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Abstract. The purpose of these notes is to give a short survey of an in-
teresting connection between partition functions of supersymmetric gauge
theories and hypergeometric functions and to present the recent progress in
this direction.

1. Introduction

In these notes, we discuss several properties of basic, hyperbolic and elliptic
hypergeometric functions, in particular some interesting integral identities satisfied
by these functions and their relation to supersymmetric dualities in three and four
dimensions.

We will mainly focus on elliptic hypergeometric functions. The theory of these
functions is quite a new research area in mathematics. The first example of the ellip-
tic analogues of hypergeometric series was discovered about 20 years ago by Frenkel
and Turaev [14] in the context of elliptic 6j-symbol. This family of functions is the
top level of hypergeometric functions. Recently they have attracted the attention
of physicists since they proved to be useful tool in theoretical and mathematical
physics. They appear in various ways in physics, in particular the elliptic hyper-
geometric integrals associated to root systems1 arise naturally in the computation
of the so–called superconformal indices of four-dimensional supersymmetric gauge
theories [20, 21, 44, 45, 46, 47].

The superconformal index was introduced by Römelsberger [38] and indepen-
dently by Kinney et al. [29] in 2005 as a non-trivial generalization of the Witten
index2. Soon later, Dolan and Osborn [10] recognized that the superconformal
index can be expressed in terms of elliptic hypergeometric integral. Equalities of
superconformal indices of supersymmetric dual theories lead to various complicated
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integral identities for the elliptic hypergeometric integrals. Some of them were
known earlier, but most of them are not yet proven.

There is a similar story for three-dimensional supersymmetric gauge theories.
Namely three-dimensional superconformal index can be expressed in terms of basic
hypergeometric integrals and three-dimensional sphere partition function has a
form of hyperbolic hypergeometric integral (see, e.g. [3, 17, 18, 21, 27, 30]).

The present notes are not a comprehensive review. Each section covers only few
aspects of applications of basic and elliptic hypergeometric functions in physics.
Here we mainly focus on non-trivial integral identities coming from supersymmetric
dualitities.

The rest of the paper is organized in the following way. In Section 2 and 3 we
make a brief review of hypergeometric functions and the superconformal index,
respectively. We present some examples of non-trivial integral identities in Sections
4–6.

2. What is an elliptic hypergeometric function?

In this section we recall a definition of hypergeometric function. A good reference
for this introductory section is the book [22] by Gasper and Rahman and a review
article [51] by Spiridonov.

Let cn be complex numbers. Consider a formal power series3

(2.1)
∞∑
n=0

cnx
n .

Depending on the following ratio

(2.2) cn+1

cn

we define three family of hypergeometric functions.

Definition. The series (2.1) is called
• an ordinary hypergeometric series if (2.2) is a rational function of n;
• a basic hypergeometric (or simply q-hypergeometric) series if (2.2) is a trigo-

nometric function of n;
• an elliptic hypergeometric series if (2.2) is an elliptic function of n.

The integral representations of hypergeometric functions can be defined similarly.
For instance, a contour integral

∫
C

∆(u)du is called elliptic hypergeometric integral4
if the meromorphic kernel ∆(u) is the solution of the following first order finite
difference equation

(2.3) ∆(u+ a) = h(u; b, c)∆(u) ,

where a ∈ C and h(u; b, c) is an elliptic function with periods b, c ∈ C and
Im(b/c) 6= 0.

3We call it “formal” since we are not interested in the convergence of the series.
4Similarly one can make a definition for multivariative case.
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The first two types of hypergeometric functions have been known for a long time,
so we are not going to discuss them in detail. We only want to mention that in the
context of supersymmetric theories ordinary hypergeometric functions appear as
sphere partition function of two-dimensional supersymmetric theories [6, 12]. Basic
hypergeometric functions have proved useful in many branches of physics and we
will see their role in supersymmetric theories in Section 5.

