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ON JACOBI FIELDS AND A CANONICAL CONNECTION

IN SUB-RIEMANNIAN GEOMETRY

Davide Barilari and Luca Rizzi

Abstract. In sub-Riemannian geometry the coefficients of the Jacobi equa-
tion define curvature-like invariants. We show that these coefficients can be
interpreted as the curvature of a canonical Ehresmann connection associated
to the metric, first introduced in [15]. We show why this connection is naturally
nonlinear, and we discuss some of its properties.

1. Introduction

A key tool for comparison theorems in Riemannian geometry is the Jacobi
equation, i.e. the differential equation satisfied by Jacobi fields. Assume γε is a
one-parameter family of geodesics on a Riemannian manifold (M, g) satisfying

(1) γ̈kε + Γkij(γε)γ̇iεγ̇jε = 0 .

The corresponding Jacobi field J = ∂
∂ε

∣∣
ε=0 γε is a vector field defined along γ = γ0,

and satisfies the equation

(2) J̈k + 2Γkij J̇ iγ̇j +
∂Γkij
∂x`

J`γ̇iγ̇j = 0 .

The Riemannian curvature is hidden in the coefficients of this equation. To make it
appear explicitly, however, one has to write (2) in terms of a parallel transported
frame X1(t), . . . , Xn(t) along γ(t). Letting J(t) =

∑n
i=1 Ji(t)Xi(t) one gets the

following normal form:
(3) J̈i +Rij(t)Jj = 0 .

Indeed the coefficients Rij are related with the curvature R∇ of the unique linear,
torsion free and metric connection ∇ (Levi-Civita) as follows

Rij = g(R∇(Xi, γ̇)γ̇, Xj) .
Eq. (3) is the starting point to prove many results in Riemannian geometry. In
particular, bounds on the curvature (i.e. on the coefficients R, or its trace) have
deep consequences on the analysis and the geometry of the underlying manifold.
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In the sub-Riemannian setting this construction cannot be directly generalized.
Indeed, the analogous of the Jacobi equation is a first-order system on the cotangent
bundle that cannot be written as a second-order equation on the manifold. Still one
can put it in a normal form, analogous to (3), and study its coefficients [15]. These
appear to be the correct objects to bound in order to control the behavior of the
geodesic flow and get comparison-like results (see for instance [10, 7]). Nevertheless
one can wonder if these coefficients can arise, as in the Riemannian case, as the
curvature of a suitable connection. We answer to this question, by showing that
these coefficients are part of the curvature of a nonlinear canonical Ehresmann
connection associated with the sub-Riemannian structure. In the Riemannian case
this reduces to the classical, linear, Levi-Civita connection.

1.1. The general setting. A sub-Riemannian structure is a triple (M,D, g) where
M is smooth n-dimensional manifold, D is a smooth, completely non-integrable
vector sub-bundle of TM and g is a smooth scalar product on D. Riemannian
structures are included in this definition, taking D = TM . The sub-Riemannian
distance is the infimum of the length of absolutely continuous admissible curves
joining two points. Here admissible means that the curve is almost everywhere
tangent to the distribution D, in order to compute its length via the scalar product
g. The totally non-holonomic assumption on D implies, by the Rashevskii-Chow
theorem, that the distance is finite on every connected component of M , and the
metric topology coincides with the one of M . A more detailed introduction on
sub-Riemannian geometry can be found in [12, 2, 13, 8].

In Riemannian geometry, it is well-known that the geodesic flow can be seen as a
Hamiltonian flow on the cotangent bundle T ∗M , associated with the Hamiltonian

H(p, x) = 1
2

n∑
i=1
〈p,Xi(x)〉2 , (p, x) ∈ T ∗M ,

where X1, . . . , Xn is any local orthonormal frame for the Riemannian structure,
and the notation 〈p, v〉 denotes the action of a covector p ∈ T ∗xM on a vector
v ∈ TxM . In the sub-Riemannian case, the Hamiltonian is defined by the same
formula, where the sum is taken over a local orthonormal frame X1, . . . , Xk for D,
with k = rankD. The restriction of H to each fiber is a degenerate quadratic form,
but Hamilton’s equations are still defined. These can be written as a flow on T ∗M

λ̇ = ~H(λ) , λ ∈ T ∗M ,

where ~H is the Hamiltonian vector field associated with H. This system cannot be
written as a second order equation on M as in (1). The projection π : T ∗M →M
of its integral curves are geodesics, i.e. locally minimizing curves. In the general
case, some geodesics may not be recovered in this way. These are the so-called
strictly abnormal geodesics [11], and they are related with hard open problems in
sub-Riemannian geometry [1].

