
ARCHIVUM MATHEMATICUM (BRNO)
Tomus 44 (2008), 367–384

INVARIANT PROLONGATION OF BGG-OPERATORS
IN CONFORMAL GEOMETRY

Matthias Hammerl

Abstract. BGG-operators form sequences of invariant differential operators
and the first of these is overdetermined. Interesting equations in conformal
geometry described by these operators are those for Einstein scales, conformal
Killing forms and conformal Killing tensors. We present a deformation proce-
dure of the tractor connection which yields an invariant prolongation of the
first operator. The explicit calculation is presented in the case of conformal
Killing forms.

1. Introduction: Geometric prolongation of overdetermined
operators

A conformal structure on a manifold M is an equivalence class [g] of (Pseudo-)Rie-
mannian metrics, where two metrics g and ĝ are equivalent iff there is a function
f ∈ C∞(M) such that ĝ = e2fg. The simplest way to explain what a conformally
invariant operator is, is to give an example: regard the operator

Θg : C∞(M)→ S2
0T
∗M,(1)

σ 7→
(
DDσ + σP

)
0 .(2)

Here D is the Levi-Civita connection of a metric g in the conformal class, P = Pab
is the Schouten-tensor, which is a trace-modification of the Ricci tensor, and
the subscript 0 takes the trace-free part. S2

0T
∗M denotes symmetric, trace-free

bilinear forms on TM , which will also be written as E(ab)0 : Throughout the paper
we are using Penrose’s abstract index notation [16], with Ea = Γ(TM) denoting
vector fields, Ea = Γ(T ∗M) denoting 1-forms and multiple indices being tensor
products. Square and round brackets around indices will indicate alternation resp.
symmetrization.

Now Θg describes the equation governing Einstein scales: for σ ∈ C∞(M) one
has Θgσ = 0 iff σ−2g is Einstein. The operator Θg is conformally covariant between
C∞(M) and S2

0T
∗M : if one switches to another metric ĝ = e2fg in the conformal

class, then
Θĝ ◦m(ef ) = m(ef ) ◦Θg ,
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where m(ef ) is simply the multiplication operator with ef . This yields a conformally
invariant operator between the weighted bundlesH0 = E [1] andH1 = S2

0T
∗M⊗E [1].

Here E [w] is the bundle of conformal w-densities, which is a line bundle that is
trivialized by every metric g in the conformal class; with [σ]g the trivialization of a
section σ ∈ E [w], one has [σ]ĝ = ewf [σ]g. Especially, [g] gives rise to a well defined
conformal metric g = gab ∈ E(ab)[2].

In general, a conformally invariant operator is obtained by a universal formula
in the Levi-Civita connection, the metric and the curvature, possibly followed by
contractions, that gives a well-defined operator between natural bundles for the
conformal structure.

The example of the operator for Einstein scales above has another interesting
property: it is overdetermined, and thus one can wish to have a prolongation of the
system: in classical terms, this means that one wants to introduce more dependent
variables and derive differential consequences of the overdetermined system, such
that one can write down a closed system of equations; i.e.: a system of first order
PDEs in which all (first order) derivatives of the dependent variables are expressed
in the dependent variables themselves.

1.1. The standard tractor bundle of conformal geometry and the prolon-
gation of the equation governing Einstein scales.

The prolongation of (1) is well known, and is conformally invariant. We are
going to describe this and the necessary background on conformal tractor bundles.
Our notations are inspired by [12]. We note here that a reader who looks for
an introduction to tractor calculus in conformal geometry and an explanation
of related notational issues could for instance make use of the very careful and
detailed exposition in the first part of [18].

With respect to a metric g in the conformal class the standard tractor bundle S
of a conformal geometry is given by

[S]g = E [1]⊕ Ea[1]⊕ E [−1](3)

and one writes elements [s]g = σ ⊕ ϕa ⊕ ρ ∈ [S]g as

[s]g =

 ρ
ϕa
σ

 .(4)

We remark here that via the conformal metric gab ∈ E(ab)[2] and its inverse
gab ∈ E(ab)[−2] one can move indices up and down, and thus we can also write
[S]g = E [1]⊕ Ea[−1]⊕ E [−1].

For ĝ = exp2f g one has the transformation

[s]ĝ =

 ρ̂
ϕ̂a
σ̂

 =

ρ−Υaϕ
a − 1

2σΥbΥb

ϕa + σΥa

σ

(5)

where Υ = df and S is defined by the equivalence class of [S]g for g ∈ [g] with
respect to this transformation ([1]). We see that we have a well defined semidirect
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composition series

S = E [1] +�� Ea[1] +�� E [−1](6)

i.e.: S is filtered S = S−1 ⊃ S0 ⊃ S1, and with respect to a metric g in the
conformal class this filtration splits according to (3).

Additionally, [S]g is endowed with the connection

∇cs = ∇c

 ρ
ϕa
σ

 =

 Dcρ− Pcbϕb
Dcϕ

a + σP a
c + ρδ a

c

Dcσ − ϕc

 ,(7)

which is invariant with respect to the transformation (5) and thus gives a well
defined connection on S, called the standard tractor connection.

We furthermore see from (5) that one has a well-defined projection Π to the
’lowest slot’ H0 of S. This projection splits via the differential operator L : H0 → S,
which is again defined via a metric g:

σ ∈ E [1] 7→

− 1
n (4σ + Pa

aσ)
∇σ
σ

 .