To give an example of an elliptic hypergeometric integral, let us consider the
elliptic beta integral. First we need to introduce the so-called elliptic gamma
function since it is convenient to express in terms of it the general class of elliptic
hypergeometric integrals. The elliptic gamma function5 is the meromorphic function
of three complex variables

(2.4) Γ(z, p, q) =
∞∏

i,j=0

1− z−1pi+1qj+1

1− zpiqj , with |p|, |q| < 1.

introduced in [41] and studied in great detail in [13]. We also recall the q-Pochhammer
symbol, defined as the infinite product

(2.5) (z, q)∞ =
∞∏
i=0

(1− zqi) .

Now we can write the simplest identity for elliptic hypergeometric integrals.
Spiridonov [49] has evaluated the following integral as an elliptic analog of the
Euler beta integral6.

Theorem (Spiridonov). . Let t1, . . . , t6, p, q ∈ C with |t1|, . . . , |t6|, |p|, |q| < 1. Then

(2.6) (p; p)∞(q; q)∞
2

∫
T

∏6
i=1 Γ(tiz; p, q)Γ(tiz−1; p, q)

Γ(z2; p, q)Γ(z−2; p, q)
dz

2πiz
=

∏
1≤i<j≤6

Γ(titj ; p, q) ,

where the unit circle T is taken in the positive orientation and we imposed the
balancing condition

∏6
i=1 ti = pq.

Limits of the elliptic beta integral lead to many identities for hypergeometric
integrals7. For instance, if we take the limit p → 0 then (2.6) reduces to the

5For generalizations of this function, see [31, 33, 53].
6There is a vast literature on q-beta integrals. The interested reader is referred to [2, 4].
7For other limits of elliptic hypergeometric functions, see, e.g. [56, 57, 58].



276 I. GAHRAMANOV

Nassrallah–Rahman trigonometric beta integral [32]8

(2.7) (q, q)∞
2

∫
T

(z
∏5
i=1 ti, q)∞(z−1∏5

i=1 ti, q)∞(z2, q)∞(z−2, q)∞∏5
i=1(tiz)∞(tiz−1)∞

dz

2πiz

=
∏5
j=1( t1t2t3t4t5tj

, q)∞∏
1≤i<j≤5(titj , q)∞

We will come back to the physical interpretation of the presented elliptic beta
integral in the next sections.

3. The superconformal index

In this section we summarize the relevant background material on the super-
conformal index for theories with four supercharges in four-dimensional (N = 1)
and in three-dimensional (N = 2)9. The references for this introductory section
are [17, 21, 30, 47, 60].

For the benefit of readers unfamiliar with the field let us briefly summarize the
basic ingredients which they need to know about supersymmetric gauge theories
with four supercharges. These theories have a gauge group G and a global symmetry
group F . The gauge group multiplets belong to the adjoint representation of
G whereas matter multiplets belong to a suitable representation of G and F .
The supersymmetry algebra contains the U(1) R-symmetry which is in the same
supermultiplet as the stress-energy tensor. We choose R-charges to be r for all
fields and 1 for gauge fields.

Now let us consider a generic four-dimensional N = 1 superconformal theory
on S3 × S1. In presence of the conformal symmetry the number of supercharges is
doubled and the theory features supercharges Qα, Q̄α̇ and superconformal charges
Sα, S̄α̇, where α, α̇ = 1, 2 denotes the spins SU(2)1 × SU(2)2 of the isometry of S3.
To define the superconformal index we pick one of the supercharges, say Q = Q̄1
and its conjugate Q† = −S̄1, which satisfies the following relation10

(3.1) {Q,Q†} = E − 2J̄3 −
3
2R

8Note that the integral identity presented here was observed by Rahman in [35] as a special
case of the integral found in [32]. This integral is an extension of the well-known Askey–Wilson
integral [5]. If we let the q tend to 1 one obtains the corresponding ordinary hypergeometric
function.