In what follows, with a slight abuse of notation, the term “geodesic” refers to
the not strictly abnormal ones.
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An integral line of the Hamiltonian vector field λ(t) = et
~H(λ) ∈ T ∗M , with

initial covector λ is called extremal. Notice that the same geodesic may be the
projection of two different extremals. For these reasons, it is convenient to see the
Jacobi equation as a first order equation for vector fields on T ∗M , associated with
an extremal, rather then a second order system on M , associated with a geodesic.

2. Jacobi equation revisited

For any vector field V (t) along an extremal λ(t) of the sub-Riemannian Hamil-
tonian flow, a dot denotes the Lie derivative in the direction of ~H:

V̇ (t) := d

dε

∣∣∣∣
ε=0

e−ε
~H

∗ V (t+ ε) .

A vector field J (t) along λ(t) is called a sub-Riemannian Jacobi field if it satisfies

(4) J̇ = 0 .

The space of solutions of (4) is a 2n-dimensional vector space. The projections
J = π∗J are vector fields on M corresponding to one-parameter variations of
γ(t) = π(λ(t)) through geodesics; in the Riemannian case, they coincide with the
classical Jacobi fields.

We intend to write (4) using the natural symplectic structure σ of T ∗M . First,
observe that on T ∗M there is a natural smooth sub-bundle of Lagrangian1 spaces:

Vλ := kerπ∗|λ = Tλ
(
T ∗π(λ)M

)
.

We call this the vertical subspace. Then, pick a Darboux frame {Ei(t), Fi(t)}ni=1
along λ(t). It is natural to assume that E1, . . . , En belong to the vertical subspace.
To fix the ideas, one can think at the canonical basis {∂pi |λ(t), ∂xi |λ(t)} induced by
a choice of coordinates (x1, . . . , xn) on M .

In terms of this frame, J (t) has components (p(t), x(t)) ∈ R2n:

J (t) =
n∑
i=1

pi(t)Ei(t) + xi(t)Fi(t) .

The elements of the frame satisfy

(5)
(
Ė
Ḟ

)
=
(
C1(t)∗ −C2(t)
R(t) −C1(t)

)(
E
F

)
,

for some smooth families of n×n matrices C1(t), C2(t), R(t), where C2(t) = C2(t)∗
and R(t) = R(t)∗. We stress that the particular structure of the equations is implied
solely by the fact that the frame is Darboux, that is

σ(Ei, Ej) = σ(Fi, Fj) = σ(Ei, Fj)− δij = 0 , i, j = 1, . . . , n .

1A Lagrangian subspace L ⊂ Σ of a symplectic vector space (Σ, σ) is a subspace with
dimL = dim Σ/2 and σ|L = 0.
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Moreover, C2(t) ≥ 0 as a consequence of the non-negativity of the sub-Riemannian
Hamiltonian. To see this, for a bilinear form B : V × V → R and n-tuples v, w ∈ V
let B(v, w) denote the matrix B(vi, wj). With this notation

C2(t) = σ(Ė, E)|λ(t) = 2H(E,E)|λ(t) ≥ 0 ,
where we identified Vλ(t) ' T ∗γ(t)M and we see the Hamiltonian as a symmetric
bilinear form on fibers. In the Riemannian case, C2(t) > 0. In turn, the Jacobi
equation, written in terms of the components (p(t), x(t)), becomes

(6)
(
ṗ
ẋ

)
=
(
−C1(t) −R(t)
C2(t) C1(t)∗

)(
p
x

)
.

In the Riemannian case one can choose a suitable frame to simplify (6) as much
as possible. Let X1, . . . , Xn be a parallel transported frame along the geodesic γ(t).
Let hi : T ∗M → R be the fiber-wise linear functions, defined by hi(λ) := 〈λ,Xi〉.
Indeed h1, . . . , hn define coordinates on each fiber, and the vectors ∂hi . We define
a moving frame along the extremal λ(t) as follows

Ei := ∂hi , Fi := −Ėi .
One can recover the original parallel transported frame by projection, namely
π∗Fi|λ(t) = Xi|γ(t). We state here the properties of the moving frame.

Proposition 2.1. The smooth moving frame {Ei, Fi}ni=1 satisfies:
(i) π∗Ei|λ(t) = 0.
(ii) It is a Darboux basis, namely

σ(Ei, Ej) = σ(Fi, Fj) = σ(Ei, Fj)− δij = 0 , i, j = 1, . . . , n .
(iii) The frame satisfies the structural equations

Ėi = −Fi , Ḟi =
n∑
j=1

Rij(t)Ej ,

for some smooth family of n× n symmetric matrices R(t).
If {Ẽi, F̃j}ni=1 is another smooth moving frame along λ(t) satisfying (i)–(iii), for
some matrix R̃(t) then there exist a constant, orthogonal matrix O such that

Ẽi|λ(t) =
n∑
j=1

OijEj |λ(t), F̃i|λ(t) =
n∑
j=1

OijFj |λ(t) , R̃(t) = OR(t)O∗.