(S,∇,Π, L) is a geometric prolongation of Θ : H0 → H1: The maps Π and L
restrict to inverse isomorphisms of the space of parallel sections of S with respect to
∇ and the space of Einstein scales inH0. This is well known. In the following Section
2 we will give an explanation of this fact in terms of the BGG-machinery and present
a method to obtain more invariant geometric prolongations for other equations. In
Section 3 we will give an explicit prolongation of conformal Killing-forms (28) via
this method.

2. Conformal tractor bundles

The standard tractor bundle S and its tractor connection, introduced via a
description with respect to metrics in the conformal class above, can alterna-
tively be described as the associated bundle to the standard representation of
the Cartan-group SO(p + 1, q + 1) modelling conformal structures. More ge-
neral (see [7],[6]): a tractor bundle comes about as the associated space to a
SO(p+ 1, q + 1)-representation and is canonically endowed with its tractor connec-
tion.

Apart from spin representations, all tractor bundles appearing in conformal
geometry appear as subbundles in tensorial powers of S. Given S as in the previous
section, i.e., written in terms of a Levi-Civita connection g, one has a natural inner
product of signature (p+ 1, q + 1), which is given by0 0 1

0 g 0
1 0 0

 .(8)

Especially, one can identify Λ2S with so(S), which is the adjoint tractor bundle
AM for conformal structures. Employing matrix notation, we will write its elements,
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or sections, as −c −ηb 0
ξa C ηb

0 −ξa c

 ,(9)

where (c, C) ∈ co(p, q), ξa ∈ Ea and ηa ∈ Ea.
One has a natural surjection (projection to ξa) of AM onto TM and an inclusion

(inserting of ηb) of T ∗M into AM , while the inclusion via (9) of TM depends on
the choice of g. Having fixed a metric g in the conformal class, the algebraic action
• of AM on a tractor bundle T restricts to actions of TM and T ∗M . Therefore,
regarding TM and T ∗M as (pointwise) abelian Lie algebras, we can thus introduce
Lie algebra differentials on the the spaces Ck : = Ek ⊗ T : we define ∂ : Ck → Ck+1,

∂ϕ(ξ0, . . . , ξk) =
k∑
j=0

(−1)jξj•ϕ(ξ0, . . . , ξ̂j , . . . , ξk)(10)

and ∂∗ : Ck+1 → Ck,

∂∗Z0 ∧ · · · ∧ Zk ⊗ V =
k∑
j=0

(−1)j+1Z0 ∧ · · · ∧ Ẑj · · · ∧ Zk ⊗ (Zi•V ) .(11)

It is straightforward to check that ∂ ◦ ∂ = ∂∗ ◦ ∂∗ = 0. It is a consequence
of a general result by Kostant ([14]), that ∂ and ∂∗ are naturally adjoint with
respect to an (pointwise) inner product on the chain spaces Ck. This gives a Hodge
decomposition

Ck = im ∂ ⊕ ker �⊕ im ∂∗(12)

with � = ∂ ◦ ∂∗ + ∂∗ ◦ ∂.
Only ∂∗, but not ∂, is invariant with respect to a change in Levi-Civita connection

in the conformal class. Thus we use ∂∗ to define the spaces Zk = ker ∂∗ ∩ Ck,Bk =
im ∂∗ ∩ Ck and Hk = Zk/Bk. Using the Hodge decomposition, one can identify Hk
with ker � ⊂ Ck after choice of a metric in the conformal class.

As an so(S)-valued form K ∈ E[c1c2]⊗AM , the curvature of the standard tractor
connection is

Kab =

0 −Aeab 0
0 C c

ab d Ae ab
0 0 0

 .(13)

Here C is the Weyl curvature and A = Aeab = 2D[aPb]e is the Cotton-York tensor.
We recall that both A and C are trace-free. Furthermore the skew-symmetrization
over any 3 indices of Cabcd vanishes, as does the skew-symmetrization of Aabc. The
Weyl curvature doesn’t satisfy the differential Bianchi identity, however one has

D[aCbc]de = gd[aA|e|bc] − ge[aA|d|bc].
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3. Invariant geometric prolongation via the BGG-machinery

The BGG-machinery will associate to the tractor covariant derivative ∇ on T
differential operators Θl : Hl → Hl+1. The core step in the construction of the
BGG-operators is to find, in a natural way, a splitting of Πl : Zl → Hl adapted to
∇: For every σ ∈ Hl it can be shown that there is a unique lift s ∈ Zl such that
d∇s ∈ Zl+1. This defines the BGG-splitting operators Ll : Hl → Zl. By construction
they give rise to the BGG-operators

Θl : Hl → Hl+1,

Θk = Πk+1 ◦ d∇ ◦ Lk .

Thus one obtains the BGG-sequence

0→ H0
Θ0−−−→ H1 → · · ·

Θn−1−−−−→ Hn → 0 .

We are interested in the first operator Θ0, which gives an overdetermined system
of equations. In [2] a prolongation method for operators Θ0 + η for η a lower order,
possibly nonlinear, differential operator, was developed, which did not however
take into account the invariance respectively naturality of the operator Θ0.

The construction of BGG-operators sketched above also works for more general
connections ∇̃ = ∇+ Ψ, if Ψ ∈ Ec ⊗ gl(T )1. Here gl(T )1 denotes those endomor-
phisms of T which are homogeneous of degree ≥ 1 with respect to the filtration of
T inherited from S. More simply put: gl(T )1 consists of upper triangular matrices
if we use vector-notation as in (4) and (17).