9Here N denotes the amount of supersymmetry. There are many interesting theories with
extended supersymmetry, however discussion of those theories is beyond the aim of the present
work.

10For the full algebra, see e.g. [47].
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The four-dimensional N = 1 superconformal index is defined11 as [38]

(3.2) I({ti}, p, q) = Tr
[
(−1)F e−β{Q,Q

†}pR/2+J̄3+J3qR/2+J̄3−J3
∏

tFii

]
where p and q are the complex fugacities, Fi are the Cartan generators of the global
symmetry group12, and ti are additional regulators (fugacities) corresponding to
the global symmetry. The trace is taken over the full Hilbert space of the theory
on S3, however, only states obeying {Q,Q†} = 0 contribute to the index.

As a rule, in the definition of the superconformal index by global symmetries
one means the continuous symmetries of the theory. In principle, one can define
such an index which respects also discrete symmetries, see e.g. [61].

The superconformal index can be computed in the free field limit by using
representations of the superconformal algebra and group-theoretical data of a
theory [37, 38]. Dolan and Osborn discovered [10] that the superconformal index of
four-dimensional N = 1 theory can be expressed in terms of elliptic hypergeometric
integrals. We will come back to this observation in the next section.

Next we consider the superconformal index of three-dimensional N = 2 super-
conformal field theories. The superconformal index in this case is defined [7, 28, 30]
in a similar way to (3.2) as

(3.3) I({ti}, q) = Tr
[
(−1)F e−β{Q,Q

†}q
1
2 (∆+j3)

∏
i=1

tFii

]
,

where {Q,Q†} = ∆−R−j3, ∆, j3 and R are the energy, the third component of the
angular momentum on two-sphere and the R-charge, respectively. The fugacities ti
are associated with the flavor group.

In the case of three dimensions the superconformal index has the form of a basic
hypergeometric function. We will discuss an example in Section 5.

4. Seiberg duality via elliptic hypergeometric functions

The superconformal index technique provides the most rigorous mathematical
check of various supersymmetric dualities in various dimensions and it is the main
tool for establishing new dualities as well.

In the 1990’s Seiberg [42] and many others found a non-trivial quantum equiva-
lence between different supersymmetric theories, called supersymmetric duality13.
To be more precise it was shown that two (or more) different theories may describe
the same physics in their infrared fixed points. The identification of superconformal
indices of such dual theories gives highly non-trivial integral identities for elliptic
hypergeometric functions.

11Note that one can define the twisted partition function on S3 × S1 for any supersymmetric
theory. In case that theory flows to a superconformal field theory in infrared regime, the partition
function computes the superconformal index. Since we define the index for a radially quantized
theory one can use the so-called supersymmetric localization technique [34] to compute it.

12All the generators Fi of global charges commute with Q and Q†.
13Widely known as Seiberg duality.
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As an example, let us consider the initial Seiberg duality for supersymmetric
quantum chromodynamics [10, 20, 45]. The following two theories flow to the same
limit in the infrared asymptotics:
• Theory A: with SU(2) gauge group and quark superfields in the fundamen-

tal representation of the SU(6) flavor group. This theory has the following
superconformal index

(4.1) (p; p)∞(q; q)∞
2

∫
T

∏6
j=1 Γ((pq) 1

6 tjz; p, q)Γ((pq) 1
6 tjz

−1; p, q)
Γ(z2; p, q)Γ(z−2; p, q)

dz

2πiz

where the numerator is the contribution of chiral multiplets and the denomi-
nator is the contribution of a vector multiplet. The integration over the gauge
group picks up gauge-invariant states.

• Theory B: with the same flavor group and without gauge degrees of free-
dom, the matter sector contains meson supermultiplets in 15-dimensional
antisymmetric SU(6)-tensor representation of the second rank. The index of
this theory is

(4.2)
∏

1≤i<j≤6
Γ(titj ; p, q) .