Thanks to this proposition, the symmetric matrix R(t) induces a well defined
quadratic form Rλ(t) : Tγ(t)M × Tγ(t)M → R

Rλ(t)(v, v) :=
n∑

i,j=1
Rij(t)vivj , v =

n∑
i=1

viXi|γ(t).

Indeed one can prove that
(7) Rλ(t)(v, v) = g(R∇(v, γ̇)γ̇, v), v ∈ Tγ(t)M.
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The proof is a standard computation that can be found, for instance, in [7, Appendix
C]. Then, in the Jacobi equation (6), one has C1(t) = 0, C2(t) = I (in particular,
they are constant matrices), and the only non-trivial block R(t) is the curvature
operator along the geodesic:

ẋ = p , ṗ = −R(t)x ,

3. The sub-Riemannian case

The problem of finding a set of Darboux frames normalizing the Jacobi equation
has been first studied by Agrachev-Zelenko in [5, 6] and subsequently completed by
Zelenko-Li in [15] in the general setting of curves in the Lagrange Grassmannian.
A dramatic simplification, analogous to the Riemannian one, cannot be achieved
in the general sub-Riemannian setting. Nevertheless, it is possible to find a normal
form of (6) where the matrices C1 and C2 are constant. Moreover, the very block
structure of these matrices depends on the geodesic and already contains important
geometric invariants, that we now introduce.

3.1. Geodesic flag and Young diagram. Let γ(t) be a geodesic. Recall that
γ̇(t) ∈ Dγ(t) for every t. Consider a smooth admissible extension of the tangent
vector, namely a vector field T ∈ Γ(D) such that T|γ(t) = γ̇(t).

Definition 3.1. The flag of the geodesic γ(t) is the sequence of subspaces

F iγ(t) := span{LjT(X)|γ(t) | X ∈ Γ(D), j ≤ i− 1} ⊆ Tγ(t)M , ∀ i ≥ 1 ,
where LT denotes the Lie derivative in the direction of T.

By definition, this is a filtration of Tγ(t)M , i.e. F iγ(t) ⊆ F
i+1
γ(t), for all i ≥ 1.

Moreover, F1
γ(t) = Dγ(t). Definition 3.1 is well posed, namely does not depend on

the choice of the admissible extension T (see [3, Sec. 3.4]). The growth vector of
the geodesic γ(t) is the sequence of integer numbers

Gγ(t) := {dimF1
γ(t),dimF2

γ(t), . . .} .

A geodesic γ(t), with growth vector Gγ(t), is said
– equiregular if dimF iγ(t) does not depend on t for all i ≥ 1,
– ample if for all t there exists m ≥ 1 such that dimFmγ(t) = dimTγ(t)M .

Equiregular (resp. ample) geodesics are the microlocal counterpart of equiregular
(resp. bracket-generating) distributions. Let di := dimF iγ − dimF i−1

γ , for i ≥ 1,
be the increment of dimension of the flag of the geodesic at each step (with the
convention dimF0 = 0).

Lemma 3.2 ([3]). For an equiregular, ample geodesic, d1 ≥ d2 ≥ . . . ≥ dm.

The generic geodesic is ample and equiregular. More precisely, the set of points
x ∈ M such that there a exists non-empty Zariski open set Ax ⊆ T ∗xM of initial
covectors for which the associated geodesic is ample and equiregular with the same
(maximal) growth vector, is open and dense in M . See [3, 15] for more details.
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For an ample, equiregular geodesic we can build a tableau D with m columns of
length di, for i = 1, . . . ,m, as follows:

. . .

. . .
...

...
# boxes = di

Indeed
∑m
i=1 di = n = dimM is the total number of boxes in D.

Consider an ample, equiregular geodesic, with Young diagram D, with k rows,
of length n1, . . . , nk. Indeed n1 + . . . + nk = n. The moving frame we are going
to introduce is indexed by the boxes of the Young diagram. The notation ai ∈ D
denotes the generic box of the diagram, where a = 1, . . . , k is the row index, and
i = 1, . . . , na is the progressive box number, starting from the left, in the specified
row. We employ letters a, b, c, . . . for rows, and i, j, h, . . . for the position of the
box in the row.

level 1

level 1

level 2

level 1

level 2

level 3

(b) (c)(a)

Fig. 1: Levels (shaded regions) and superboxes (delimited by bold
lines) for the Young diagram of (a) Riemannian, (b) contact, (c) a
more general structure. The Young diagram for any Riemannian
geodesic has a single level and a single superbox.