3.1. Deformation of the tractor connection.
We would like to understand the solution space of Θ0 : H0 → H1: Let σ ∈ H0.

By definition Θ0σ = Π1
(
∇(L0σ)

)
, and thus

Θ0σ = 0 iff ∇(L0σ) ∈ B1 = ker Π1 ,(14)

which shows that in general (T,∇,Π0, L0) is not a prolongation, since the kernel of
Θ0 is not mapped into the space of parallel sections by L0: while parallel sections
of (T,∇) always project into the kernel of Θ0, a solution σ ∈ H0 of Θ0σ = 0 will,
by definition of Θ0, only have the property that ∇(L0σ) ∈ im ∂∗. Our strategy is
to deform ∇ to ∇̃ = ∇+ Ψ by a map Ψ ∈ Ec ⊗ gl(T )1 in suitable way, such that
we obtain a ‘better’ connection on T which gives a geometric prolongation of Θ0.
I.e.: We want to find ∇̃ such that Θ0σ = 0 implies ∇̃(L0σ) = 0 and conversely.

We make the following observation: consider Ψ ∈ Ec ⊗ gl(T )1 which has the
property that

Ψs ∈ im ∂∗ = B1 ∀s ∈ T .(15)

Then we can construct the BGG-splitting operators L̃0 : H0 → T , L̃1 : H1 → C1
and the first BGG-operator Θ̃0 : H0 → H1 as above. But Since (∇̃ − ∇) = Ψ has
values in B1, we see that ∂∗ ◦ ∇̃ ◦ L0 = ∂∗ ◦ ∇ ◦ L0 = 0, which shows that we have
L̃0 = L0; and since Π1(B1) = 0, we have Θ̃0 = Θ0. Thus: maps Ψ ∈ Ec ⊗ gl(T )1

which send T into B1 may be used to deform ∇ to another connection without
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changing the first BGG-operator. Thus the space of such Ψ gives us a freedom for
suitable deformations of ∇.

Assume that we have managed to find such a Ψ for which the curvature R of
∇̃ = ∇+ Ψ has the property that, for every s ∈ Γ(T ),

∂∗(Rs) = 0 .(16)

Then we claim that ∇̃s = L̃1Θ0Π0(s). This means that for every s ∈ Γ(T ), one
already has ∂∗(d∇̃(∇̃s)). But this expression equals ∂∗(Rs), and thus we have the
claimed commutativity.

But this is already enough: because now, if Θ0σ = 0, we have that ∇̃(L0σ) =
L̃1(0) = 0. And on the other hand, for a parallel section s of T , one evidently has
by construction of L0 that L0(Π0(s)) = s. Thus, Π0 : T → H0 and L0 : H0 → T
restrict to inverse isomorphisms between parallel sections of T with respect to ∇̃
and the kernel of Θ0.

Therefore the whole problem lies in finding a deformation map Ψ ∈ Ec ⊗ gl(T )1

which maps T into im ∂∗ and which gives a ∇̃ = ∇+ Ψ whose curvature R maps
T into ker ∂∗ ⊂ E[c1c2] ⊗ T . Existence and uniqueness of such a map can be shown
using analogs of inductive normalization procedures well known in the realm of
parabolic geometries and this prolongation method actually works in a more general
situation. See also remark 4.6.

One constructs the new connection ∇̃ in terms of a given metric g in the
conformal class. By uniqueness of Ψ, this construction is however independent of
the choice of g, i.e., the connection ∇̃ is a well defined, conformally invariant object.
In the following we are going to show how this construction of a deformation map Ψ
works explicitly for a special and interesting case, that of conformal Killing forms.

4. Invariant prolongation of conformal Killing forms

Conformal Killing forms were first prolonged by U. Semmelmann [17], howe-
ver the discussion there did not take into account conformal invariance of the
equation. In [12] an invariant prolongation was calculated by ad hoc methods
(see also [18]). The following is a completely conceptual derivation of an invariant
geometric prolongation by describing conformal Killing forms as the kernel of a
first BGG-operator and prolonging this operator via a deformation of the tractor
connection as in Section 3.

We are going to proceed as follows: In 4.1 we describe the exterior powers of the
standard tractor bundles, give explicit formulas for the Lie algebraic differentials
on the first chain spaces and determine their CO(p, q)-decompositions. In 4.2 we
describe explicitly how the operator governing conformal Killing k-forms comes
about as first BGG-operator for the k+ 1-st exterior power of the standard tractor
bundle. In 4.3 we obtain a geometric prolongation by constructing a deformation
Ψ ∈ Ec ⊗ gl(T )1 with the properties called for in Section 3. In 4.4 we show the
conformal invariance of Ψ.

4.1. The tractor bundle.
In the following k will be ≥ 1. The tractor bundle T = Λk+1S decomposes (via
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a metric g in the conformal class) into E [a1...ak][−k − 1]
E [a1...ak+1][−k − 1] | E [a1...ak−1][−k + 1]

E [a1...ak][−k + 1]

(17)

and similarly as for (5), we have transformations

(18)

 ρ̂a1...ak

ϕ̂a0...ak | µ̂a2...ak

σ̂a1...ak

 =

ρa1...ak −Υbϕ
ba1...ak − kΥ[a1µa2...ak] − 1

2ΥbΥbσ
a1...ak

ϕa + (k + 1)Υ[a0σa1...ak] | µa2...ak −Υbσ
ba2...ak

σa1...ak

 .

