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TWO-SPINOR TETRAD AND LIE DERIVATIVES

OF EINSTEIN-CARTAN-DIRAC FIELDS

Daniel Canarutto

Abstract. An integrated approach to Lie derivatives of spinors, spinor connec-
tions and the gravitational field is presented, in the context of a previously pro-
posed, partly original formulation of a theory of Einstein-Cartan-Maxwell-Dirac
fields based on “minimal geometric data”: the needed underlying structure
is determined, via geometric constructions, from the unique assumption of a
complex vector bundle S �M with 2-dimensional fibers, called a 2-spinor
bundle. Any further considered object is assumed to be a dynamical field;
these include the gravitational field, which is jointly represented by a soldering
form (the tetrad) relating the tangent space TM to the 2-spinor bundle, and
a connection of the latter (spinor connection). The Lie derivatives of objects
of all considered types, with respect to a vector field X : M → TM , turn out
to be well-defined without making any special assumption about X, and fulfill
natural mutual relations.

Introduction

Lie derivatives of 4-spinors on curved spacetime have been studied by Kos-
mann [32] and others [15, 19, 35] by exploiting structure groups and their repre-
sentations in order to extend to spinors the notion of transport of tensor fields by
the local 1-parameter group associated with a vector field. A somewhat different
approach by Penrose and Rindler [43] recovers the Lie derivative of a 2-spinor from
the requirement that it is related to the usual Lie derivative through the Leibnitz
rule. A recent article [25] examined the relations among various approaches.

One key point about this topic is the “soldering” of the spinor and spacetime
geometries. Usually, the soldering is implicitely contained in the formalism; we
propose to make it explicit by means of a partly original formulation of tetrad
gravity, described in previous papers [2, 3], which yields an integrated treatment of
Einstein-Cartan-Maxwell-Dirac fields starting from minimal geometric data.

The so-called tetrad formalism [11, 12, 21, 22, 23, 24, 26, 46, 49, 50] could be just
regarded as using an orthonormal spacetime frame in order to describe gravitation.
A geometric refinement can be achieved by assuming a vector bundle H � M whose
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4-dimensional fibers are endowed with a Lorentz metric, and defining the tetrad as
a soldering form between H and the tangent bundle of M . This extra assumption,
apparently contrary to Ockam’s razor principle, can be actually turned into a free
benefit since H can be derived, by a geometric construction, from a complex vector
bundle S � M with 2-dimensional fibers. The same S naturally yields the bundle
W of 4-spinors together with the Dirac map H → EndW , and any other structure
needed for the aforementioned integrated field theory (length units included). The
tetrad itself replaces the spacetime metric g, and indeed it can be regarded as a
“square root” of g, while a connection of S naturally splits into “gravitational” and
“electromagnetic” contributions. The spacetime connection, on the other hand, is no
more regarded as a fundamental field but rather as a byproduct. The underlying
2-spinor formalism is compatible with the Penrose-Rindler formalism [42, 43], with
a few adjustments.

After an essential account of the above said setting we address the notions of
Lie derivatives of all involved fields with respect to a vector field X : M → TM . We
find that by explicitely taking the soldering form into account we are able to give
a natural definition of Lie derivative of a spinor of any type without imposing any
constraint on X (such as being Killing or conformal Killing). The usual notion of
Lie derivative of a Dirac spinor can be recovered as a special case.

Furthermore, as a consequence, the Lie derivative of the tetrad itself turns out
to be naturally defined too, and that exactly takes care of any discrepances with
usual approaches.

Then we address Lie derivatives of connections. We recall that the notion of the
Lie derivative of a linear connection of the tangent space of a manifold has been
known for a long time (see e.g. Yano [53], §I.4). The main use of that notion in the
literature deals with energy tensors in General Relativity [31, 41], possibly in the
disguised form of “deformations” of the spacetime connection [20, 33]. Exploiting
that concept, and using the Lie derivative of spinors, we introduce the Lie derivative
of the spinor connection, by a procedure that uses the soldering form and the
corresponding natural decompositions of the spaces of endomorphisms of S and H.
We state the fundamental relations among the various considered operations and
write down the basic coordinate formulas.

Finally we discuss the notion of a deformed theory of Einstein-Cartan-Dirac
fields.

1. Einstein-Cartan-Maxwell-Dirac fields using
“minimal geometric data”

The next four sections deal with purely algebraic constructions, whose only
ingredient is a 2-dimensional complex vector space S. Afterwards we’ll consider a
vector bundle S � M over a real 4-dimensional manifold M , where our construc-
tions can be performed fiberwise yielding various associated bundles and natural
maps. Any needed topological constraint will be implicitely assumed to hold.

Though most of the material in the next six sections can be found in previous
work [2, 3, 4], this not-to-short summary may be appropriate in order to make the
article’s context precise.
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1.1. Unit spaces and their rational powers. Though physical scales (or “di-
mensions”) are often dealt with in an informal way, a mathematically rigorous
treatment introduced in 1995 after an idea of M. Modugno [7, 30] has been exploi-
ted by various authors [28, 29, 38, 48, 51, 52], particularly in the context of the
“Covariant Quantum Mechanics” program. The basic concepts are unit spaces and
their rational powers. We summarize the main notions involved, observing that
while most of these look like a straightforward reformulation of standard multilinear
algebra, a thorough discussion of certain finer points is not trivial. Eventually,
however, the ensuing formalism turns out to allow a natural handling of similar
but differently scaled spaces, and also provides useful indications about geometric
constructions appropriate for physical theories.

A semi-vector space is defined to be a set equipped with an internal addition
map and multiplication by positive reals, fulfilling the usual axioms of vector
spaces except those properties which involve opposites and the zero element. In
particular, any vector space is a semi-vector space, as well as the subset of all
linear combinations over R+ of n independent assigned vectors. If A and B are
semi-vector spaces, the notion of a semi-linear map f : A → B is defined in an
obvious way; we then obtain the semi-vector space sLin(A,B) of all semi-linear
maps A→ B . In particular, the (semi-)dual space of a semi-vector space A is
defined to be the semi-vector space A∗ ≡ sLin(A,R+) .

A semi-vector space U is called a positive space, or a unit space, if the multipli-
cation R+×U→ U is a transitive left action of the group (R+, · ) on U. Thus a
positive space has no zero element. Moreover if b ∈ U then any other element u ∈ U
can be written as u0 b with u0 ∈ R+, namely a positive space can be regarded as a
1-dimensional semi-vector space.

If U and V are positive spaces, then the semi-vector space sLin(U,V) turns out
to be a positive space. In particular, sLin(U,U) is naturally isomorphic to R+,
since any semi-linear map f : U→ U is of the type f : u 7→ r u with r ∈ R+.

Let V and W be arbitrary real vector spaces of finite dimension. A map
U× V →W which is semi-linear with respect to the first factor and linear with
respect to the second factor is called sesqui-linear.