We collect the rows with the same length in D, and we call them levels of the
Young diagram. In particular, a level is the union of r rows D1, . . . , Dr, and r is
called the size of the level. The set of all the boxes ai ∈ D that belong to the same
column and the same level of D is called superbox. We use Greek letters α, β, . . .
to denote superboxes. Notice that that two boxes ai, bj are in the same superbox
if and only if ai and bj are in the same column of D and in possibly distinct row
but with same length, i.e. if and only if i = j and na = nb (see Fig. 1).

The following theorem is proved in [15].

Theorem 3.3. Assume λ(t) is the lift of an ample and equiregular geodesic γ(t)
with Young diagram D. Then there exists a smooth moving frame {Eai, Fai}ai∈D
along λ(t) such that

(i) π∗Eai|λ(t) = 0.
(ii) It is a Darboux basis, namely

σ(Eai, Ebj) = σ(Fai, Fbj) = σ(Eai, Fbj) = δabδij , ai, bj ∈ D.
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(iii) The frame satisfies structural equations

(8)



Ėai = Ea(i−1) a = 1, . . . , k, i = 2, . . . , na,

Ėa1 = −Fa1 a = 1, . . . , k,

Ḟai =
∑
bj∈D Rai,bj(t)Ebj − Fa(i+1) a = 1, . . . , k, i = 1, . . . , na − 1,

Ḟana =
∑
bj∈D Rana,bj(t)Ebj a = 1, . . . , k,

for some smooth family of n× n symmetric matrices R(t), with components
Rai,bj(t) = Rbj,ai(t), indexed by the boxes of the Young diagram D. The matrix
R(t) is normal in the sense of [15] (see Appendix A).

If {Ẽai, F̃ai}ai∈D is another smooth moving frame along λ(t) satisfying (i)–(iii),
with some normal matrix R̃(t), then for any superbox α of size r there exists an
orthogonal constant r × r matrix Oα such that

Ẽai =
∑
bj∈α

Oαai,bjEbj , F̃ai =
∑
bj∈α

Oαai,bjFbj , ai ∈ α .

Remark 3.4. For a = 1, . . . , k, the symbol Ea denotes the na-dimensional column
vector Ea = (Ea1, Ea2, . . . , Eana)∗, with analogous notation for Fa. Similarly, E
denotes the n-dimensional column vector E = (E1, . . . , Ek)∗, and similarly for F .
Then, we rewrite the system (8) as follows (compare with (5))

(9)
(
Ė
Ḟ

)
=
(
C∗1 −C2
R(t) −C1

)(
E
F

)
,

where C1 = C1(D), C2 = C2(D) are n × n matrices, depending on the Young
diagram D, defined as follows: for a, b = 1, . . . , k, i = 1, . . . , na, j = 1, . . . , nb:

[C1]ai,bj := δabδi,j−1, , [C2]ai,bj := δabδi1δj1 .

It is convenient to see C1 and C2 as block diagonal matrices:

Ci(D) :=

Ci(D1)
. . .

Ci(Dk)

 , i = 1, 2,

the a-th block being the na × na matrices

C1(Da) :=
(

0 Ina−1
0 0

)
, C2(Da) :=

(
1 0
0 0na−1

)
,

where Im is the m×m identity matrix and 0m is the m×m zero matrix. Notice
that the matrices C1, C2 satisfy the Kalman rank condition

(10) rank{C2, C1C2, . . . , C
n−1
1 C2} = n .

Analogously, the matrices Ci(Da) satisfy (10) with n = na.
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Let {Xai}ai∈D be the moving frame along γ(t) defined by Xai|γ(t) = π∗Fai|λ(t),
for some choice of a canonical Darboux frame. Theorem 3.3 implies that the
following definitions are well posed.

Definition 3.5. The canonical splitting of Tγ(t)M is

Tγ(t)M =
⊕
α

Sαγ(t) , Sαγ(t) := span{Xai|γ(t) | ai ∈ α} ,

where the sum is over the superboxes α of D. Notice that the dimension of Sαγ(t) is
equal to the size r of the level to which the superbox α belongs.

Definition 3.6. The canonical curvature (along λ(t)), is the quadratic form
Rλ(t) : Tγ(t)M × Tγ(t)M → R whose representative matrix, in terms of the basis
{Xai}ai∈D, is Rai,bj(t). In other words

Rλ(t)(v, v) :=
∑

ai,bj∈D

Rai,bj(t)vaivbj , v =
∑
ai∈D

vaiXai|γ(t) ∈ Tγ(t)M .

We denote the restrictions of Rλ(t) on the appropriate subspaces by:

Rαβ
λ(t) : Sαγ(t) × S

β
γ(t) → R.

For any superbox α of D, the canonical Ricci curvature is the partial trace:

Ricαλ(t) :=
∑
ai∈α

Rαα
λ(t)(Xai, Xai) .