From (6), or directly from (18), we see that

(19) T = E [a1...ak][−k + 1] +�� (E [a1...ak+1][−k − 1]⊕

E [a1...ak−1][−k + 1]) +�� E [a1...ak][−k − 1] ,

which splits into T−1 ⊕ T0 ⊕ T1 after choice of g in the conformal class.
The standard tractor connection (7) gives rise to the invariantly defined tractor

connection ∇ on T :

(20) ∇c

 ρa1...ak

ϕa0...ak | µa2...ak

σa1...ak

 =


Dcρ

a1...ak − Pcpϕpa1...ak − kP [a1
c µa2...ak](

Dcϕ
a0...ak + (k + 1)δ [a0

c ρa1...ak]

+(k + 1)P [a0
c σa1...ak]

)
|
(

Dcµ
a2...ak

−Pcpσpa2...ak + ρ a2...ak
c

)
Dcσ

a1...ak − p a1...ak
c + kδ

[a1
c µa2...ak]

 .

4.1.1. Description of the first homology groups. ∂∗ : C1 → C0 = T is given (see
(11)) by Z ⊗ s 7→ −Z•s for s ∈ Γ(T ), Z ∈ Ea. Thus B0 = im ∂∗ : C1 → T is simply
Ea•T , which is all of T 0. Thus H0 = T/T 0. By the Hodge decomposition (12) we
can embed H0 as T−1 = ker � = ker ∂ ⊂ T .

Also, Hi will be embedded into Ci as ker � = ker (∂∂∗ + ∂∗∂) for i = 1, 2. The
calculation of the CO(p, q)-decomposition of the spaces Hi is purely algorithmic
using Kostant’s version of the Bott-Borel-Weyl theorem [14]; the details of which
are not important for us here. We just state the results for H1 and H2, which are
all homologies we are going to need: We will write

Ci =

 E i ⊗ T1
E i ⊗ T0
E i ⊗ T−1

 ,

and speak of the top, middle and bottom slots.
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Ec ⊗ T−1 contains the highest weight part E{c[a1...ak]}0 [−k− 1], and this is all of
H1. Explicitly, E{c[a1...ak]}0 [−k − 1] sits in E [a1...ak]

c [−k + 1] as those σ = σ a1···ak
c

which have both zero trace and vanishing alternation:

0 = σ pa2···ak
p , 0 = σ[ca2···ak].

If k ≥ 2 then the analogous statement holds also for the second chain space: in
this case H2 is exactly the highest weight part of E[c1c2]⊗T−1 = E [a1...ak]

[c1c2] [−k+1].
i.e., H2 = E{[c1c2][a1...ak]}0 [−k − 3] ⊂ E[c1c2] ⊗ T−1.

Especially, for i = 0, 1 we have that Hi lies in the lowest grading part of Ci and
if k ≥ 2 this also holds for i = 2: T1

T0
H0 = T−1

 ∂→

 Ec ⊗ T1
Ec ⊗ T0

H1 ⊕ im ∂|T0

 ∂→

 E[c1c2] ⊗ T1
E[c1c2] ⊗ T0

H2 ⊕ im ∂|Ec⊗T0


Now we describe what ∂, ∂∗ and � do on the first few chain spaces C0 = T ,

C1 = Ec ⊗ T and C2 = E[c1c2] ⊗ T :

4.1.2. Explicit formulas for ∂, ∂∗ and � on the first chain spaces.

∂c

 ρa1...ak

ϕa0...ak | µa2...ak

σa1...ak

 =

 0
(k + 1)δ [a0

c ρa1...ak] | ρ a2...ak
c

−ϕ a1...ak
c + kδ

[a1
c µa2...ak]

(21)

∂c1

 ρ a1...ak
c2

ϕ a0...ak
c2

| µ a2...ak
c2

σ a1...ak
c2

 =

 0
2(k + 1)δ [a0

[c1
ρ

a1...ak]
c2] | − 2ρ a2...ak

[c1c2]

2ϕ a1...ak
[c1c2] + 2kδ [a1

[c1
µ

a2...ak]
c2]


∂∗

 ρ a1...ak
c

ϕ a0...ak
c | µ a2...ak

c

σ a1...ak
c

 =

 ϕ pa1...ak
p + kµ[a1...ak]

−(k + 1)σ[a0...ak] | σ pa2...ak
p

0


∂∗

 ρ a1...ak
c1c2

ϕ a0...ak
c1c2

| µ a2...ak
c1c2

σ a1...ak
c1c2

 =

 −2ϕ pa1...ak
cp − 2kµ [a1...ak]

c

2(k + 1)σ [a0...ak]
c | − 2σ pa2·ak

cp

0

 .

