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ϕ(Ric)-VECTOR FIELDS IN RIEMANNIAN SPACES

Irena Hinterleitner and Volodymyr A. Kiosak

Abstract. In this paper we study vector fields in Riemannian spaces, which
satisfy ∇ϕ = µ, Ric, µ = const. We investigate the properties of these fields
and the conditions of their coexistence with concircular vector fields. It is
shown that in Riemannian spaces, noncollinear concircular and ϕ(Ric)-vector
fields cannot exist simultaneously. It was found that Riemannian spaces with
ϕ(Ric)-vector fields of constant length have constant scalar curvature. The
conditions for the existence of ϕ(Ric)-vector fields in symmetric spaces are
given.

1. Introduction

In this paper we study a class of curvature-determined vector fields in Riemannian
spaces, which are in some sense modifications of concircular vector fields. Concircular
vector fields are characterized by the property that their covariant derivative is
proportional to the unity tensor, ∇ξ = ρ·Id, with ρ being a function on the manifold
[3, 5, 6, 7, 8, 9, 10]. Examples of Riemannian spaces with concircular vector fields,
in the language of geometry called equidistant spaces, are the well-known spatially
homogeneous and isotropic cosmological models of space-time (pseudo-Riemannian
manifolds with Friedmann-Lemaitre-Robertson-Walker metric).

Riemannian spaces with concircular vector fields were studied in the work of
H. W. Brinkmann, A. Fialkov, K. Yano, H. de Vries on conformal mappings and
of N. S. Sinjukov, A. S. Solodovnikov, D. I. Rosenfeld, J. Mikeš, V. A. Kiosak,
I. Hinterleitner, G. Hall and others on geodesic mappings.

Einstein spaces, another class of cosmological models, are characterized by the
proportionality of the Ricci tensor to the metric tensor, so that in these spaces
concircular vector fields could equally well be defined by ∇ξ = ρ ·Ric. This inspires
us to a general investigation of vector fields satisfying the latter relation and the
conditions for their existence in general (i.e. non-Einstein) Riemannian spaces, with
the specialisation ρ = µ = const.

2. ϕ(Ric)-vector fields

Definition 2.1. A ϕ(Ric)-vector field is a vector field ϕ on an n dimensional
Riemannian manifold (Mn, g) with metric g and Levi-Civita connection ∇, which
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satisfies the condition

(2.1) ∇ϕ = µ Ric ,

where µ is some constant and Ric is the Ricci tensor.

Obviously, when (Mn, g) is an Einstein space, the vector field ϕ is concircular.
Moreover, when µ = 0, the vector field ϕ is covariantly constant.

In the following we suppose that µ 6= 0 and (Mn, g) is neither an Einstein space
nor a vacuum solution of the Einstein equations.

In a locally coordinate neighbourhood U(x) equation (2.1) is written as

(2.2) ϕh,i = µRhi ,

where ϕi and Rhi are components of ϕ and Ric, respectively “ , ” denotes covariant
derivative in (Mn, g). After lowering indices (2.2) has the form

(2.3) ϕi,j = µRij ,

where ϕi = ϕα giα and Rij = giαR
α
j .

Here and in the following gij are the components of the metric tensor and gij

are the components of its inverse.
As it is well known, the components of the Ricci tensor are symmetric in

Riemannian spaces. For this reason ϕi,j = ϕj,i.
We make the remark that from the symmetry of the covariant derivative follows

the local existence of a function ϕ(x), the gradient of which is ϕi, ϕi = ∂ϕ(x)/∂xi.
As well known, the Ricci identities for a vector field ϕ have the following form

ϕh,jk − ϕh,kj = −ϕαRhαjk.
Using them we obtain from the antisymmetric covariant derivative of (2.3)

ϕαR
α
ijk = µ · (Rij,k −Rik,j)

and applying the Bianchi identity to the right hand side yields the integrability
condition of (2.3) in the form:

(2.4) ϕαR
α
ijk = µRαijk,α ,

where Rhijk is the Riemannian tensor of (Mn, g).
This equation is contracted by gij , and from the contracted Bianchi identity

Rαk,α = 1
2 R,k, we can see

(2.5) ϕαR
α
k = µ

2 R,k ,

where R = Rαβg
αβ is the scalar curvature.