The Jacobi equation, written in terms of the components (p(t), x(t)) with respect
to a canonical Darboux frame {Eai, Fai}ai∈D, becomes(

ṗ
ẋ

)
=
(
−C1 −R(t)
C2 C∗1

)(
p
x

)
.

This is the sub-Riemannian generalization of the classical Jacobi equation seen as
first-order equation for fields on the cotangent bundle. Its structure depends on the
Young diagram of the geodesic through the matrices Ci(D), while the remaining
invariants are contained in the curvature matrix R(t). Notice that this includes the
Riemannian case, where D is the same for every geodesic, with C1 = 0 and C2 = I.

3.2. Homogeneity properties. For all c > 0, let Hc := H−1(c/2) be the Hamil-
tonian level set. In particular H1 is the unit cotangent bundle: the set of initial
covectors associated with unit-speed geodesics. Since the Hamiltonian function is
fiber-wise quadratic, we have the following property for any c > 0

(11) et
~H(cλ) = cect

~H(λ) ,

where, for λ ∈ T ∗M , the notation cλ denotes the fiber-wise multiplication by c.
Let Pc : T ∗M → T ∗M be the map Pc(λ) = cλ. Indeed α 7→ Peα is a one-parameter
group of diffeomorphisms. Its generator is the Euler vector field e ∈ Γ(V), and is
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characterized by Pc = e(ln c)e. We can rewrite (11) as the following commutation
rule for the flows of ~H and e:

et
~H ◦ Pc = Pc ◦ ect

~H .

Observe that Pc maps H1 diffeomorphically on Hc. Let λ ∈ H1 be associated
with an ample, equiregular geodesic with Young diagram D. Clearly also the
geodesic associated with λc := cλ ∈ Hc is ample and equiregular, with the same
Young diagram. This corresponds to a reparametrization of the same curve: in fact
λc(t) = et

~H(cλ) = c(λ(ct)), hence γc(t) = π(λc(t)) = γ(ct).

Theorem 3.7 (Homogeneity properties of the canonical curvature). For any
superbox α ∈ D, let |α| denote the column index of α. Denoting λc(t) = et

~H(cλ)
we have, for any c > 0

Rαβ
λc(t) = c|α|+|β|Rαβ

λ(ct) ,

Remark 3.8. In the Riemannian setting, D has only one superbox with |α| = 1
(see Fig. 1). Then Rλ := Rαα

λ(0) is homogeneous of degree 2 as a function of λ.

Theorem 3.7 follows directly from the next result and Definition 3.6. In the
next proposition, for any η ∈ T ∗M and c > 0, we denote with dηPc : Tη(T ∗M)→
Tcη(T ∗M) the differential of the map Pc, computed at η.

Proposition 3.9. Let λ ∈ H1 and {Eai, Fai}ai∈D be the associated canonical
frame along the extremal λ(t). Let c > 0 and define, for ai ∈ D

Ecai(t) := 1
ci

(dλ(ct)Pc)Eai(ct) , F cai(t) := ci−1(dλ(ct)Pc)Fai(ct) .

The moving frame {Ecai(t), F cai(t)}ai∈D ∈ Tλc(t)(T ∗M) is a canonical frame asso-
ciated with the initial covector λc = cλ ∈ Hc, with curvature matrix

(12) Rλ
c

ai,bj(t) = ci+jRλai,bj(ct) .

Proof. We check all the relations of Theorem 3.3. Indeed Pα sends fibers to fibers,
hence (i) is trivially satisfied. For what concerns (ii), let θ be the Liouville one-form,
and σ = dθ. Indeed P ∗c θ = cθ. Hence P ∗c σ = cσ. It follows that {Ecai(t), F cai(t)}ai∈D
is a Darboux frame at λc(t):

σλc(t)(Ecai(t), F cbj(t)) = 1
c (P ∗c σ)λ(t)(Eai(t), Fbj(t)) = δabδij ,

and similarly for the others Darboux relations.
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For what concerns (iii) (the structural equations), let ξ(t) be any vector field
along λ(t), and (dλ(t)Pc)ξ(ct) be the corresponding vector field along λc(t). Then

d

dε

∣∣∣∣
ε=0

e−ε
~H

∗ ◦ (dλ(t)Pc)ξ(c(t+ ε)) = d

dε

∣∣∣∣
ε=0

(e−ε ~H ◦ Pc)∗ξ(c(t+ ε))

= d

dε

∣∣∣∣
ε=0

(Pc ◦ e−cε
~H)∗ξ(c(t+ ε))

= c
d

dτ

∣∣∣∣
τ=0

(Pc ◦ e−τ
~H)∗ξ(ct+ τ)