Since the theories described above are equivalent in their infrared conformal
fixed points, their superconformal indices must match. In fact the identity (2.6)
shows the identification of the superconformal indices (4.1) and (4.2). In general,
the identification of superconformal indices of dual theories in four dimensions is
nothing but the Weyl symmetry transformations for certain elliptic hypergeometric
functions.

Now we want to point out some other key features of the superconformal index
using the properties of elliptic hypergeometric functions.

The superconformal index of a theory with a flavor group F has the Weyl group
symmetry W (F ). The Weyl symmetry of the flavor group refers to the symmetry
with respect to the exchange of the flavors defined in the suitable representation of
the flavor group. In cases when the theory has a hidden symmetry, the coefficients
in the decomposition of the superconformal index into characters of the flavor
group give the sums of dimensions of irreducible representations of the larger
symmetry group. One can use this property to study global symmetry enhancement
in supersymmetric gauge theories.

In our example the superconformal index (4.1) has the Weyl group of the
exceptional root system E6. It means that the theory with flavor group SU(6) can
be extended to E6 symmetry. Indeed this is a manifestation of the four-dimensional
boundary model coupled to the free five-dimensional hypermultiplet with the
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enhanced E6 flavor symmetry [20]14

I4d/5d =
∏

1≤i<j≤6

1(
(pq) 2

3 (titj)−1; p, q
)
∞

6∏
i=1

1(
(pq) 1

3 t−1
i w±1; p, q

)
∞

× (p, p)∞(q, q)∞
2

∮
dz

2πiz

∏6
i=1 Γ( 6

√
pqtiz; p, q)Γ( 6

√
pqtiz

−1; p, q)
Γ(z2; p, q)Γ(z−2; p, q) ,(4.3)

where we introduced the shorthand notation

(4.4) (z; p, q) :=
∏
i,j=0

(1− zpiqj) .

In the expression (4.3) the term

(4.5)
∏

1≤i<j≤6

1(
(pq) 2

3 (titj)−1; p, q
)
∞

6∏
i=1

1(
(pq) 1

3 t−1
i w±1; p, q

)
∞

corresponds to the contribution of the five-dimensional hypermultiplet. By setting
all flavor fugacities to 1 and redefining p = t3y, q = t3y−1 one can easily read off
the E6 symmetry of the superconformal index

(4.6) I4d/5d = 1 + 27t2 + 378t4 + 3653t6 + 27t5(y−1 + y) + . . .

The coefficient 27 is the dimension of the irreducible representation of E6 and the
coefficients 378 and 3653 are sums of dimensions of irreducible representations of
E6.

There is another very interesting observation made by Spiridonov and Vartanov
in [48]. It turns out that all ’t Hooft anomaly matching conditions for dual theories
can be derived from SL(3,Z)–modular transformation properties of the kernels of
dual superconformal indices. Unfortunately, a clear understanding of this relation
is not known yet.

5. Mirror duality via basic hypergeometric integrals

In this section we will discuss mirror symmetry in three dimensions as an example
of a three-dimensional supersymmetric duality. Mirror symmetry means that the
infrared limit of one 3d N = 2 (or N = 4) theory is the same as the infrared
limit of another N = 2 supersymmetric gauge theory. As in the Seiberg duality,
the mirror dual theories have the same flavor symmetries, however different gauge
groups. One of the novelties that appears in three dimensions, compared to four, is
that the superconformal index includes sum over monopole charges.

