I=p
p S 2
+ s“la(s)| ds
1—p/t lfj“’ﬂmmm] [a(s)]

forall T >t > t.
The estimates

IT—plJp Jr 7 r?a(T)| dT

1 o
< 7/ % s*la(s)| ds
1-pJr fs 72|a(T)| dr

allow us to establish that

ke P 1) |
The conclusion follows by letting T — +o0.

The proof is complete.

e [/+OO 32|a(s)| dsr = e /+oo [4_001] - 32|a(s)| ds

1-p
1 r 1+p [F
/t ’yo(s)‘p ds< P t lS(T)|d7‘| sQ‘a(s)| ds.

O

Example 2. An example of functional coefficient a in the linear case that verifies

the hypotheses of Theorem [§]is given by the formula

ag(t — 9k), t € [9k,9k + 1],
ap(9k +2—t), te[9%k+1,9k+3],
ar(t —9k —4), te9%+3,9k+4],
t2a(t) =b(t) = S ap(9k +4 —t), t€[9%+4,9k+5],
ap(t—9% —6), te[9% +5,9k+7],
ar(9k+8—1t), te9k+7,9k+8],
0, t e [9k +8,9(k + 1)],

kE>1.
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Here, we take aj, = k= — (k + 1)~ for a certain integer o > 2=2
To help the computations, the k-th “cell” of the function b can be visualized
next.

9k + 3 9k +5

It is easy to observe that

9k+4 9k+8
/ b(t)dt:/ b(t)dt =0 forall k>1.
9 9

k k+4
We have
+00 9k+4 +oo 9k+8
/ b(t) dt — / b(t) dt = —a / b(t) dt = / b(t) dt = a
Ok+2 9k+2 9k+6 9k+6

and respectively

+oo +oo +oo +o0
/ b(t)|dt =Bar+4 > am, / b(t)|dt = ar+4 > am.
9 9

k+2 it k+6 i
By noticing that
Ly = lim Ok +6) J 9k+6 UL , — lim (9 + 2) 9k+2 Tob(t)dt
k—+o0 J" k+6 \dt k—+4o00 f k+2 |dt
we obtain Ly = %O‘ and L_ = _%-

To verify the condition (26]), notice first that

9(k+1) " I=p ,
Ik:/ — |  tla(t)|dt
ok T b(s)| ds [a(t)

t

1—

</9(k+1)l e +1) ] pa dt k>1

< T K dt, >1.
9k f(k+1) s)|ds

The elementary inequality ar < (2% — 1)(k 4+ 1)~® implies that

Coy

9\1-»p
G vhere @ =9(3) et -,

I, < 1

and the conclusion follows from the convergence of the series Y (k4 1)t~ (1+e)p,
k>1
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