= c(dλ(ct)Pc)ξ̇(ct) .
Applying the above identity to compute the derivatives of the new frame, and
using (8), one finds that {Ecai(t), F cai(t)}ai∈D satisfies the structural equations, with
curvature matrix given by (12). For example

Ḟ cai(t) = ci−1c(dλ(ct)Pc)Ḟai(ct)
= ci(dλ(ct)Pc)

[
Rλai,bj(ct)Ebj(ct)− Fa(i+1)(ct)

]
= ci

[
cjRλai,bj(ct)Ecbj(t)− c−iF ca(i+1)(t)

]
= ci+jRλai,bj(ct)Ecbj(t)− F ca(i+1)(t) ,

where we suppressed a summation over bj ∈ D. �

Proposition 3.3 defines not only a curvature, but also a (non-linear) connection,
in the sense of Ehresmann, that we now introduce.

4. Ehresmann curvature and curvature operator

For any smooth vector bundle N over M , let Γ(N) denote the smooth sections
of N . Recall that V := kerπ∗ ⊂ T (T ∗M) is the vertical distribution. An Ehresmann
connection on T ∗M is a smooth distribution H ⊂ T (T ∗M) such that

T (T ∗M) = H⊕ V .
We call H the horizontal distribution2. An Ehresmann connection H is linear if
Hcλ = (dλPc)Hλ for every λ ∈ T ∗M and c > 0.

For any X ∈ Γ(TM) there exists a unique horizontal lift ∇X in Γ(H) such that
π∗∇X = X.

Remark 4.1. A function h ∈ C∞(T ∗M) is fiber-wise linear if it can be written
as h(λ) = 〈λ, Y 〉, for some Y ∈ Γ(TM). Such an Y is clearly unique, and for this
reason we denote hY := λ 7→ 〈λ, Y 〉 the fiber-wise linear function associated with
Y ∈ Γ(TM). A connection ∇ is linear if, for every X ∈ Γ(TM), the derivation
∇X maps fiber-wise linear functions to fiber-wise linear functions. In this case,
we recover the classical notion of covariant derivative by defining ∇XY = Z if
∇XhY = hZ , where Y,Z ∈ Γ(TM).

2Note that this is a distribution on T ∗M , i.e. a sub-bundle of T (T ∗M) and should not be
confused with the sub-Riemannian distribution D, that is a subbundle of TM .
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We recall the definition of curvature of an Ehresmann connection [9].

Definition 4.2. The Ehresmann curvature of the connection∇ is the C∞(M)-linear
map R∇ : Γ(TM)× Γ(TM)→ Γ(V) defined by

R∇(X,Y ) = [∇X ,∇Y ]−∇[X,Y ] , X, Y ∈ Γ(TM) .

R∇ is skew-symmetric, namely R∇(X,Y ) = −R∇(Y,X). Notice that R∇ = 0 if
and only if H is involutive.

4.1. Canonical connection. Let γ(t) be a fixed ample and equiregular geodesic
with Young diagram D, projection of the extremal λ(t), with initial covector λ. Let
{Eai(t), Fai(t)} be a canonical frame along λ(t). For t = 0, this defines a subspace
at λ ∈ T ∗M , namely
(13) Hλ := span{Fai|λ}ai∈D , λ ∈ T ∗M .

Indeed this definition makes sense on the subset of covectors N ⊂ T ∗M associated
with ample and equiregular geodesics. In the Riemannian case, every non-trivial
geodesic is ample and equiregular, with the same Young diagram. Hence N = T ∗M \
H−1(0). A posteriori one can show that this connection is linear and can be extended
smoothly on the whole T ∗M . In the sub-Riemannian case, N ⊂ T ∗M \H−1(0).

In general, using the results of [3, Section 5.2] and [15, Section 5], one can prove
that N is open and dense in T ∗M . Moreover, the elements of the frame depend
rationally (in charts) on the point λ, hence H is smooth on N .

For simplicity, we assume that it is possible to extend H to a smooth distribution
on the whole T ∗M . This is indeed possible in some cases of interest: on corank 1
structures with symmetries [10] and on contact sub-Riemannian structures [4] (see
also [14] for fat structures). In the general case, we replace T ∗M with N .

Definition 4.3. The canonical Ehresmann connection associated with the sub-Rie-
mannian structure is the horizontal distribution H ⊂ T (T ∗M) defined by (13).

As a consequence of Proposition 3.9, H is non-linear, in general. However, if the
structure is Riemannian, one has Hcλ = (dλPc)Hλ and the connection is linear.

Proposition 4.4. Let H be the sub-Riemannian Hamitonian and H the canonical
connection. Then ∇XH = 0 for every X ∈ Γ(TM). Equivalently, ~H ∈ H.

Remark 4.5. The above condition is the compatibility of the canonical connection
with the sub-Riemannian metric. In the Riemannian setting, H is linear and this
condition can be rewritten, in the sense of covariant derivative, as ∇g = 0.