Let us consider the following two theories which are dual under the mirror
symmetry [1, 8, 26]:

14This work was inspired by the paper [9] where a similar analysis was performed for the
theory with 4 flavors (see also [43]).
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• Theory A: three-dimensional N = 2 supersymmetric field theory with U(1)
gauge group and one flavor. The superconformal index of this theory has the
following form [18, 24, 30]

(5.1)
∑
m∈Z

q|m|/3
∫

T

dz

2πiz
(q5/6+|m|/2z; q)∞(q5/6+|m|/2z−1; q)∞
(q1/6+|m|/2z; q)∞(q1/6+|m|/2z−1; q)∞

where the sum is over monopole charges m.
• Theory B: the free Wess–Zumino theory with three chiral multiplets, without

gauge degrees of freedom. The index of the theory is given by the simpler
expression

(5.2)
( (q2/3; q)∞

(q1/3; q)∞

)3

The duality of the theories leads to the following integral identity for the basic
hypergeometric integrals

(5.3)
∑
m∈Z

q|m|/3
∫

T

dz

2πiz
(q5/6+|m|/2z; q)∞(q5/6+|m|/2z−1; q)∞
(q1/6+|m|/2z; q)∞(q1/6+|m|/2z−1; q)∞

=
( (q2/3; q)∞

(q1/3; q)∞

)3

We refer the reader to the work [30] for the details and the mathematical proof of
this identity. One can obtain more complicated identities for basic hypergeometric
integrals by considering other three-dimensional dualities, see, e.g. [16, 17, 18,
19, 30]. These identities are interesting for many reasons. They are related to
partition functions for non-supersymmetric Chern-Simons theories, knot invariants,
integrability, etc.

6. Reduction and hyperbolic hypergeometric integrals

In this section we will sketch of the reduction of the four-dimensional supercon-
formal index to three-dimensional partition function [11, 15, 23].

Consider the reduction of four-dimensional N = 1 theory along S1 (or R) with
a twisted boundary condition. As a result we obtain a three-dimensional N = 2
theory on the squashed sphere

(6.1) S3
b := { b2|z1|2 + b−2|z2|2 = 1 , (z1, z2) ∈ C2} ,

where b is the squashing parameter. In the reduction procedure the superconfor-
mal index reduces to the partition function on squashed three-sphere. From the
perspective of special functions the essential step in the reduction is scaling the
fugacities as

(6.2) p = e2πivω1 , q = e2πivω2 , z = e2πivu , ti = e2πivαi .

and then taking the limit v → 0 of the 4d superconformal index. This procedure
turns the elliptic gamma function into the hyperbolic gamma function

(6.3) Γ(e2πivz; e2πivω1 , e2πivω2) → e−πi(2z−(ω1+ω2))/24vω1ω2 γ(2)(z;ω1, ω2)
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where γ2(z;ω1, ω2) denotes the hyperbolic gamma function15

(6.4) γ(2)(u;ω1, ω2) = e−
iπ
2 B2,2(u;ω1,ω2) (e2πiu/ω1e−2πiω2/ω1 ; e−2πiω2/ω1)∞

(e2πiu/ω2 ; e2πiω1/ω2)∞
,

and B2,2(u;ω1, ω2) is the second order Bernoulli polynomial

(6.5) B2,2(u;ω1, ω2) = u2

ω1ω2
− u

ω1
− u

ω2
+ ω1

6ω2
+ ω2

6ω1
+ 1

2 .

An integral over the hyperbolic gamma functions is called a hyperbolic hypergeo-
metric integral. Note that the hyperbolic hypergeometric integral is well-defined
also for |q| = 1 (where q = e2πiω1/ω2). Recently non-trivial identities for this type
of integrals have been studied in the mathematical literature, see, e.g. [52, 54].

As an example, let us consider the following duality [25]:
• Theory A: four-dimensional N = 1 theory with the gauge group SP (2N) and

flavor group SU(2Nf ), with matter X in the (N(2N − 1)/2− 1)-dimensional
traceless antisymmetric tensor representation of the gauge group and 2Nf
chiral fields Q in the fundamental representation of SP (2N) and SU(2Nf ).
The field content with global charges is given in the following table

SP (2N) SU(2Nf ) U(1)R
Q f f 2r = 1− 2(N+K)

(K+1)Nf
X TA 1 2s = 2

K+1

Matter content of the Theory A with the R charge assignment.