The image of ∂∗ in T = C0 is simply T 0 = T0 ⊕ T1, and the Kostant Laplacian
thus acts by positive real scalars on T1 and the two components of T0. It vanishes
on T−1 by (12). Explicitly, � is given on T by n

(k + 1) | (n− k + 1)
0

 .(22)

The image of ∂∗ in C1 contains all of Ec ⊗ T1 (since we have (12)). Now Ec ⊗ T1
decomposes into three parts: the alternating maps, Ek+1[−k − 1], the purely trace
maps, Ek−1[−k − 1], and finally those maps which have both trivial trace and
trivial alternating part, E{c[a1...ak]}[−k − 1]. We will denote the three irreducible
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components of Ec ⊗ T1 by (Ec ⊗ T1)alt, (Ec ⊗ T1){}0 and (Ec ⊗ T1)tr. We will write
this decomposition of Ec ⊗ T1 ∩ im ∂∗alt{}0

tr

 ,(23)

and in this picture the Kostant Laplacian � acts by 2(n+ k − 1)
2(n− 2)

2(2n− k − 1)

 .(24)

Now to the middle slot: We have

Ec ⊗ T0 = E [a0...ak]
c [−k − 1]⊕ E [a2...ak]

c [−k + 1]

and both parts split into alternating, {}0- and trace components. Both {}0-components,
the left alternating and the right trace component lie in the image of ∂∗. The only
other component of im ∂∗ ∩ Ec ⊗ T0 is E [a1...ak][−k− 1], which embeds into Ec ⊗ T0
via

τa1...ak 7→

 0
−k(k + 1)δ [a0

c τa1...ak | (n− k)τ a2...ak
c

0

 .

We will write the decomposition of Ec ⊗ T0 ∩ im ∂∗ ⊂ Ec ⊗ T0alt | ∗
{}0 | {}0
tr | tr

 ,(25)

and the Kostant Laplacian is seen to act by the scalars4(k + 1) | ∗
2k | 2(n− k)
2n | 2(n− k − 1)

 .(26)

4.2. The first BGG-operator Θ0 : H0 → H1 and conformal Killing forms.
Using (20), (21) and (22), we compute that the first BGG-splitting operator

L0 : H0 → T is, up to first homogeneity, given by

σ 7→

 ∗
D[a0σa1...ak] | − 1

n−k+1Dpσ
pa2...ak

σ

 .(27)

In 4.1.1 we saw that (using g ∈ E(ab)[2]),

H0 = Ek[k + 1] ,

H1 = E{c[a1...ak]}0 [k + 1] ,

H2 = E{[c1c2][a1...ak]}0 [k + 1] .
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Thus we immediately see using (20) that

Θ0 : H0 → H1 ,

Θ0 = Π1 ◦ ∇ ◦ L

is given by Θ0cσa1...ak = D{cσa1...ak}0 . But this is exactly the conformal Killing
operator. Thus our prolongation procedure will yield an isomorphism between the
space conformal Killing forms

(28) σa1...ak ∈ Ek[k + 1] , D{cσa1...ak}0 = 0

and the space of parallel sections of a natural connection on T .
For k = 1 we get exactly the operator describing conformal Killing fields, i.e.,

infinitesimal automorphisms of the conformal structure; see also remark 4.1. This
case has been treated in detail in [10]. The main result of this text, an explicit
geometric prolongation, will also work for k = 1. We only need k ≥ 2 for obtaining
an algebraic obstruction tensor which is described in subsection 4.3.1.

4.3. The deformation of the tractor connection.
We are now going to construct a Ψ ∈ Ec ⊗ gl(T )1 with the properties called for

in Section 3.
The calculations will be made more readable by providing beforehand the map-

pings which will appear: We will make use of the vector bundle maps Li : E [a1...ak][−k+
1]→ E [a1...ak+1][−k − 1], i = 1, 2, and Ri : E [a1...ak][−k + 1]→ E [a1...ak−1][−k + 1],
i = 1, 2, of homogeneity 1:

L1(σ) = Ccp
[a0a1σ|p|a2...ak] L2(σ) = δ[a0

c Cpq
a0a1σ|pq|a3...ak](29)

R1(σ) = Cc
[a2

pqσ
|pq|a3...ak] R2(σ) = C [a2a3

pqσc
|pq|a4...ak] .

In homogeneity 2 we will need the maps Fi,Gi from E [a1...ak][−k+1] to E [a1...ak]TM [−k−
1], the maps Ei : E [a1...ak+1][−k − 1] → E [a1...ak]TM [−k − 1] and the maps Ti :
E [a1...ak−1][−k + 1]→ E [a1...ak]TM [−k − 1].

E1(ϕ) = Cc
[a1

pqϕ
|pq|a2...ak] E2(ϕ) = C [a1a2

pqϕc
|pq|a3...ak](30)

T1(µ) = Ccp
[a1a2µ|p|a3...ak] T2(µ) = δ[a1

c Ca2a3
pqµ
|pq|a3...ak]

F1(σ) = A[a1
cpσ
|p|a2...ak] F2(σ) = Apc

[a1σ|p|a2...ak]

F3(σ) = Ap
[a1a2σc

|p|a3...ak] F4(σ) = δ[a1
c Aa2

pqσ
|pq|a3...ak]

G1(σ) = (DcC
[a1a2

pq)σ|pq|a3...ak] G2(σ) = (DpCcq
[a1a2)σ|pq|a3...ak]

G3(σ) = (D[a1Cc
a2
pq)σ|pq|a3...ak] .

With respect to the CO(p, q)-decompositions (25) and (23) a more natural basis
for the linear space formed by these maps into of gr(C1)1 and gr(C1)2 is formed by
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Ltr = − k − 1
n− k

L2 L = L1 − Ltr

(31)

Ralt = 2
k
R1 + k − 2

k
R2 R = k − 2

k
(R1 −R2)

Ealt = 2
k + 1E1 + k − 1

k + 1E2 E = k − 1
k + 1(E1 − E2)

Ttr = − k − 2
n− k + 1T2 T = T1 − Ttr

Ftr = k

n− k + 1F4 Falt = 2
k + 1F2 −

k − 1
k + 1F3

Fi = F1 −
1

k + 1F2 + k − 1
2(k + 1)F3 −

k − 1
k

Ftr Fii = k − 1
k + 1(F2 + F3)− k − 1

2k Ftr

Gi = G1 + 2Falt −
2
k

(n− k − 1)Ftr Gii = G2 −
2(k − 2)

k
Ftr

Giii = G3 − 2Falt −
n− 3
k

Ftr .

