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GENERAL EXACT SOLVABILITY CONDITIONS
FOR THE INITIAL VALUE PROBLEMS FOR LINEAR

FRACTIONAL FUNCTIONAL DIFFERENTIAL EQUATIONS

Natalia Dilna

Abstract. Conditions on the unique solvability of linear fractional func-
tional differential equations are established. A pantograph-type model from
electrodynamics is studied.

1. Introduction

The fractional differential equations (FDEs) get a significant interest in modern
literature on differential equations and are represented by numerous papers. Here
referred to a few of them only [1, 2, 3, 4, 5, 6, 7, 8, 9].

The application scale of mentioned equations is quite broad. We want to accen-
tuate the [9], where the authors made a complex overview of possible applications
of FDE: the theories of differential, integral, and integro-differential equations,
special functions of mathematical physics, and some present-day applications of
fractional calculus, including fluid flow, rheology, dynamical processes in self-similar
and porous structures, diffusive transport akin to diffusion, electrical networks,
probability and statistics, control theory of dynamical systems, viscoelasticity,
electrochemistry of corrosion, chemical physics, optics, and signal processing, and
so on.

Conditions on the unique solvability of the boundary value problem for functional
differential equations is a fundamental and non-trivial part of the study, and many
publications are focused on them, for example, [10, 13,14].

The main goal of our investigation is the exact conditions lookup of the unique
solvability of the boundary value problem for the fractional functional differential
equations (FFDEs). Some recent results [3, 4, 5, 6, 8] motivated us to continue in
this direction.
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2. Problem formulation

We consider fractional functional differential problem

Dq
au(t) = (lu)(t) + f(t) , t ∈ [a, b](2.1)
u(a) = c ,(2.2)

where Dq
a is the Caputo fractional derivative of order q, 0 < q < 1, with the lower

limit zero, operator l = (lk)nk=1 : AC([a, b],Rn) → C([a, b],Rn) is the bounded
linear operator, function f ∈ C([a, b],Rn) and c ∈ Rn.

The main goal of our investigations is to find exact conditions sufficient for the
unique solvability of the initial value problem (2.2) for systems of the linear FFDEs
(2.1) presented by isotone operators (see Definition 2.3). A pantograph-type model
from electrodynamics is studied as well.

Here are used spaces:
• C([a, b],Rn) is the Banach space of continuous functions [a, b]→ Rn with the

norm C([a, b],Rn) 3 u→ maxt∈[a,b] |u(t)|∞ = maxt∈[a,b] ess sup |u(t)|;
• AC([a, b],Rn) is the Banach space of absolutely continuous functions [a, b]→

Rn with the norm AC([a, b],Rn) 3 u→
∫ l

0 ‖u
′(ξ)‖dξ + ‖u(0)‖.

Definition 2.1. By a solution of linear boundary-value problem (2.1), (2.2) we
understand an absolutely continuous vector-function u : [a, b] → Rn possessing
property (2.2) and satisfying FFDE (2.1) for almost all t from the interval [a, b].

Definition 2.2 ([2]). For a function u given on the interval [a, b] the Caputo
derivative of fractional order q is defined by

Dq
au(t) = 1

Γ(1− q)

( d
dt

)∫ t

a

(t− s)−q
(
u(s)− u(a)

)
ds , 0 < q < 1,

where Γ(q) : [0,∞)→ R is Gamma-function:

(2.3) Γ(q) :=
∫ ∞

0
tq−1e−t dt .

Definition 2.3 ([4]). For certain given {σ1, σ2, . . . , σn} ⊂ {−1, 1}

(2.4) σ =


σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σn


an operator l : AC([a, b],Rn)→ C([a, b],Rn) is σ-positive operator if the fact that
the relation

(2.5) σu(t) ≥ 0 , t ∈ [a, b]

is true implies that

(2.6) σ(lu)(t) ≥ 0 , for a.e. t ∈ [a, b] .
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3. Auxiliary statements

Lemma 3.1 ([9, Lemma 2.21 and Lemma 2.22]). Let 0 < q < 1 and let u(t) ∈
C([a, b],Rn) or u(t) belongs to the space of essentially bounded measurable functions
L∞([a, b],Rn), then

Dq
aI
q
au(t) = u(t) almost everywhere on [a, b].