A (left) tensor product of a unit space U and a vector space V is defined to be a
vector space U⊗V along with a sesqui-linear map ⊗ : U× V → U⊗V fulfilling the
following universal property: if f : U×V →W is a sesqui-linear a map, then there is
a unique linear map f̃ : U⊗V →W such that f = f̃ ◦⊗ . It can be proved [30] that
the tensor product indeed exists, is unique up to a distinguished linear isomorphism
and is linearly generated by the image of the map ⊗ . In particular we obtain the
universal vector extension R⊗U of U , which turns out to be the disjoint union
R⊗U = U−∪{0}∪U+ , where U+ ≡ {1⊗u : u ∈ U} and U− ≡ {(−1)⊗u : u ∈ U}
are positive spaces.

If {bi} ⊂ V is a basis of V and b ∈ U , then it is not difficult to prove that
{b⊗ bi} is a basis of U⊗V . Thus dim(U⊗V ) = dimV . The right semi-tensor
product V ⊗U can be defined similarly, and turns out to be naturally isomorphic
to U⊗V ; thus we identify v⊗u ∈ V ⊗U with u⊗ v , getting the number-like
behavior of elements in positive spaces. If u ∈ U then the unique u−1 ∈ U∗ such
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that 〈u−1, u〉 = 1 , namely the dual element of u , can be regarded as the inverse of
u .

A (semi-)tensor product of positive spaces U and V is a positive space U⊗V
along with a semi-bilinear map ⊗ : U×V→ U⊗V, fulfilling the universal property
which is formally expressed as before. While the uniqueness of the semi-tensor
product is easily established, the proof of its existence, requiring the universal
vector extensions of U and V, is somewhat more involved [30]. Eventually one gets
natural semi-linear isomorphisms

R+⊗U ∼= U⊗R+ ∼= U , R⊗ (U⊗V) ∼= (R⊗U)⊗ (R⊗V) ,

V⊗U∗ ∼= sLin(U,V) , Tr: U⊗U∗ → R+ .

The semi-tensor product can be easily generalized to any number of factors, and
it turns out to be associative. By setting

Un ≡ U⊗ . . . ⊗U︸ ︷︷ ︸
n factors

, U0 ≡ R+ , U−1 ≡ U∗ ,

we get the notion of integer power Uq for any q ∈ Z . This notion can be extended
to rational powers by the following construction.

We say that a function f : U→ R+ is of degree α ∈ R if
f(r u) = rα f(u) ∀r ∈ R+ , u ∈ U .

The set Fα(U) of all such functions turns out to be a positive space. Note that
each element in Fα(U) is determined by the value it takes on any fixed element
in U . Conversely, each u ∈ U determines a distinguished element fu ∈ Fα(U) by
the rule fu(u) = 1 . In particular, F0(U) ∼= R+ and F1(U) ∼= U∗. If n ∈ N then
Fn(U) ∼= (U∗)n ≡ U−n. A natural semi-linear isomorphism F−1(U) ∼= U∗∗ ∼= U is
determined by the identification of f ∈ F−1(U) with u−1, where u ∈ U is charac-
terized by f(u) = 1 . More generally, F−α(U) ∼= Fα(U∗). We’ll use the convenient
shorthand

Uα ≡ F−α(U) .
If u ∈ U then uα is defined to be the unique element in Uα such that uα(u−1) = 1 .

If n ∈ N then we have a natural semi-linear isomorphism
(U1/n)n ≡ U1/n⊗ . . . ⊗U1/n︸ ︷︷ ︸

n factors

↔ U : u1/n⊗ . . . ⊗u1/n ↔ u .

Then we are led to regard the positive space U1/n ≡ F1/n(U∗) as the n-root of U .
We find that rational powers of positive spaces behave quite naturally, since for
any p, q ∈ Q one has

(Uq)p ∼= Up q , Up⊗Uq ∼= Up+q .

In particular, (Uq)∗ ∼= (U∗)q .
In many physical theories it is convenient to assume the space T of time units,

the space L of length units, and the space M of mass units, and construct any other
needed scale space as S = Td1 ⊗Ld2 ⊗Md3 with di ∈ Q . Two sections σ : M → E
and σ′ : M → S⊗E of differently scaled vector bundles can be compared by means
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of a coupling constant s ∈ S. In an unscaled frame, the components of an S-scaled
section are valued into S⊗R . In particular we have the speed of light c ∈ T−1⊗L
and Planck’s constant ~ ∈ T−1⊗L2⊗M . Together, these determine isomorphisms
T ∼= L and M ∼= L−1, so we can actually reduce all scale spaces to powers of L ; this
amounts to the so-called natural system, corresponding to the setting c = ~ = 1.
Then, in particular, a mass is an element m ∈ L−1 and, in Einstein spacetime
(M, g), we identify the bundle M⊗L2⊗T−1⊗T∗M of 4-momenta with T∗M .

1.2. Two-spinor algebra and Lorentzian geometry. Let V be a finite-dimen-
sional complex vector space. We denote by V ∗ and V ∗ the associated dual and
anti-dual spaces, namely the complex vector spaces of all linear and anti-linear
maps f : V → C, respectively (the latter fulfilling f(cv) = c̄ f(v), c ∈ C). Then we
obtain a natural conjugation map

V ∗ → V ∗ : f 7→ f̄ ,

f̄(v) ≡ f(v) , v ∈ V .

Accordingly we consider a further complex vector space associated with V , that is
the conjugate space V , defined to be the dual space of V ∗. We actually obtain the
natural isomorphism

V ≡ V ∗∗ ∼= V ∗∗ ,

since the conjugate v̄ ∈ V ∗∗ of any v ∈ V ∼= V ∗∗ can be regarded as the anti-linear
map

V ∗ → C : f 7→ v̄(f) ≡ f(v) ≡ f̄(v) .

Summarizing, conjugation determines anti-isomorphisms V ↔ V and V ∗ ↔ V ∗.
Using conjugation together with transposition we also obtain an antilinear involution
of V ⊗V , determining a decomposition into the direct sum of the real eigenspaces
corresponding to eigenvalues ±1 , namely

V ⊗V = H(V ⊗V )⊕ i H(V ⊗V ) ;

these are respectively called the Hermitian and anti-Hermitian subspaces of V ⊗V .
A basis

(
bα
)

of V yields the conjugate basis
(
b̄α̇
)

of V . The conjugate v̄ ∈ V
of an element v = vα bα ∈ V has then the basis expression v̄ = v̄α̇ b̄α̇, where the
components v̄α̇ are the complex conjugate1 of the vα. Hermitian tensors w ∈ V ⊗V
are characterized by the condition that their components, in any basis, fulfill
w̄α̇ α = wαα̇.

The notion of Hermitian decomposition is the source of much of the rich algebraic
structure which can be extracted from a 2-dimensional complex vector space S
without any further assumption – the relation to a formalism more familiar to
physicists can be seen by using a basis

(
ξA
)

of S. We distinguish a few steps.