Now we consider ϕ(Ric)-vector fields of constant length |ϕ| =
√
|ϕαϕβgαβ | or

(2.6) ϕαϕβgαβ = const.

Differentiating (2.6) and making use of (2.2) we obtain µ · ϕαRαi = 0. Due to the
assumption µ 6= 0 we have ϕαRαi = 0 . With the condition (2.5) this leads to

R,k = 0 ,
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this means that the scalar curvature of (Mn, g) is necessarily constant. In this way
we have proved the following theorem.

Theorem 2.1. Riemannian or pseudo-Riemannian spaces (Mn, g) with a ϕ(Ric)-vector
field of constant length have constant scalar curvature.

3. ϕ(Ric) and concircular vector fields

As we have already mentioned, a nonzero vector field ξ is called concircular if
∇ξ = ρ · Id, where ρ is a function on (Mn, g). In coordinates this condition has
the form ξh,i = ρ δhi . Introducing ξi = giαξ

α, we can rewrite this as
(3.1) ξi,j = ρ gij .

When ρ = const., the vector field ξ is called convergent, in the case ρ = 0 it is
covariantly constant.

We will study the question whether a ϕ(Ric)-vector field and a concircular field
ξ can exist simultaneously.

We prove the following theorem

Theorem 3.1. If a ϕ(Ric)-vector field exists together with a non-collinear concir-
cular vector field on a Riemannian manifold, then the latter one is necessarily
covariantly constant.

Proof. Assume a ϕ(Ric)-vector field ϕ and a concircular vector field ξ, characte-
rized by the respective equations (2.3) and (3.1). After some easy calculations, the
integrability conditions of (3.1) can be written in the form

(3.2) ξαR
α
ijk = c(ξ)(gijξk − gikξj) ,

where c(ξ) is some function, depending on the function ξ, which in turn locally
generates the covector ξi, i.e. ξi = ∂ξ(x)/∂xi.

By differentiating the last formula and by using (3.1) and certain properties of
the Riemann tensor we obtain

ρRlijk + ξαR
α
ijk,l = c′(ξ) (gijξkξl − gikξjξl) + c(ξ) ρ (gijgkl − gikgjl) ,

where Rlijk = gαlR
α
ijk, and c′(ξ) is the derivation of the function c(ξ).

After contracting the indices k and l, taking into account (2.4) and (3.2), we
have
(3.3) µρRij = (µ c ξαξα + (n− 1) ρµ c+ c ξαϕ

α) gij + c ξjϕi − µ c′ ξiξj .
Alternating (3.3) we see that

c (ξjϕi − ξiϕj) = 0 .
Because the vanishing of the expression in parentheses would mean collinearity of
the vectors ϕ and ξ, which is excluded, c must be equal to zero.

But then (3.3) acquires the form µρRij = 0. Because µRij 6= 0, ρ must vanish.
We now conclude from (3.1) that ∇ξ = 0, i.e. ξ is a covariantly constant vector
field, which establishes the theorem. �
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4. ϕ(Ric)-vector fields in symmetric spaces

We consider ϕ(Ric)-vector fields in symmetric spaces (Mn, g), characterized by
the covariant constance of the Riemann tensor ∇R = 0, written in coordinates as
(4.1) Rhijk,l = 0 .

We start from equations (2.2) which characterize ϕ(Ric)-vector fields. In sym-
metric spaces the integrability conditions (2.4) of these equations simplify due
to (4.1)
(4.2) ϕαR

α
ijk = 0 .

Application of (2.2), (4.1) and the fact that µ 6= 0, to the differential prolongations
of (4.2) yields
(4.3) RαlR

α
ijk = 0 .