Ltr, Ttr and Ftr are purely trace, Ralt, Ealt and Falt are alternating and all other
maps have both vanishing alternation and trace.

The maps of (29) and (30) can be expressed as

L1 = L+ Ltr L2 = −n− k
k − 1Ltr R1 = R+Ralt(32)

R2 = − 2
k − 2R+Ralt E1 = E + Ealt E2 = − 2

k − 1E + Ealt

T1 = T + Ttr T2 = −n− k + 1
k − 2 Ttr

and

F1 = Fi + 1
2Falt + k − 1

k
Ftr F2 = Fii + Falt + k − 1

2k Ftr

F3 = 2
k − 1Fii − Falt + 1

k
Ftr F4 = n− k + 1

k
Ftr

G1 = Gi − 2Falt + 2
k

(n− k − 1)Ftr G2 = Gii + 2(k − 2)
k

Ftr

G3 = Giii + 2Falt + n− 3
k

Ftr .

For s =

 ρa1...ak

ϕa0...ak | µa2...ak

σa1...ak

 we have
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(K•s) = C
[a1

c1c2 pρpa2...ak] − kA[a1
c1c2µ

a2...ak −Apc1c2ϕ
|p|a1...ak

C
[a0

c1c2 pϕpa1...ak] +A
[a0
c1c2σ

a1...ak] | C [a2
c1c2 pµpa3...ak] −Apc1c2σ

|p|a2...ak

C
[a1

c1c2 pσpa2...ak]

 .

We calculate

∂∗(K•s) =

2kF1 + 2kF2 − kE1 + k(k − 1)T1
−k(k + 1)L1 | −(k − 1)R1

0

(33)

and thus have that the lowest homogeneous component of ∂∗(K•s), which is of
homogeneity 1, is given by (−k(k+ 1)L1 | −(k− 1)R1). Now we use (32), (22) and
(31) to apply −�−1 to this expression, which yields

Ψ1 :=

 0
λ1L1 + λ2L2| ρ1R1 + ρ2R2

0

(34)

where

λ1 = 1 + k

2 λ2 = (k − 1)(k + 1)
2n

ρ1 = (k − 1)(n− 2)
2(n− k)n ρ2 = 2− 3k + k2

2(k − n)n .

Now the curvature of the deformed connection ∇+ Ψ1 is

R = K•+ d∇Ψ1 + [Ψ1,Ψ1] ,

but [Ψ1,Ψ1] obviously vanishes. Let us calculate R: The only term which demands

our attention is d∇Ψ1; Take any s =

 ρ
ϕ | µ
σ

 ∈ Γ(T ).

Then for ξ1, ξ2 ∈ X(M), we have, since Ψ1 is a 1-form on M with values in
gl(T ),

(35) (d∇Ψ1)s(ξ1, ξ2) =
= ∇ξ1(Ψ1(ξ2)s)−Ψ1(ξ2)(∇ξ1s)−∇ξ2(Ψ1(ξ1)s) + Ψ1(ξ1)(∇ξ2s)

−Ψ1([ξ1, ξ2])s .

We may expand (35) and write

(36) (d∇Ψ1)s =
∗(

Dξ1

(
Ψ1(ξ2)σ

)
−Ψ1(ξ2)

(
Dξ1σ

)
−Dξ2

(
Ψ1(ξ1)σ

)
+Ψ1(ξ1)

(
Dξ2σ

)
−Ψ1([ξ1,ξ2])σ

−Ψ1(ξ2)∂ξ1ϕ+Ψ1(ξ1)∂ξ2ϕ−Ψ1(ξ2)∂ξ1µ+Ψ1(ξ1)∂ξ2µ

)
∂ξ1 Ψ1(ξ2)σ−∂ξ2 Ψ1(ξ1)σ

 ,
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where we don’t care about the top component since it vanishes after an application
of ∂∗. The lowest component is simply ∂(Ψ1σ) = −∂�−1∂∗(K•σ). Thus ∂∗(Rs)
lies in the top slot (i.e., in homogeneity 1). So our first deformation had the effect
of moving the expression ∂∗ ◦ R one slot higher. This can be repeated: it is a
straightforward calculation using the expression in the middle component of (36)
and, in that order, (33), (32),(24) and (31) to find, with φ := −�−1 ◦ ∂∗ ◦R,

Ψ = Ψ2 = Ψ1 − φ =


 ε1E1 + ε2E2 + τ1T1 + τ2T2

+φ1F1 + φ2F2 + φ3F3 + φ4F4
+γ1G1 + γ2G2 + γ3G3


λ1L1 + λ2L2| ρ1R1 + ρ2R2

0

(37)

where

ε1 = k − 1
2(n− k) ε2 = (k − 1)k

2(k − n)n

τ1 = (k − 1)(n(n− k + 1)− 2k)
2(k − n)n τ2 = − (k − 2)(k − 1)

2n

φ1 = −n+ k − 3
n− 2 φ2 = 1− k

n

φ3 = (k − 1)(n+ k)
2(k − n)n φ4 = (k − 1)(2 + k − 2n)

2(k − n)(n− 2)

γ1 = − k − 1
2(n− 2)n γ2 = k − 1

2(n− 2)

γ3 = (k − 1)k
2(k − n)n .