1Distinguishing conjugate components by dotted indices is a handy, commonly used notation,
somewhat analogous to distinguishing covariant and contravariant indices by their position.
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•We start by observing that the antisymmetric subspace ∧2S ⊂ S⊗S is a 1-dimen-
sional complex vector space, so that the Hermitian subspace of ∧2S⊗∧2S is a real
1-dimensional vector space; this has a distinguished orientation, positively and
negatively oriented elements being of the type ±w⊗ w̄ , w ∈ ∧2S. We denote the
positively oriented semispace by L2, namely we write

H(∧2S⊗∧2S) ≡ R⊗L2 ⊂ ∧2S⊗∧2S .

Now L2 has the square root semispace L ≡ (L2)1/2, which will be identified with
the space of length units. In the ensuing field theory, L turns out to be the natural
target for the dilaton field. The choice of a basis of S determines a basis in each of
the associated spaces and, in particular, a length unit l ∈ L .
•We introduce the new 2-dimensional space U ≡ L−1/2⊗S, which has the induced
basis

(
ζA
)

=
(
l−1/2 ξA

)
. This is our 2-spinor space. Now since U∗ ∼= L1/2⊗S∗,

the 1-dimensional complex space ∧2U turns out to be naturally endowed with a
Hermitian metric, namely the identity element in

L2⊗L−2 ∼= L2⊗H
[
(∧2S∗)⊗ (∧2S∗)

] ∼= H
[
(∧2U∗)⊗ (∧2U∗)

]
.

Hence any two normalised elements in ∧2U∗ are related by a phase factor. The chosen
basis determines one such element, namely ε = εAB ζ

A ∧ ζB, where εAB = δ1
A δ

2
B −

δ1
B δ

2
A are the antisymmetric Ricci coefficients and

(
ζA
)

denotes the dual basis of U∗.
Each normalised ε ∈ ∧2U∗ yields the isomorphism ε[ : U → U∗ : u 7→ u[ ≡ ε(u,_) ,
with the coordinate expression uB ≡ (u[)B = εAB u

A . The dual construction also
yields ε# = εAB ζA ∧ ζB and the inverse isomorphism U∗ → U .
• We’ll be specially involved with the Hermitian subspace

H ≡ H(U ⊗U) ⊂ U ⊗U .

This is a 4-dimensional real vector space, which turns out to be naturally endowed
with a Lorentz metric. Actually if ε ∈ ∧2U∗ is normalized then ε⊗ ε̄ ∈ ∧2U∗⊗∧2U∗
is independent of the phase factor in ε ; thus it is a natural object, which can be
regarded as the bilinear form g on U ⊗U characterized by

g(u⊗ v̄, r⊗ s̄) = ε(u, r) ε̄(v̄, s̄) = εAB ε̄ȦḂ u
ArB v̄Ȧs̄Ḃ .

Alongside with the induced basis
(
ζA⊗ ζ̄Ȧ

)
of U ⊗U we also consider the basis(

τλ
)
, defined in term of the Pauli matrices as

τλ ≡ 1√
2 σ

AȦ

λ ζA⊗ ζ̄Ȧ , λ = 0, 1, 2, 3 .

A straightforward computation then shows that this is an orthonormal basis of
H, with squares (+1,−1,−1,−1). Null elements in H are of the form ±u⊗ ū with
u ∈ U . One assigns a time-orientation in H by letting future-pointing null elements
be of the type +u⊗ ū .

1.3. Two-spinors and Dirac spinors. Our step-by-step algebraic constructions
continue by considering the 4-dimensional complex vector space W ≡ U ⊕ U∗. This
can be naturally regarded as the space of 4-spinors, as we can exhibit a natural
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linear map γ : U ⊗U → End(W ) whose restriction to the Minkowski space H turns
out to be a Clifford map. It is characterized by

γ(r⊗ s̄)(u, χ) =
√

2
(
〈λ̄, s̄〉 p , 〈r[, u〉 s̄[

)
, u, p, r, s ∈ U , χ ∈ U∗ ,

an expression which is independent of the phase factor in the normalized ε yielding
r[ ∈ U∗ and s̄[ ∈ U∗. The usual Weyl representation can be recovered by using the
basis (

ωα
)
≡ (ζ1 , ζ2 ,−ζ̄1,−ζ̄2) ,

where ζ1 is a simplified notation for (ζ1, 0), and the like: setting γλ ≡ γ(τλ) ∈ EndW ,
λ = 0, 1, 2, 3, the matrices

(
γ α
λ β

)
in this basis turn out to be the Weyl matrices. By

a suitable basis transformation one also recovers the Dirac representation, which is
associated with the choice of an observer |that is, in the present algebraic context,
the choice of a time-like direction.

Next we observe that the conjugate space of W is W = U ⊕ U∗, whence by
inverting the order of the two sectors we obtain the dual space U∗ ⊕ U = W ∗. Let’s
explicitely denote this switching map, which is obviously an isomorphism, as

s : W →W ∗ : (ū, λ) 7→ (λ, ū) .
If ψ ≡ (u, λ̄) ∈W then applying the conjugation anti-isomorphism to it we get

ψ̄ = (ū, λ) ∈W ⇒ s(ψ̄) ∈W ∗ .
This s(ψ̄) is exactly the object which is traditionally denoted as ψ̄ , namely the
Dirac adjoint of ψ . When no confusion arises, we may as well adopt that notation
as a shorthand. The map W →W ∗ : ψ 7→ ψ̄ can be regarded as associated with a
Hermitian scalar product on W , which turns out to have signature (+ +−−), as
one sees immediately in the Dirac representation.

We end this section with a few remarks about aspects of our presentation which
are different from the usual 2-spinor and 4-spinor formalisms.
• No complex symplectic form on U is fixed. The 2-form ε , yielding the isomorphisms
ε[ and ε# , is unique up to a phase factor.
• No Hermitian scalar product on U is assigned; such assignment amounts to the
choice of a timelike element in H∗ ⊂ U∗⊗U∗, hence it essentially amounts to the
choice of an “observer” in the Minkowski space H.
• Consequently there is no fixed complex symplectic form nor positive Hermitian
structure on the 4-spinor space W as well. The usual mapping ψ 7→ ψ† is related to
a positive Hermitian structure associated with an observer (while Dirac adjunction
is observer-independent). Charge conjugation is related to the choice of ε (namely
of a phase factor).

1.4. Endomorphism decomposition in spinor and Minkowski spaces. The
discussion contained in this section is prerequisite to laying out a precise pattern
of relations among Lie derivatives of spinor fields and other objects, with respect
to a vector field X : M → TM on the spacetime manifold. These derivatives turn
out to be related to the tensor field

∇X : M → T∗M ⊗TM ,
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that can be regarded as a fibered endomorphism of TM . Endomorphisms of H and
U will then enter the picture via a soldering form (§1.7).

In the vector space EndH ≡ H ⊗H∗ of all linear endomorphisms of H we
have the Lorentz metric transposition EndH → EndH : K 7→ K†, where (K†)λµ =
gλν Kρ

ν gρµ. The subspace of all endomorphisms which are antisymmetric with
respect to this operation is the Lie subalgebra2 so(H, g) . We obtain a natural
vector space decomposition

EndH = so(H, g)⊕ R11H ⊕ S0H ,

where R11H is the subspace generated by the identity of H and S0H is the space of
all trace-free symmetric endomorphisms. Indeed, any K ∈ EndH can be uniquely
decomposed as

K = 1
2
(
K −K†

)
+ 1

4 TrK 11H +
( 1

2 (K +K†)− 1
4 TrK 11H

)
.