• Theory B: the theory with the gauge group SP (2Ñ), where Ñ = K(Nf −
2)−N, K = 1, 2, . . .; with matter Y in the antisymmetric traceless repre-
sentation of the gauge group, 2Nf chiral superfields q in the fundamental
representation of the gauge group and anti-fundamental representation of the
flavor group and gauge singlets Mj , where j = 1, . . . ,K. The field content
with global charges is given in the following table

SP (2Ñ) SU(2Nf ) U(1)R
q f f 2r̃ = 1− 2(Ñ+K)

(K+1)Nf
Y TA 1 2s = 2

K+1

Mj 1 TA 2rj = 2K+j
K+1 − 4 Ñ+K

(K+1)Nf

Matter content of the Theory B with the R charge assignment.

15It is related to the quantum dilogarithm [44].
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Indeed, defining U = (pq)s = (pq)
1

K+1 , we find the following superconformal
indices for these theories [47]

IA = (p; p)N∞(q; q)N∞
2NN ! Γ(U ; p, q)N−1

(6.6)

×
∫

TN

∏
1≤i<j≤N

Γ(Uz±1
i z±1

j ; p, q)
Γ(z±1

i z±1
j ; p, q)

N∏
j=1

∏2Nf
i=1 Γ(siz±1

j ; p, q)
Γ(z±2

j ; p, q)

N∏
j=1

dzj
2πizj

,

IB = (p; p)Ñ∞(q; q)Ñ∞
2Ñ Ñ !

Γ(U ; p, q)Ñ−1
K∏
l=1

∏
1≤i<j≤2Nf

Γ(U l−1sisj ; p, q)

(6.7)

×
∫

TÑ

∏
1≤i<j≤Ñ

Γ(Uz±1
i z±1

j ; p, q)
Γ(z±1

i z±1
j ; p, q)

Ñ∏
j=1

∏2Nf
i=1 Γ(Us−1

i z±1
j ; p, q)

Γ(z±2
j ; p, q)

Ñ∏
j=1

dzj
2πizj

,

where the balancing condition reads U2(N+K)∏2Nf
i=1 si = (pq)Nf . The duality leads

to the identity IA = IB. By taking the limit (6.3) and canceling the identical
“infinite” factors16 we obtain the following non-trivial identity for the hyperbolic
hypergeometric integrals [21]:

1
2NN !

γ(ω1+ω2
K+1 )N−1

∫ i∞

−i∞

∏
1≤i<j≤N

γ(ω1+ω2
K+1 ±ui±uj)
γ(±ui±uj)

N∏
j=1

∏2(Nf−1)
i=1 γ(αi±uj)

γ(±2uj)
duj

i√ω1ω2

= 1
2Ñ Ñ !

γ(ω1+ω2
K+1 )Ñ−1

K∏
l=1

γ
(

(ω1+ω2)
(
Nf− 2N+2K−l+1

K+1

)
−
∑2(Nf−1)

i=1
αi

)
×

K∏
l=1

∏
1≤i<j≤2(Nf−1)

γ
(

(l−1)ω1+ω2
K+1 +αi+αj

)

×
∫ i∞

−i∞

∏
1≤i<j≤Ñ

γ(ω1+ω2
K+1 ±ui±uj)
γ(±ui±uj)

Ñ∏
j=1

∏2(Nf−1)
i=1 γ(ω1+ω2

K+1 −αi±uj)
γ(±2uj)

Ñ∏
j=1

duj
i√ω1ω2

.

(6.8)

where for convenience we used the shorthand γ(u) := γ(2)(u;ω1, ω2).

7. Conclusions

Recent progress in supersymmetric gauge theories have significant implications
for mathematics. In these short notes, we presented relationships between partition
functions for supersymmetric gauge theories on curved space-times and hypergeo-
metric integrals. In particular, we focused on application of hypergeometric integral

16We also integrated out one flavor.
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identities to the verification of supersymmetric dualities. This connection can open
up many interesting directions for the future research.
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