Proof. The equivalence of the two statements follows from the definition of Hamil-
tonian vector field and the fact that H is Lagrangian, by construction. Indeed

∇XH = dH(∇X) = σ( ~H,∇X).

Then we prove that ~H ∈ H. �

Lemma 4.6. Let e be the Euler vector field. Then ė = − ~H.
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Proof of Lemma 4.6. Let Ps = e(ln s)e be the dilation along the fibers. We have
the following commutation rule for the flows of ~H and e

P−s ◦ e−t
~H ◦ Ps = e−ts

~H .

Computing the derivative w.r.t. t and s at (t, s) = (0, 1) we obtain [ ~H, e] = −e,
that implies the statement. �

Lemma 4.7. Since e is vertical, then e = v(t)∗E(t) for some smooth v(t) ∈ Rn.
Accordingly with the decomposition of Remark 3.4, we set

v(t) = (v1(t), . . . , vk(t))∗ , with va(t) = (va1(t), . . . , vana(t))∗ .

Then v(t) is constant and we have

e =
∑
ai∈D
na=1

vaiEai .

Proof of Lemma 4.7. As a consequence of Lemma 4.6, ë = 0. Using the structu-
ral equations (9), we obtain

C∗1C2v − C2C1v − 2C2v̇ = 0 ,(14)

v̈ + 2C1v̇ + C2
1v −RC2v = 0 .(15)

We show that for any row index of the Young diagram a = 1, . . . , k

va =
{

(0, . . . , 0)∗ na > 1 ,

constant na = 1 .

Let us focus on (14). For each a = 1, . . . , k, we take its a-th block. By the block
structure of C1 and C2, this is

(16) C∗1C2va − C2C1va − 2C2v̇a = 0 , ∀ a = 1, . . . , k ,

where here C1 = C1(Da) and C2 = C2(Da). If na = 1, then C1 = 0 and C2 = 1.
In this case (16) implies va(t) = va is constant. Now let na > 1. In this case, the
particular form of C1, C2 for (16) yields

C∗1C2va = 0 , and C2C1va + 2C2v̇a = 0 , (na > 1) .

Indeed the kernel of C∗1 is orthogonal to the image of C2. Hence C∗1C2va = 0 implies
C2va = 0. In particular (16) is equivalent to

(17) C2va = 0 , C2C1va = 0 , (na > 1) .

More explicitly, va = (0, 0, va3, . . . , vana). For the case na = 2 this is sufficient to
completely determine va. In all the other cases, let us turn to (15). The latter does
not split immediately, as the curvature matrix R is not block-diagonal. However,



JACOBI FIELDS AND A CANONICAL CONNECTION IN SR GEOMETRY 89

let us consider a copy of (15) multiplied by C2C
i
1. For each a such that na > 2 we

consider its a-th block, obtaining the following:

C2C
i
1v̈a + 2C2C

i+1
1 v̇a + C2C

i+2
1 va − [C2C

i
1RC2v]a = 0 , (na > 2) .

We claim that [C2C
i
1RC2v]a = 0 if na > 2 and i < na − 2.

By setting the matrix [Rab]ij := Rai,bj , with ai, bj ∈ D (this is a block of R,
corresponding to the rows a, b of the Young diagram D), we compute

[C2C
i
1RC2v]a =

k∑
b,c,d=1

[C2C
i
1]abRbc[C2]cdvd =

k∑
b=1

(C2C
i
1)Rab(C2vb)

=
∑
nb=1

(C2C
i
1)Rab(C2vb) =

∑
nb=1

Ra(i+1),b1vb1 ,

where we used the block structure of the Ci’s and (17). The last sum involves only
Ra(i+1),b1 with nb = 1 and na > 2. If i < na − 2, then Ra(i+1),b1 is not in the last
2nb = 2 elements of Table 1, and vanishes by the normal conditions (see Appendix
A). Thus we have:

(18) C2C
i
1v̈a + 2C2C

i+1
1 v̇a + C2C

i+2
1 va = 0 , (na > 2 , i < na − 2) .

In particular using (17), and taking i = 0, . . . , na − 3 we see that (18) is equivalent
to C2C

i+2
1 va = 0 for all i = 0, . . . , na − 3. Combining all the cases

va ∈ ker{C2, C2C1, C2C
2
1 , . . . , C2C

na−1
1 } , (na > 1) .

This yields va = 0, by Kalman rank condition (10). �

Lemma 4.7 implies our statement since

~H = −ė = −
∑
ai∈D
na=1

vaiĖai =
∑
ai∈D
na=1

vaiFai ∈ H ,

where we used the structural equations (8) for the Eai’s with na = 1.