In particular we have a projection

p : EndH → so(H, g)⊕ R11H : K 7→ 1
2
(
K −K†

)
+ 1

4 TrK 11H ,

whose target space is a Lie-subalgebra of EndH (while its complementary space
S0H is not closed with respect to the commutator).

Similarly, the vector space EndU ≡ U ⊗U∗ of all C-linear endomorphisms of U
has the natural decomposition

EndU = sl(U)⊕ C11U = sl(U)⊕ R11U ⊕ iR11U

where sl(U) is the Lie subalgebra of all trace-free endomorphisms, as any k ∈ EndU
can be uniquely decomposed as k = (k − 1

2 Tr k 11U ) + 1
2 Tr k 11U , and the trace can

be further decomposed into its real and imaginary parts. Now recalling H ⊂ U ⊗U
we introduce R-linear maps π : EndH → EndU and ı : EndU → EndH as follows.
The former is defined via traces and can be best expressed in component form as

(πK)AB = 1
2 K

AȦ

BȦ − 1
8 K

CĊ

CĊ δ
A

B .

The latter is defined as ık ≡ k⊗ 1̄1 + 11⊗ k̄, and is expressed in component form as

(ık)AȦBḂ = kAB δ
Ȧ

Ḃ + δAB k̄
Ȧ

Ḃ .

The following statements are then easily checked:
• π11H = 1

2 11U , ı11U = 2 11H .
• π and p have the same kernel: the symmetric traceless sector of EndH.
• The kernel of ı is the imaginary part of the identity sector.
• Both p and ı are valued onto so(H, g)⊕ R11H .
• The restriction of π to so(H, g)⊕ R11H and the restriction of ı to sl(U)⊕ R11U
are inverse Lie-algebra isomorphisms.

2EndH together with the ordinary commutator is a Lie algebra.
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Remark. The definition of ı is crafted in such a way that the action of ık on
isotropic elements u⊗ ū ∈ H is determined by the Leibnitz rule ık(u⊗ ū) = ku⊗ ū+
u⊗ k̄ū. This is perhaps the most relevant aspect of this matter in relation to Lie
derivatives of spinors. Also note that this expression is closely related to the
decomposition ΦAȦBḂ = φAB ε̄ȦḂ + εAB φ̄ȦḂ , valid for a Minkowski space 2-tensor
Φ whose symmetric part is proportional to the Lorentz metric.

We now introduce a further map, the R-linear inclusion3

κ : EndU → EndW : k 7→ κ(k) ≡ (k,−k̄∗) ,
where k̄∗ : U∗ → U∗ is the conjugate transpose of k .

The composition π ◦ κ : EndH → EndW can be then expressed in terms of the
components of the Dirac map as

κ(πK) = 1
8Kλµ (γλγµ − γµγλ) + 1

8K
ν
ν γ5 ,

where i γ5 ≡ γ0γ1γ2γ3 is the element in the Dirac algebra corresponding to the
natural volume form of H.

A diagram of the mutual relations among the introduced maps may be useful:

p

?

so(H, g)⊕ R11H

EndH -π
sl(U)⊕ R11U ⊂EndU

����������������)

ı

-κ EndW

1.5. Spinor bundles and connections. We consider a vector bundle S � M
with complex 2-dimensional fibers over the real manifold M . For the moment we
make no special assumption about M , including dimension, nor we assume any
special relation between S and the tangent space TM : that relation is mediated by
a soldering form, which will be introduced as a subsequent step in §1.7.

The constructions of §1.2–1.4 now yield bundles L, U , H and W over M , with
smooth natural structures; a local frame (ξA) of S yields the associated frames of
the other bundles. Moreover we’ll use local coordinates (xa) on M . We ramark that
the fibers of H, in particular, are endowed with a Lorentz metric.

A C-linear connection -Γ of S � M , called a 2-spinor connection, is expressed
by coefficients -ΓAa B : M → C . Their complex conjugates are the coefficents -̄Γ Ȧa Ḃ of
the induced conjugate connection -̄Γ of S � M , characterized by the rule ∇s̄ = ∇s.
By a standard argument we also get the corresponding dual connection of S∗ � M
and anti-dual connection of S∗ � M . Moreover -Γ yields linear connections of all
bundles associated with S. If we fix a reference connection B (a ‘gauge’) then -Γ−B
is a tensor field valued in T∗M ⊗ EndS; hence, with proper care, we can describe

3A detailed examination in two-spinor terms of Lie groups and Lie algebras involved in spinor
and Minkowsky space geometries can be found in a previous work [8].
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the relations among the various connections in terms of bundle endomorphisms
using the notions exposed in §1.4, with obvious extensions of the needed operations.
In particular:
• the induced connection of ∧2S is denoted as -̂Γ ≡ Tr -Γ, with coefficients -̂Γa = -ΓAa A ;
• the induced connection of L has the coefficients Ga ≡ 1

2 ( -ΓAa A + -̄Γ Ȧa Ȧ), namely
∇al = −Ga l , and can be regarded as the “real part” of -̂Γ ;
• the induced connection of S⊗S is denoted as ı -Γ, with coefficients

(ı -Γ) AȦa BḂ = -ΓAa B δȦḂ + δAB -̄Γ Ȧa Ḃ ;

• the induced connection of U is denoted as -̃Γ, with coefficients -̃ΓAa B = -ΓAa B − 1
2 Ga δ

A
B ;

• the induced connection of H is denoted as Γ̃ ≡ ı -̃Γ, with coefficients

Γ̃AȦa BḂ = -̃ΓAa B δȦḂ + δAB
¯̃-Γ Ȧa Ḃ = (ı -Γ) AȦa BḂ −Ga δAB δȦḂ .

Above, induced connections are expressed in the frames induced by
(
ξA
)
. Conver-

sely

-̃ΓAa B = π(ı -Γ) Aa B = 1
2 (ı -Γ) AȦa BȦ − 1

8 (ı -Γ) CĊa CĊ δ
A

B

= 1
2 Γ̃AȦa BȦ = π(ı -̃Γ) Aa B .

With regard to the latter expression, in particular, we note that Γ̃AȦa AȦ
= 0 . Fur-

thermore Γ̃ turns out to be a metric connection, preserving the Lorentz fiber
structure of H; the notion of torsion, on the other hand, needs a soldering form,
and will be introduced later (§1.7).

It’s not difficult to check that similar relations hold among the curvature tensor
R of -Γ and the curvature tensors of the induced connections. In particular

R AȦ

ab BḂ ≡ (ıR) AȦ

ab BḂ = R A

ab B δ
Ȧ

Ḃ + δAB R̄
Ȧ

ab Ḃ ,

R̃ A

ab B = R A

ab B + 1
2 ∂[aGb] δ

A

B

= 1
2 R

AȦ

ab BȦ − 1
8 R

CĊ

ab CĊ δ
A

B = 1
2 R̃

AȦ

ab BȦ .