If u(t) ∈ C1([a, b],Rn) or u(t) ∈ AC([a, b],Rn), then
IqaD

q
au(t) = u(t)− u(a) almost everywhere on [a, b] ,

where
Iqau(t) = 1

Γ(q)

∫ t

a

(t− s)q−1u(s) ds ,

and Γ-function is defined by (2.3).

Taking into account Definition 2.1, Lemma 3.1 and relation (2.3) the next
obvious Lemma is fulfilled.

Lemma 3.2. The problem (2.1), (2.2) on [a, b] is equivalent to the equation

u(t) = u(a) + 1
Γ(q)

∫ t

a

(t− s)q−1(lu)(s)ds+ 1
Γ(q)

∫ t

a

(t− s)q−1f(s) ds .

Lemma 3.3 ([12, the Fredholm alternative, Corollary from Theorem VI.14]). The
nonhomogeneous problem (2.2) for linear FFDE (2.1) is uniquely solvable if the
corresponding homogeneous problem
(3.1) u(a) = 0
for linear FFDE
(3.2) Dq

au(t) = (lu)(t) , t ∈ [a, b] ,
only has a trivial solution.

Let us fix r ∈ N and constants {h1, h2, . . . , hr} ∈ (0,+∞) and introduce the
sequence of functions

(3.3) yk(t) :=
∑r
i=1 hi
Γ(q)

∫ t

a

(t− s)q−1(lyk−i)(s) ds , k ≥ r , t ∈ [a, b] ,

where {y0, y1, . . . yr−1} ∈ AC([a, b],Rn) chosen so that
(3.4) σyk(t) ≥ 0 , t ∈ [a, b] , k = 0, 1, . . . , r − 1 ,
and
(3.5) yk(a) = 0 , k = 0, 1, . . . , r − 1 .

Remark 3.4. If r = 1 and h1 = 1, equality (3.3) takes the form

(3.6) yk(t) = 1
Γ(q)

∫ t

a

(t− s)q−1(lyk−1)(s) ds , t ∈ [a, b] , k ∈ N ,

and thus coincides with the sequence studied, e.g., in [4]. Formula (3.6) defines the
standard iteration sequence used in studies of the uniqueness of the trivial solution
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of the integral fractional functional equation y(t) = 1
Γ(q)

∫ t
a
(t − s)q−1(ly)(s)ds,

t ∈ [a, b], which, because of Lemma 3.2, is equivalent to the homogeneous problem
(3.1), (3.2).

Next, we will need the following technical Lemmas.

Lemma 3.5. Suppose that the operator l : AC([a, b],Rn)→ C([a, b],Rn) is σ-positive.
Then, for arbitrary absolutely continuous functions {yk}r−1

k=0 : [a, b]→ Rn satisfying
conditions (3.4), (3.5), the corresponding functions yr, yr+1, . . . defined by formulae
(3.3) also satisfy conditions (3.4), (3.5):

σyk(t) ≥ 0 , t ∈ [a, b] , yk(a) = 0 , k ≥ r .

Proof of Lemma 3.5. In view of (3.3), we have

(3.7) yr(t) :=
∑r
i=1 hi
Γ(q)

∫ t

a

(t− s)q−1(lyr−i)(s) ds , t ∈ [a, b] .