Now the curvature R′ of ∇+ Ψ = ∇+ Ψ1 + φ is given by

R+ d∇φ+ [Ψ1, φ] + [φ,Ψ1] + [φ, φ] .

One sees that for every s ∈ Γ(T ), ([Ψ1, φ] + [φ,Ψ1] + [φ, φ])s has only values in
the top component and we may therefore forget about this term when calculating
∂∗(R′s). As in the calculation (36), we see that (d∇φ)s has only values in the
middle and top slots and the middle slot is given by 2∂[c1φc2]s. Therefore, by
construction of φ, we see that ∂∗(Rs) vanishes, and thus, via the considerations of
Section 3, we have solved the prolongation problem for conformal Killing forms.

We have already remarked there that this solution must already be conformally
invariant by virtue of uniqueness, which is not difficult to see, but to see what is
going on we are going to check independence of the choice of metric by hand in 4.4.

Remark 4.1. For k = 1, we have T = Λ2S = so(S) = AM . Thus ∇+ Ψ prolongs
the first BGG-operator for the adjoint tractor connection in this case. But in [4] it
was shown that for a parabolic geometry which is either 1-graded or torsion free
and which has the property that the first homology of the adjoint tractor bundle
H1 is concentrated in lowest homogeneity, the corresponding first BGG-operator
describes infinitesimal automorphisms of the structure - in our case conformal
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Killing fields - and is prolonged by the connection ∇̃s = ∇s+ isK which maps T
into im ∂∗ and satisfies (16). Thus uniqueness implies that Ψs = isK, which can
also be read off (37) directly.

Remark 4.2. The invariant connection prolonging the conformal Killing equation
(28) which was constructed in [12] differs from our result Ψ as defined in (37)
since it can be checked to have nontrivial intersection with im ∂; Recall that our
solution obeys the normalization conditions (15) and (16), but the first of these
conditions implies that it has trivial intersection with im ∂ since one has the Hodge
decomposition (12).

If one wants to translate the solution (37) into the notation used in [12] one has
to use the automorphism ρa1...ak

ϕa0...ak | µa2...ak

σa1...ak

 7→
 (k + 1)ρa1...ak

ϕa0...ak | −k(k + 1)µa2...ak

(k + 1)σa1...ak


which transforms an element of

E [a1...ak][−k + 1] +�� (E [a1...ak+1][−k − 1]

⊕ E [a1...ak−1][−k + 1]) +�� E [a1...ak][−k − 1]
in our notation to the equivalent element in the notation of [12]. Then Ψ as defined
in (37) has the following form with respect to the notations of Gover-Šilhan:

Ψc

 ρa1...ak

ϕa0...ak | µa2·sak

σa1...ak

 =


(k + 1)(ε1E1 + ε2E2)ϕ− 1

k (τ1T1 + τ2T2)µ
+(φ1F1 + φ2F2 + φ3F3 + φ4F4

+γ1G1 + γ2G2 + γ3G3)σ


1
k+1 (λ1L1 + λ2L2)σ | −k(ρ1R1 + ρ2R2)σ

0

 .

4.3.1. The curvature of the deformed connection. Since Ψ ∈ Ec ⊗ gl(T )1 we know
that the curvature R ∈ E[c1c2](gl(T )) of ∇̃ = ∇+ Ψ agrees with K• in homogeneity
0. But if σa1...ak ∈ Ek[k+1] is a conformal Killing k-form, then L0σ is given by (27);
and thus 0 = d∇̃∇̃s = Rs agrees with K•L0σ in E[c1c2] ⊗ T−1. But by (13) this is
simply (minus) C p

c1c2 [a1
σ|p|a2...ak]. For k ≥ 2 we have H2 = E{[c1c2][a1...ak]}0 [k + 1]

and projecting the previous expression to this space gives the conformally invariant
algebraic map

Φ : σ 7→ C p
{c1c2 [a1

σ|p|a2···ak]}0

which vanishes on conformal Killing k-forms. This obstruction has also been
constructed in [13], [17] and [12]. Our derivation is completely conceptual: the
map is simply the composition of the first two BGG-operators for the deformed
connection ∇̃: Φ = Θ̃1 ◦Θ0. This evidently explains both conformal invariance of
Φ and why it vanishes on conformal Killing forms. That Φ is algebraic has the
cohomological reason that H2 is concentrated in lowest homogeneity.

Remark 4.3. Apart from the (trivial) cases of Einstein scales and twistor spinors
where one doesn’t need any deformation and automatically has (16), the case of
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conformal Killing forms is the simplest situation in which to explicitly compute the
prolongation. The next interesting case to treat will be conformal Killing tensors,
for which, as far as we know, there has not yet been given any prolongation, and
which can be treated similarly as the form case. There the situation becomes more
complicated however, since the modelling representations Skg are 2k + 1-graded.
This case could have interesting relations to symmetries of the Laplacian ([9]).

Remark 4.4. The holonomy Hol(∇̃) of the thus obtained prolongation connection
∇̃ describes the solution space of the operator Θ0. In the case of the standard
tractor bundle and the spinor tractor bundle one has ∇ = ∇̃ (see Section 3) and
thus the solution space is governed by the conformal holonomy of the structure,
i.e., existence of Einstein scales and twistor spinors correspond to reductions of
the conformal holonomy. In general, the existence of non-trivial solutions of Θ0
doesn’t imply a holonomy reduction: for instance, full conformal holonomy doesn’t
obstruct the existence of conformal Killing fields or conformal Killing forms.