We also consider the induced connection κ( -̃Γ) on the 4-spinor bundleW ≡ U ⊕ U∗.
This can be then expressed in terms of the components of the Dirac map as

κ( -̃Γ) = 1
8 Γ̃λ
a µ (γλγµ − γµγλ) ,

since Γ̃λ
a λ = 0 , where the components of Γ̃ are now expressed in the Pauli frame(

τλ
)
.

Last but not least we consider the induced connection Y of ∧2U , whose fibers
(§1.2) have a natural Hermitian structure. Indeed Y preserves that structure, and
its coefficients can be written as iYa where Ya = 1

2i ( -ΓAa A − -̄Γ Ȧa Ȧ) is the imaginary
part of -̂Γa ; namely -̂Γa = Ga + iYa . In particular, we get ∇aε = iYa ε .
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1.6. Breaking of dilaton symmetry. In a general theory of fields that are
sections of the various bundles derived from S one has to allow a dilaton field, that
in our context can be described as a section M → L . In the literature this issue has
been considered under various angles [1, 13, 14, 17, 21, 27, 34, 39, 40, 44, 45, 47],
though a conclusive approach seems to be still lacking. One intriguing possibility
is that the dilaton be closely related to the Higgs field. My own ideas about such
speculations have been expressed in two papers [6, 9].

In the sequel, however, we’ll work for simplicity in a “conservative” setup in which
the dilaton symmetry is broken by some mechanism we do not worry about here.
This enables a formulation, sketched in §1.8, of a theory of Einstein-Cartan-Maxwell-
-Dirac fields which is based on geometric constructions that use S with the only
added assumption of such symmetry breaking.

A weak form of this assumption, sufficient for our present purposes, can be
expressed as the requirement that the connection G induced on L has vanishing
curvature. Hence one can always find local charts such that Ga = 0 , and this
amounts to gauging away the conformal symmetry.

In practice we may wish to simplify certain arguments by making the stronger
assumption that the bundle L � M be trivial, that is a global product. This means
that we actually regard L just a semi-vector space, the space of length units. In a
natural unit setting, coupling constants now arise as elements in L .

1.7. Two-spinor soldering form. Henceforth we assume that M is a real 4-di-
mensional manifold, and consider sections

Θ: M → L⊗H ⊗T∗M .

Note that such Θ can be seen as a linear morphism TM → L⊗H, and, if it is
non-degenerate, as a scaled soldering form, since it relates the spacetime geometry
to the algebraic fiber structures associated with the spinor bundle. If one fixes
an orthonormal frame of H then Θ can be regarded as the assignement of an
orthonormal spacetime frame, whence the term tetrad used in physics works.

We write the coordinate expression of Θ as

Θ = Θλ
a τλ⊗dxa = ΘAȦ

a ζA⊗ ζ̄Ȧ⊗dxa ,

where the coefficients Θλ
a and ΘAȦa are L-valued, i.e. have the physical dimensions

of a length.
Given a soldering form, the geometric structure of the fibers of H yields a similar,

scaled structure on the fibers of TM . Namely if we now denote by g̃ , η̃ and γ̃ the
Lorentz metric, the g̃-normalized volume form and the Dirac map of H, we get
similar spacetime objects

g ≡ Θ∗g̃ = g̃λµ Θλ
a Θµ

b dxa⊗dxb = εABεȦḂ ΘAȦ

a ΘBḂ

b dxa⊗ dxb ,

η ≡ Θ∗η̃ = det Θ d4x ≡ det Θ dx0 ∧ dx1 ∧ dx2 ∧ dx3 ,

γ ≡ γ̃ ◦Θ = Θλ
a γλ⊗dxa ≡ γa⊗dxa .
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The first relation above shows that Θ can be regarded as a “square root of the
metric”.

The components of the inverse morphism
←
Θ: M → L−1⊗H∗⊗TM can be

expressed as
←
Θb
µ ≡ Θb

µ ≡ Θλ
a g̃λµ g

ab .

Moreover a Pauli frame yields the orthonormal scaled spacetime frame and dual
frame (

Θλ

)
≡
←
Θ(τλ) =

(
Θa
λ ∂xa

)
,

(
Θλ
)
≡ Θ∗(τλ) =

(
Θλ
a dxa

)
.

If -Γ is a 2-spinor connection then a non-degenerate tetrad Θ: TM → L⊗H
yields a unique connection Γ on TM , characterized by the condition that Θ be
covariantly constant with respect to the couple (Γ, Γ̃). Indeed the condition ∇Θ = 0
reads

∂bΘλ
a + Γcba Θλ

c − Γ̃λb µ Θµ
a = 0 ,

while the components of Γ in the orthonormal frame
(
Θλ

)
coincide with the

components of Γ̃ in the associated Pauli frame: Γλ
a µ = Γ̃λ

a µ. Moreover Γ is metric,
∇[Γ]g = 0. The curvature tensors of Γ and Γ̃ are similarly related by R λ

ab µ = R̃ λ
ab µ ,

that is
R c
abd = R̃ λ

ab µ Θc
λ Θµ

d .

The Ricci tensor and the scalar curvature can be expressed as
Rad = R b

abd = R̃ λ
ab µ Θb

λ Θµ
d , R a

a = R̃ λµ
ab Θb

λ Θa
µ .

In general Γ will have non-vanishing torsion, which can be expressed as

Θλ
c T

c
ab = ∂[aΘλ

b] + Θµ
[a Γ̃ λ

b] µ .

1.8. Einstein-Cartan-Maxwell-Dirac fields. The field theory we are going to
sketch, as presented in previous papers [2, 3, 4], is based on “minimal geometric
data” in the sense that the unique such datum is a vector bundle S � M , with
complex 2-dimensional fibers and real 4-dimensional base manifold. The basic idea
is to assume no further background structure: all other bundles and fixed geometric
objects are derived from S using only geometrical constructions. Any needed bundle
section which is not determined by S is assumed to be a field. A natural Lagrangian
can then be written, yielding a field theory which turns out to be essentially
equivalent to a classical theory of Einstein-Cartan-Maxwell-Dirac fields, provided
that one makes the further assumption that the dilatonic symmetry is broken as
described in §1.6; otherwise we deal with a more general theory. Accordingly we
regard L as a fixed semi-vector space, whose unique role consists of taking care of
physical dimensions in a natural unit setting (~ = c = 1).

The fields are assumed to be the soldering form Θ , the 2-spinor connection
-Γ, the electromagnetic field F and the electron field ψ . The gravitational field is
represented both by Θ and -̃Γ, the latter being regarded as the gravitational part
of -Γ. If Θ is non-degenerate then one obtains, as in the standard metric-affine
approach [16, 21], essentially the Einstein equation and the equation for torsion;
the metricity of the spacetime connection is a further consequence. The theory,
however, is non-singular also if Θ is degenerate. Also note that in this approach
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the spacetime metric g and the spacetime connection Γ are not independent fields,
but rather byproducts of the formalism. Thus we cannot just require the torsion to
vanish.