Formula (4.3) has an intrinsic character in the space (Mn, g). Its index-free form
is Ric(X,R(Y, Z)V ) = 0 for all tangent fields X, Y , Z, V . In symmetric spaces
its differential prolongation is satisfied identically.

As we can easily see, it follows from the theory of partial differential equations
that in a symmetric space, satisfying condition (4.3), the equations

ϕh,i = µRhi , µ = const. ,
have locally a unique solution for an arbitrary constant µ and arbitrary initial
conditions

ϕh(x0) = 0
ϕ h ,

which in the point x0 fulfill the condition
0
ϕ αR

α
ijk(x0) = 0 .

From (4.3) it follows that the last conditions have a nontrivial solution ϕh(x0). In
his way we can formulate the following theorem.

Theorem 4.1. In a non-Einstein symmetric pseudo-Riemannian space (Mn, g)
with Ric

(
X,R(Y, Z)V

)
= 0 for all tangent fields X, Y , Z, V there exists locally

a ϕ(Ric)-vector field.

We make the remark that in symmetric spaces no concircular vector fields
other than covariantly constant ones exist. We can easily convince ourselves of
the existence of symmetric spaces satisfying conditions (4.3). An example of a
non-Einstein symmetric pseudo-Riemannian space (Mn, g) satisfying the condition
(4.3) is a space with a metric of the following form

ds2 = exp(2x1)
{

2dx1dx2 + e3(dx3)2 + · · ·+ en(dxn)2} ,
where ei = ±1, i = 3, . . . , n.

Lemma 4.1. Classical Riemannian spaces (Mn, g) with positive definite metric
and the above properties (i.e. non-Einstein symmetric true Riemannian spaces
which satisfy conditions (4.3)) do not exist.
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Proof. After contraction of the formulae (4.3) follows RαβRγµgαγgβµ = 0, this
means when the metric is positive definite, then Rij = 0, in contradiction to the
assumption Rij 6= 0. �

5. A simple example of a ϕ(Ric)-vector field

Our example is a non-isotropic generalization of an equidistant space, motivated
by the Kasner vacuum metric in general relativity [4]. For simplicity we have
restricted ourselves to a 2 + 1 dimensional Riemannian space with diagonal metric
in the coordinates x1, x2, x3,

(5.1) ds2 = −(dx1)2 + f(x1)(dx2)2 + g(x1)(dx3)2 ,

where f and g are C2 functions of the first coordinate.
We assume the existence of a ϕ(Ric)-vector field in the x1 direction in the form

ϕi =
(
ϕ1(x1), 0, 0

)
,

depending only on the coordinate x1, too. After some calculations based on (2.3)
with µ = 1, we obtain a one-parameter family of solutions for the metric components

(5.2) f(x1) = (x1) 2 cos θ , g(x1) = (x1) 2 sin θ ,

with the parameter θ conveniently restricted by θ ∈ 〈0, 2π〉.
The non-vanishing components of the Ricci tensor are

R11 = (1− cos θ − sin θ) (x1)−2 , R22 = cos θ (1− cos θ − sin θ) (x1)−2(1−cos θ) ,

(5.3)

R33 = (1− cos θ) (sin θ − 1− cos θ) (x1)−2(1−sin θ)(5.4)

and the scalar curvature is

(5.5) R = −2(1− cos θ) (1− sin θ) (x1)−2 .

In this space the ϕ(Ric)-vector field is given by the component

(5.6) ϕ1 = (1− cos θ − sin θ)(x1)−1 .

The Riemannian space with the above metric (5.1) with components (5.2) provides a
nontrivial example of a space with aϕ(Ric)-vector field, which is neither equidistant,
nor an Einstein space, nor a space of constant curvature. The functional form (5.2)
of the components is of Kasner type, but, of course, the metric is not a vacuum
solution.

The vector field ϕ 6= 0 if and only if θ 6= 0, π/2. In the special cases for θ = π,
3π/2, π/4, 5π/4 the space is equidistant. From the expression (5.5) we see that in
the generic case the metric (5.1), (5.2) displays a curvature singularity at x1 = 0,
like the Kasner metric.
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