Because of (14), parallel sections of a tractor bundle give special solutions to
Θ0. In the case of conformal Killing Forms, those coming from parallel sections
were called normal conformal Killing forms in [15]. This notion of normal solutions
of first BGG-operators makes sense for every tractor bundle and they correspond
to reductions in conformal holonomy.

Remark 4.5. Using the tractor approach above for describing Einstein scales as
parallel sections, R. Gover and P. Nurowski [11] used the curvature R of the standard
tractor connection and its derivatives to obtain (under a genericity condition on
the Weyl curvature) a conformally invariant system of tensors which provides a
sharp obstruction against the existence of Einstein scales. For a general tractor
bundle and R the curvature of the prolongation connection, one can similarly build
natural systems of obstruction tensors, but it is not known whether these will be
sharp.

4.4. Conformal invariance of Ψ.
For this calculation we need some transformation formulas. We will denote by

D̂ the Levi-Civita connection of the metric rescaled by e2f . More generally, we will
denote by a hatted symbol the corresponding quantity calculated with respect to
the metric ĝ. With Υ = df we have

D̂uCabcd = DuCabcd − 2ΥuCabcd − 2Υ[aC|u|b]cd − 2Υ[cC|u|d]ab

+ 2(n− 3)gu[aAb]cd + 2(n− 3)gu[cAd]ab

Âabc = Aabc + ΥdCdabc .

In the calculation the following transformation-maps

Hi : E [a1...ak][−k + 1]→ E [a1...ak][−k − 1]
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will appear:

H1(σ) = ΥcC
[a1a2

pqσ
|pq|a3...ak] H6(σ) = δc

[a1ΥuC
a2a3

pqσ
|upq|a4...ak]

H2(σ) = ΥcC
[a1a2

pqσ
|pq|a3...ak] H7(σ) = ΥdCdp

[a1a2σc
|p|a3...ak]

H3(σ) = ΥpC
[a1a2

cq σ|pq|a3...ak] H8(σ) = ΥdCd
[a1

cpσ
|p|a2...ak]

H4(σ) = δc
[a1Υ|d|C a2

d pq
σ|pq|a3...ak] H9(σ) = ΥdCdpc

[a1σ|p|a2...ak]

H5(σ) = Υ[a1Ca2a3
pqσ

|pq|a4...ak]
c .

The maps (29) of homogeneity 1 are invariant with respect to the choice of
g ∈ [g] since the Weyl curvature is conformally invariant. It is straightforward to
calculate that the individual maps (30) transform like

Ê1 = E1 + 2H9 − (k − 1)H2 Ê2 = E2 +H1 − 2H7 − (k − 2)H5

Ĝ1 = G1 − 2H1 − 2H2 − 2H3 + 2H4 + 2H7

Ĝ2 = G2 −H1 −H2 −H3 +H7 + 2H8

Ĝ3 = G3 −H1 −H2 −H3 +H4 + 2H9 ,

and

F̂1 = F1 +H8 F̂2 = F2 +H9 F̂3 = F3 +H7

F̂4 = F4 +H4 T̂1 = T1 −H3 T̂2 = T2 −H6 .

Thus, if we switch to another metric ĝ respectively the corresponding linear
connection D̂ and then calculate Ψ̂ using (37), the result differs from Ψ only in
the top slot of C1 and it does so by

(ε2 − 2γ1 − γ2 − γ3)H1 − τ2H6 − ((k − 1)ε1 − 2γ1 − γ2 − γ3)H2(38)
+ (−2ε2 + φ3 + 2γ1 + γ2)H7 − (τ1 − 2γ1 − γ2 − γ3)H3 + (φ1 + 2γ2)H8

+ (φ4 + 2γ1 + γ3)H4 + (2ε1 + φ2 + 2γ3)H9 − (k − 2)ε2H5 .

On the other hand, if we calculate Ψ with respect to g and then transform the
expression via ρ̂ = ρ−Υdϕ

da1...ak − kΥ[a1µa2...ak], the difference to Ψ also lies in
homogeneity two and is

(39) − λ2
1

k + 1H1 − ρ1H2 + k − 1
k + 1λ1H3+

2
k + 1λ2H4 − kρ2H5 + k − 1

k + 1λ2H6 −
2

k + 1λ1H8 .

Now it is straightforward to check that the expressions (38) and (39) coincide.
Thus Ψ is seen not to depend on the choice of the metric in the conformal class
used to construct it. As we already remarked this is in fact a consequence of the
uniqueness property of Ψ stated at the end of Section 3.
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Remark 4.6. The prolongation method of above works more generally: the
construction of the BGG-sequence works for arbitrary tractor bundles over regular
k-graded parabolic geometries ([8],[3]), and again the first operator in this sequence
is overdetermined, and we ask for a natural prolongation. The analog of a choice
of metric in the conformal case is the choice of a Weyl structure of the parabolic
geometry ([7]). The homogeneity conditions become a bit more subtle, but the
basic principle of finding a natural deformation of the tractor connection yielding
a prolongation is the same as presented in Section 3. This is the subject of a
forthcoming joint paper with J. Šilhan, P. Somberg and V. Souček.
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