The Dirac field ψ ≡ (u, χ) is a section M → L−3/2⊗W , representing a particle
with one-half spin, mass m ∈ L−1 and charge q ∈ R .

We assign the role of the electromagnetic potential to another sector of -Γ, namely
the induced Hermitian connection Y of ∧2U , whose coefficients we denote as iYa .
Locally one also writes Ya ≡ qAa where A is a 1-form.

The electromagnetic field is represented by a spacetime 2-form F or, equivalently,
by a section F̃ : M → L−2⊗∧2H∗ related to it by F ≡ Θ∗F̃ . The relation between
Y and F follows as one of the field equations.

The total Lagrangian density L = (`grav + `em + `Dir) d4x is the sum of gravita-
tional, electromagnetic and Dirac terms. These can be written in coordinate-free
form, but the coordinate expressions are perhaps more readable without special
explanations. We have

`grav = 1
8k ελµνρ ε

abcd R̃ λµ
ab Θν

c Θρ
d ,

`em = − 1
4 ε

abcd ελµνρ ∂aYb F̃
λµ Θν

cΘρ
d + 1

4 F̃
λµF̃λµ det Θ ,

`Dir = i√
2 Θ̆a

AȦ

(
∇auA ūȦ − uA∇aūȦ + εAB ε̄ȦḂ(χ̄B∇aχḂ −∇aχ̄B χḂ )

)
−m (χ̄AuA + χȦ ū

Ȧ ) det Θ ,

where
Θ̆a
AȦ ≡ 1√

2 σ
λ
AȦ Θ̆a

λ ≡ 1√
2 σ

λ
AȦ

( 1
3! ε

abcd ελµνρ Θµ
bΘν

cΘρ
d

)
and k ∈ L2 is Newton’s gravitational constant.

The main results obtained by writing down the Euler-Lagrange equations deriving
from L can be summarized as follows.
• The Θ-sector corresponds (in the non-degenerate case) to the Einstein equations.
• The Γ̃-sector gives the equation for torsion. Hence one sees that the spinor field
is a source for torsion, and that in this context a possible torsion-free theory is not
natural.
• The F -sector reads F = 2 dY in the non-degenerate case, and of course this yields
the first Maxwell equation dF = 0 .
• The Y -sector reduces, in the non-degenerate case, to the 2nd Maxwell equation
1
2 ∗d∗F = j , where the 1-form j is the Dirac current.
• The ū- and χ̄-sectors yield the Dirac equation (i /∇−m+ i

2 γ
aT bab)ψ = 0 for

ψ ≡ (u, χ) .
• The u- and χ-sectors yield the Dirac equation for the Dirac adjoint ψ̄ = (χ̄, ū) .

2. Lie derivatives in spinor geometry and tetrad gravity

In the literature, the notion of Lie derivative of a spinor field is mainly studied in
terms of matrix group representations. We propose a somewhat different approach by
looking for natural constructions in the involved bundles, requiring the Leibnitz rule
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to hold whenever it is applicable. For a Dirac spinor we will find a straightforward
extension of the known notion, that reduces to it in the case of a Killing vector
field and vanishing torsion. Furthermore we will introduce Lie derivatives of a
soldering form and of a spinor connection, and study the mutual relations among
these operations. We stress that these constructions and results do not need field
equations, so that the considered fields (spinor, tetrad, spinor connection) are,
in general, mutually independent; the condition ∇Θ = 0 , on the other hand, is
related to the spacetime connection, an induced auxiliary object.

For any vector field X : M → TM we will use the shorthand notation

Ξ ≡
←
Θc(∇X + XcT )cΘ : M → H ⊗H∗ ,

with the coordinate expression

Ξλµ = (∇aXb + X
c T bca)

←
Θa
µ Θλ

b .

Moreover we set (§1.4) Ξ̂ ≡ pΞ , which has the coordinate expression

Ξ̂λµ = 1
2
(
Ξλµ− (Ξ†)λµ

)
+ 1

4 Ξνν δλµ .

Finally we set

ξ ≡ π(Ξ) = π(Ξ̂) : M → EndU ,

⇒ ξAB = 1
2 ΞAȦBȦ − 1

8 ΞCĊCĊ δAB .

2.1. Lie derivative of spinors. We start by looking for a natural definition of Lie
derivative of sections w : M → H with respect to a vector field X : M → TM . We
observe that

←
Θw is a vector field on M , and so is the Lie bracket [X,

←
Θw] ≡ LX(

←
Θw) .

Then we obtain the section Θ[X,
←
Θw] : M → H. By a straightforward coordinate

calculation one finds
Θ[X,

←
Θw] = ∇Xwλ − Ξcw ,

where ∇Xw denotes the covariant derivative of w with respect to a connection Γ̃
of H � M , possibly determined by a spinor connection (§1.5). We remark that
Ξ is defined in terms of ∇X, which in turn is defined in terms of the spacetime
connection characterized by ∇Θ = 0 ; this is how connections enter Lie derivatives
of spinors.

We now face the following issue: in order to recover Θ[X,
←
Θw] from an operation

performed on 2-spinors by means of the Leibnitz rule, Ξ: M → EndH must be
valued into the sub-bundle so(H, g)⊕ R11H (§1.4). In the literature this is a known
issue, which is dealt with by using various arguments. Actually the discussion
turns out to be somewhat involved if the underlying use of the soldering form
is not explicitely stated. In our context, remembering the discussion in §1.4, we
immediately see the naturaleness of just replacing Ξ by Ξ̂, as well as of the analogous
definition of Lie derivative of a 2-spinor in terms of ξ ≡ π(Ξ). We set:

Definition 1. The Lie derivatives of a section w : M → H, of a section u : M → U
and of a section χ : M → U∗ with respect to a vector field X : M → TM are defined
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to be

LXw ≡ ∇Xw − Ξ̂(w) ,

LXu ≡ ∇Xu− ξ(u) ,

LXχ ≡ ∇Xχ+ ξ̄∗(χ) .

Moreover the Lie derivatives of the conjugate objects are defined in the obvious
way as

LX ū ≡ LXu = ∇X ū− ξ̄(ū) , LXχ̄ ≡ LXχ = ∇Xχ̄+ ξ∗(χ̄) .

It is then easy to check that the natural Leibnitz rules are fulfilled, namely:

Proposition 1. We have

LX(u⊗ ū) = (LXu)⊗ ū+ u⊗LX ū , X.〈χ̄, u〉 = 〈LXχ̄, u〉+ 〈χ̄,LXu〉 ,

and the like.

We find the coordinate expressions

LXuA = X
a (∂auA− -Γ A

a B u
B)−ξAB uB , LXχȦ = X

a (∂aχȦ+ -̄Γ Ḃ

a Ȧ χḂ)+ξḂȦ χḂ .