4.2. Relation with the canonical curvature. We now discuss the relation bet-
ween the curvature of the canonical Ehresmann connection and the sub-Riemannian
curvature operator. In what follows we denote by Rλ := Rλ(0), where λ(t) is the
extremal with initial datum λ. Then R extends to a well defined map

(19)
R : Γ(T ∗M)× Γ(TM)× Γ(TM)→ C∞(M) ,

(λ,X, Y ) 7→ Rλ(X,Y ) .

We stress that here the first argument is a section λ ∈ Γ(T ∗M).
Although R is C∞(M)-linear in the last two arguments by construction, it is

in general non-linear in the first argument, so it does not define a (1, 2) tensor.
Nevertheless, for any fixed section λ ∈ Γ(T ∗M), the restriction Rλ : Γ(TM) ×
Γ(TM)→ C∞(M) is a (0, 2) symmetric tensor.
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Theorem 4.8. Let R∇ : Γ(TM)×Γ(TM)→ Γ(V) be the curvature of the canonical
Ehresmann connection, and let R : Γ(T ∗M)× Γ(TM)× Γ(TM)→ C∞(M) be the
canonical curvature map (19). Then

(20) Rλ(X,Y ) = σλ(R∇(T, X),∇Y ) , ∀λ ∈ Γ(T ∗M) , X, Y ∈ Γ(TM) ,

where T = π∗ ~H|λ ∈ Γ(TM).

Proof. We evaluate the right hand side of (20) at the point x, for any fixed
section λ = λ(x) ∈ Γ(T ∗M). By linearity, it is sufficient to take X = Xai and
Y = Ybj , projections of a canonical frame Fai|λ, Fbj |λ at t = 0. Indeed, by definition,
∇Xai |λ = Fai|λ. Then

σλ(R∇(T, Xai),∇Xbj ) = σλ([∇T, Fai], Fbj) = σλ([ ~H,Fai], Fbj)
= σλ(Ḟai, Fbj) = Rλai,bj(0) .

Here we used the structural equations and that ~H ∈ H, thus ∇T = ~H. By definition
of canonical curvature map, we obtain the statement. �

Remark 4.9. For λ ∈ Γ(T ∗M), the corresponding tangent field T ∈ Γ(D) (
Γ(TM). Therefore, R recovers only part of the whole Ehresmann connection.

Remark 4.10 (On the Riemannian case). As we proved in (7), we have

Rλ(X,Y ) = R∇(T, X, Y,T) ,

where T = π∗ ~H|λ is the tangent vector associated with the covector λ. For com-
pleteness, let us recover the same formula by the r.h.s. of (20). Indeed, for any
vertical vector V ∈ Vλ and W ∈ Tλ(T ∗M), we have σλ(V,W ) = V (hπ∗W )|λ as one
can check from a direct computation. Thus the r.h.s. of (20) is

σλ([∇T,∇X ]−∇[T,X],∇Y ) =
(
∇T∇X(hY )−∇X∇T(hY )−∇[T,X](hY )

)
|λ

= h∇T∇XY−∇X∇TY−∇[T,X]Y (λ)
= 〈λ,∇T∇XY −∇X∇TY −∇[T,X]Y 〉
= g(∇T∇XY −∇X∇TY −∇[T,X]Y,T)
= R∇(T, X, Y,T) .

Appendix A. Normal condition for the canonical frame

Here we rewrite the normal condition for the matrix Rai,bj mentioned in Theorem
3.3 (and defined in [15]) according to our notation.

Definition A.1. The matrix Rai,bj is normal if it satisfies:
(i) global symmetry: for all ai, bj ∈ D

Rai,bj = Rbj,ai .

(ii) partial skew-symmetry: for all ai, bi ∈ D with na = nb and i < na

Rai,b(i+1) = −Rbi,a(i+1) .

(iii) vanishing conditions: the only possibly non vanishing entries Rai,bj satisfy
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(iii.a) na = nb and |i− j| ≤ 1,
(iii.b) na > nb and (i, j) belong to the last 2nb elements of Table 1.

Tab. 1: Vanishing conditions.

i 1 1 2 · · · ` ` `+ 1 · · · nb nb + 1 · · · na − 1 na
j 1 2 2 · · · ` `+ 1 `+ 1 · · · nb nb · · · nb nb

The sequence is obtained as follows: starting from (i, j) = (1, 1) (the first boxes
of the rows a and b), each next even pair is obtained from the previous one by
increasing j by one (keeping i fixed). Each next odd pair is obtained from the
previous one by increasing i by one (keeping j fixed). This stops when j reaches
its maximum, that is (i, j) = (nb, nb). Then, each next pair is obtained from the
previous one by increasing i by one (keeping j fixed), up to (i, j) = (na, nb). The
total number of pairs appearing in the table is nb + na − 1.
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