Taking into account the σ-positivity of the operator l and the non-negativeness of
the coefficients h1, h2, . . . , hr in formula (3.3) and condition (3.4) yields σ(lyr−i)(t)
≥ 0, t ∈ [a, b]. By induction, it is easy to show that (3.7) is fulfilled for all k ≥ r.
The property yk(a) = 0 for all k = 0, 1, 2, . . . ,m is obvious from condition (3.4)
and formula (3.5). �

Lemma 3.6. For arbitrary vectors x0, x1, . . . , xm from Rn, and some constants
{θk}mk=1 ⊂ [0,+∞), the equality

(3.8)
m∑
k=r

θk

r∑
i=1

hixk−i =
m−1∑
j=0

µjxj

is fulfilled, where

µk =
∑

ν∈Tr,m(k)

θν+khν , k = 0, 1, . . . ,m− 1 ,(3.9)

and Tr,m(k) = {ν ∈ N| ν ≤ r ≤ ν + k ≤ m} , r ∈ N .

4. General theorem

Theorem 4.1. Suppose that operator l is σ-positive. Assume also that for some
integers r and m, m ≥ r ≥ 1, a real number ρ ∈ (1,+∞), some constants
{θk}mk=1 ⊂ [0,+∞) and {hi}ri=1 ⊂ [0,+∞), and certain absolutely continuous
vector-functions y0, y1, . . . , yr−1 satisfying conditions (3.4), (3.5), and the relation

(4.1) σ

r∑
k=0

θkyk(t) > 0 for all t ∈ (a, b]

such that the functional differential inequality

(4.2) σ
(r−1∑
k=0

θkD
q
ayk(t) +

r∑
k=0

( ∑
j∈Tr,m(k)

θj+khj − ρθk
)

(lky)(t)− ρθm(lmy)(t)
)
≥ 0
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is fulfilled for a.e. t from [a, b], r ∈ N, m ≥ r and yk, k ≥ r defined by (3.3).
Then, the homogenous linear initial value problem (3.1), (3.2) only has a trivial

solution and the nonhomogeneous linear Cauchy problem (2.1), (2.2) is uniquely
solvable for an arbitrary c ∈ R and an arbitrary function f ∈ C([a, b],Rn).

The unique solution of the problem (2.2) for the equation (2.1) is representable
in the form of a uniformly convergent on [a, b] functional series

u(t) = fc(t) + 1
Γ(q)

∫ t

a

(t− s)q−1(lfc)(s) ds

+ 1
Γ(q)

∫ t

a

(t− ·)q−1l
( 1

Γ(q)

∫ ·
a

(t− s)q−1(lfc)(ξ)dξ
)

(s) ds+ . . . ,

where fc(t) := c+ 1
Γ(q)

∫ t
a
(t− s)q−1f(s) ds.

If, furthermore, the inequality σ
(
c+ 1

Γ(q)
∫ t
a
(t− s)q−1f(s) ds

)
≥ 0, is true a.e.

on [a, b], then the unique solution u(·) of the initial value problem (2.2) for FFDE
(2.1) satisfy the condition (2.5).

Proof. To prove Theorem 4.1 we need Theorem 4 from [4].

Theorem 4.2 ([4, Theorem 4]). Assume that the linear operator l = (lk)nk=1 in
equation (2.1) is σ-positive. Suppose that there exist such a number ρ > 1 an
function y ∈ AC([a, b],Rn) with properties

(4.3) y(a) = 0, σy(t) > 0 for t ∈ (a, b] ,

and a certain integer k ≥ 0 that the components of the function (yk,ν)nν=1 of the
respective function yk are continuous.

Additionally, the following fractional functional differential inequality

(4.4) σ
(
Dq
ay(t)− ρ(ly)(t)

)
≥ 0 for a.e. t ∈ [a, b]

is fulfilled.
Then the assertion of Theorem 4.1 is true for the inhomogeneous (2.1), (2.2)

and homogeneous (3.1), (3.2) Cauchy problems.