Now the notion of Lie derivative of a 4-spinor ψ ≡ (u, χ) : M →W ≡ U ⊕ U∗
naturally follows, yielding

LXψ = ∇Xψ −
(
ξ ,−ξ̄∗

)
ψ = ∇Xψ − κ(πΞ)

= ∇Xψ − 1
8 Ξλµ (γλγµ − γµγλ)ψ + 1

8 Ξνν γ5ψ .

Remark. When the torsion vanishes and X is a Killing vector field (then Ξνν = 0)
one essentially gets the usual Lie derivative of Dirac spinors [32], though a careful
reader may notice an opposite sign in the second term. The standard expression
can be recovered by exchanging the roles of the bundles U and U∗, so that the
difference can be eventually ascribed to conventions affecting representations of
the involved Lie algebras. Similarly one sees that our expression for LXuA is the
same as that in Penrose-Rindler [43], §6.6, when the torsion vanishes and X is a
conformal Killing vector field.

Remark. The Fermi transport of spinors can be introduced by an analogous
construction [5] starting from the Fermi transport of world-vectors.

2.2. Lie derivative of a soldering form. Though the notion of Lie derivative
of spinors proposed in §2.1 is well-defined for any vector field X, it is actually
independent of the symmetric trace-free part of Ξ ≡ ∇X + XcT . However that part
has not merely disappeared from view, but is related to a natural definition of
Lie derivative of the soldering form that follows from requiring the validity of the
Leibnitz rule.



220 D. CANARUTTO

Proposition 2. Let Θ: M → L⊗H ⊗T∗M be a soldering form and X : M → TM
a vector field. Then there exists a unique section

LX
←
Θ: M → L−1⊗H∗⊗TM

such that for any section w : M → H one has
LX(

←
Θw) = (LX

←
Θ)w +

←
Θ(LXw) ,

namely
LX
←
Θ =

←
Θc(Ξ̂− Ξ) .

Proof. Remembering (§2.1) Θ[X,
←
Θw] = ∇Xw − Ξ(w) , the required Leibnitz rule

turns out to be equivalent to
ΘcLX

←
Θ(w) = Θ

(
LX(

←
Θw)

)
− LXw = ∇Xw − Ξ(w)−

(
∇Xw − Ξ̂(w)

)
= (Ξ̂− Ξ)(w) .

�

Since Θc
←
Θ = 11H we now obtain the definition of LXΘ by requiring

0 = LX(Θc
←
Θ) = (LXΘ)c

←
Θ + ΘcLX

←
Θ .

Definition 2. The Lie derivatives of a soldering form Θ and its inverse
←
Θ are

LXΘ = (Ξ− Ξ̂)cΘ , LX
←
Θ =

←
Θc(Ξ̂− Ξ) .

In particular we obtain the coordinate expression
LXΘλ

a = (Ξλµ − Ξ̂λµ) Θµ
a = 1

2 (Ξλµ + Ξ λ
µ ) Θµ

a − 1
4 Ξνν Θλ

a .

Remark. The above expression seems not to contain the derivatives of the com-
ponents of Θ ; these are actually contained in the torsion, which is contained in Ξ .
In fact we can recover our result by a straightforward coordinate calculation from

LXΘλ
a = X

b ∂bΘλ
a + Θλ

b ∂aX
b − X

b Γ̃λb µ Θµ
a − Ξ̂λµ Θµ

a

and then using ∂bΘλ
a = Γ̃λb µ Θµ

a − Γcba Θλ
c which is the coordinate expression of

∇Θ = 0 .

2.3. Lie derivative of a spinor connection. The Lie derivative of a linear
connection of the tangent bundle of a manifold is a known notion [53]. Let Γ be
an arbitrary linear connection of TM � M ; then its Lie derivative along a vector
field X is the tensor field

LXΓ: M → T∗M ⊗TM ⊗T∗M
characterized by the requirement that the identity

LXΓcZ = ∇LXZ − LX∇Z
holds for any vector field Z : M → TM . Its coordinate expression turns out to be

LXΓ b
ac = −∇a∇cXb −∇a(Xd T bdc) + X

dR b
adc

= −∇aΞbc + X
dR b

adc .



TWO-SPINOR TETRAD AND LIE DERIVATIVES OF ECD FIELDS 221

This notion can be applied in particular to the Riemannian spacetime connection,
and as such it appears in the literature mainly in considerations related to energy
tensors [31, 41], possibly in a somewhat disguised form [20, 33].

The Lie derivatives of linear connections of U � M and of H � M can be
obtained by extending the above construction, since we avail of the notions of Lie
derivatives of sections of these bundles. We preliminarly remark that a linear connec-
tion of any vector bundle E � M can be regarded as a section of an affine bundle
over M whose derived vector bundle [10] is T∗M ⊗ EndE ≡ T∗M ⊗E⊗E∗ � M .
Accordingly the Lie derivative of a linear connection, when it is well-defined, is
valued into such vector bundle.

Moreover we note that if we avail of a notion of Lie derivative of sections
σ : M → E with respect to a vector field on M , then the Leibnitz rule yields the
Lie derivative of ∇σ : M → T∗M ⊗E, where the covariant derivative is related to
any connection.

Proposition 3. Let -Γ and Γ̃ be linear connections of U � M and H � M ,
respectively, and X : M → TM a vector field. Then:
• there exists a unique section

LX -Γ: M → T∗M ⊗ EndU
such that for every section u : M → U one has

LX -Γ(u) = ∇LXu− LX∇u ,
namely

LX -Γ = −∇ξ − XcR

where R is the curvature tensor of -Γ (§1.5);
• there exists a unique section

LXΓ̃ : M → T∗M ⊗ EndH
such that for every section w : M → H one has

LXΓ̃(w) = ∇LXw − LX∇w ,
namely

LXΓ̃ = −∇Ξ̂− XcR̃

where R̃ is the curvature tensor of Γ̃.

Proof. Coordinate calculations yield
(∇LXu− LX∇u) Aa = (−∇aξAB + X

dR A

ad B)uB ,

(∇LXw − LX∇w) λa = (−∇aΞ̂λµ + X
d R̃ λ

ad µ)wµ .
�

Remark. For an arbitrary vector field X we have LXΓ̃λ
a λ = −∇aΞ̂λλ 6= 0 , so that

the “deformed connection” Γ̃ + LXΓ̃ needs not be metric.

The linear connection Γ̃ in the above proposition is possibly unrelated to a
spinor connection. However:
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Proposition 4. Let Γ̃ be the connection of H � M induced by the spinor connec-
tion -Γ. Then we have

LX -Γ = π(LXΓ̃) , LXΓ̃ = ı(LX -Γ) .

Proof. It is straightforwardly checked by means of the relation between Ξ and ξ
and the analogous relation (§1.5) between R and R̃. �

In coordinates, the above stated relations read

LX -Γ A

a B = 1
2 LXΓ̃AȦa BȦ − 1

8 LXΓ̃CĊa CĊ δ
A

B ,

LXΓ̃AȦa BḂ = LX -Γ A

a B δ
Ȧ

Ḃ + δAB LX -̄Γ Ȧ

a Ḃ .

We now recall that -Γ yields connections of U , U∗, U∗. The Lie derivatives of all
these are naturally defined by straightforward extensions of the above procedure,
and their coordinate expressions are easily checked to be in the same mutual
relations. Moreover we get the Lie derivative of the 4-spinor connection κ -̃Γ of W .
By straightforward computations one finds:

Proposition 5. We have

LX(κ -̃Γ)a = 1
8 LXΓ̃λ

a µ (γλγµ − γµγλ) + 1
8 LXΓ̃λ

a λ γ5 ,

where LXΓ̃λ
a λ = −∇aΞ̂λλ , i γ5 ≡ γ0 γ1 γ2 γ3 .

Our notion of Lie derivative of 2-spinors also naturally yields the Lie derivatives
of the curvature tensors of -Γ and Γ̃. We obtain the coordinate expressions

LXR A

ab B = X
c ∂cR

A

ab B + ∂aX
cR A

cb B + ∂bX
cR A

ac B + [Rab ,Xa -Γa + ξ ]AB ,

LXR̃ λ
ab µ = X

c ∂cR̃
λ

ab µ + ∂aX
c R̃ λ

cb µ + ∂bX
c R̃ λ

ac µ + [R̃ab ,XaΓ̃a + Ξ̂]λµ ,

where [Rab , ξ ]AB ≡ R A

ab C ξ
C
B − ξAC R C

ab B and the like (brackets denote commuta-
tors of fiber endomorphisms).

Then it is not difficult to check that the algebraic relation between these two
objects is essentially the same as the relation between -Γ and Γ̃. Moreover let us
regard -Γ′ ≡ -Γ + LX -Γ as a “deformed” spinor connection; then its curvature tensor
turns out to be R′ = R+ LXR up to terms which are of second order in the Lie
derivatives. A similar statement holds true for the curvature of the deformed
connection Γ̃′ ≡ Γ̃ + LXΓ̃.

Remark. For the reader who is familiar with the Frölicher-Nijenhuis bracket of
tangent-valued forms [18, 36, 37], we can recast part of the above results in a
convenient way. We first observe that if E � M is any vector bundle then an
EndE-valued r-form M → ∧rT∗M ⊗ EndE can be regarded as a vertical-valued
form on E. A linear connection can also be regarded as a tangent-valued 1-form,
and its curvature tensor as a vertical-valued 2-form. Moreover a vector field on E
is a tangent-valued 0-form. In particular, both ξ and

Xc -Γ = X
a ∂xa + X

a -Γ A

a B ζ
B ζA
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are vector fields on U . Indeed, the latter is the horizontal prolongation of X through
the connection -Γ. Similarly, Ξ̂ ≡ pΞ and XcΓ̃ can be regarded as vector fields on
H. A computation then yields

LX -Γ = [[Xc -Γ + ξ , -Γ ]] , LXR = [[Xc -Γ + ξ , R ]],

LXΓ̃ = [[XcΓ̃ + Ξ̂ , Γ̃ ]] , LXR̃ = [[XcΓ̃ + Ξ̂ , R̃ ]] .

Furthermore Θ can be regarded as a vertical valued 1-form on H, while a 2-spinor
u : M → U can be regarded as a section U → VU . Then we also find

LXu = [[Xc -Γ + ξ , u ]] , LXΘ = [[XcΓ̃ + Ξ̂ , Θ ]] .

2.4. Deformed tetrad gravity. Consider arbitrarily deformed objects Γ′ ≡ Γ + ∆Γ,
Γ̃′ ≡ Γ̃ + ∆Γ̃, Θ′ ≡ Θ + ∆Θ , where the generic deformations ∆Γ, ∆Γ̃ and ∆Θ are
sections of the same vector bundles as the respective Lie derivatives. Then up to
first-order terms in the deformations we get

∇′cΘ′λa = ∂cΘ′λa + Γ′ bca Θ′λb − Γ̃′ λc µ Θ′µa

= ∂c(Θλ
a + ∆Θλ

a) + (Γbca + ∆Γbca) (Θλ
b + ∆Θλ

b )− (Γ̃λc µ + ∆Γ̃λc µ) (Θµ
a + ∆Θµ

a)

∼= ∇cΘλ
a +∇c(∆Θ)λa + ∆Γbca Θλ

b − ∆Γ̃λc µ Θµ
a .

Since ∇Θ = 0 , the above relation can be written as

∇′cΘ′λa ∼= ∇c(∆Θ)λa + ∆Γbca Θλ
b − ∆Γ̃λc µ Θµ

a .

Now we consider the special case when the deformations are Lie derivatives
along a vector field X : M → TM , namely

∆Γac b ≡ LXΓac b = −∇cΞba + X
dR b

cda ,

∆Γ̃λc µ ≡ LXΓ̃λc µ = −∇cΞ̂λµ + X
dR λ

cd µ ,

∆Θλ
a ≡ LXΘλ

a = Θµ
a (Ξ− Ξ̂)λµ .

Then we obtain

∇′cΘ′λa ∼= ∇c(Ξ− Ξ̂)λµ Θµ
a + (XdR b

cda −∇cΞba) Θλ
b + (∇cΞ̂λµ − X

dR λ
cd µ) Θµ

a

= X
d (R b

cda Θλ
b − X

dR λ
cd µ Θµ

a) = 0 ,

so that the deformed soldering form Θ′ is covariantly constant with respect to the
deformed connections Γ′ and Γ̃′.

In the gravitational field theory formulation sketched in §1.8 the gravitational
field is represented by the couple (Θ, -Γ) while the spacetime connection Γ is a
byproduct, characterized by the condition ∇Θ = 0 . Hence the above result can be
interpreted as saying that a deformed couple (Θ′, -Γ′) yields the deformed spacetime
connection Γ′ ≡ Γ + LXΓ, where the deformation is the Lie derivative of Γ in the
usual sense.
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2.5. A remark on possible extensions. The various connections induced by
a 2-spinor connection -Γ on the bundles constructed from S can be regarded as
“pieces” into which -Γ can be naturally decomposed. In particular, the imaginary
part iY of -̂Γ is the induced Hermitian connection of ∧2U .

We note that Y does not enter the fields Ξ̂ and ξ derived form ∇X , hence its
contribution to the Lie derivatives of spinors, and the other related Lie derivatives,
is limited to the covariant derivative ∇X . We may say that the internal geometry of
∧2U is not soldered to spacetime geometry|this observation is also relevant in the
construction of the Fermi transport of spinors along a timelike line [5]. Actually Y
is related to the electromagnetic potential and, in pure electrodynamics, can be
just interpreted as such.

Adding further internal degrees of freedom means considering new vector bundles,
say F � M , whose fibers are not soldered to spacetime geometry, and taking tensor
products such as U ⊗F . In general, in such enlarged setting, one has no well-defined
notion of Lie derivatives of matter fields and gauge fields with respect to vector
fields on the base manifold M . On the other hand, the notion of Lie derivative with
respect to a vector field on the total manifold is well-defined, and an important
tool in Lagrangian field theory — with particular regard to symmetries.
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