We consider certain absolutely continuous vector-functions {yk}r−1
k=0 : [a, b]→ Rn

and construct the corresponding sequence of the functions {yk}r−1
k=0 : [a, b]→ Rn

according to formula (3.3) for m ≥ r. Next, we introduce the function

(4.5) y(t) =
m∑
k=0

θkyk(t) , t ∈ [a, b] ,

with the coefficients {θk}mk=0 ∈ [0,+∞) determined by the assumptions of the
theorem. Note that, in view of (3.4), assumption (4.1) implies that (4.3) holds.
Let us show that, under our assumptions, function (4.5) satisfies inequality (4.4).
Taking into account (4.5), the corresponding function

(4.6) ω(t) := Dq
ay(t)− ρ(ly)(t)
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has the form ω(t) :=
∑m
k=0 θk

(
Dq
ayk(t)− ρ(lky)(t)

)
, whence

(4.7) ω(t) :=
r−1∑
k=0

θkD
q
ayk(t) +

m∑
k=r

θkD
q
ayk(t)− ρ

m∑
k=0

θk(lky)(t) , m ≥ r .

In view of formula (3.3) and Lemma 3.1 for the functions yr, yr+1, . . . , we have
Dq
ayk(t) =

∑r
i=1 hi(lyk−i)(t), t ∈ [a, b], k ≥ r, and, therefore, equality (4.7) can be

rewritten

(4.8) ω(t) :=
r−1∑
k=0

θkD
q
ayk(t) +

m∑
k=r

θk

r∑
i=1

hi(lyk−i)(t)− ρ
m∑
k=0

θk(lyk)(t) .

Taking into account Lemma 3.6, formula (4.8) can be rewritten as

(4.9) ω(t) :=
r−1∑
k=0

θkD
q
ayk(t) +

m−1∑
k=0

µk(lyk)(t)− ρ
m∑
k=0

θk(lyk)(t)

=
r−1∑
k=0

θkD
q
ayk(t) +

m−1∑
k=0

(µk − ρθk)(lyk)(t)− ρθm(lym)(t) ,

where µ0, µ1, . . . µm−1 are given by relation (3.9). In view of (3.9), equality (4.9)
is equivalent to the relation

ω(t) =
r−1∑
k=0

θkD
q
ayk(t) +

m−1∑
k=0

( ∑
ν∈Tr,m(k)

θν+khν − ρθk
)

(lyk)(t) − ρθm(lym)(t) .

Hence, relation (4.2) guarantees that function (4.6) satisfies the condition σω ≥ 0
for a. e. t ∈ [a, b], i. e., the fractional functional differential inequality (4.4) holds
for the function y given by (4.5). It is obvious, that constructed in such way, y is a
solution of the differential inequality (4.4).

To apply Theorem 4.2 we need to show that, under our assumptions, the solution
mentioned possesses properties (3.4).

In view of Lemma 3.5, σ-positiveness of the operator l and non-negativity of all
constants θk, k = 0, 1, . . . ,m the inequality

(4.10) σθkyk(t) ≥ 0 , t ∈ [a, b] , k = 0, 1, . . . ,m ,

is satisfied.
It follows from (4.10) that σ

(∑m
k=0 θkyk(t) −

∑r−1
k=0 θkyk(t)

)
=σ
∑m
k=r θkyk(t)

≥ 0, for t ∈ [a, b], k = 0, 1, . . . ,m, and, hence,

(4.11) σ

m∑
k=0

θkyk(t) ≥ σ
r−1∑
k=0

θkyk(t) t ∈ [a, b] , k = 0, 1, . . . ,m .

Inequality (4.11) yields σy(t) = σ
∑m
k=0 θkyk(t) ≥ σ

∑r−1
k=0 θkyk(t)), t ∈ [a, b]

whence, under the assumption (4.1), we obtain σy(t) ≥ σ
∑r−1
k=0 θkyk(t)) > 0,

t ∈ (a, b] i.e., y satisfies condition (4.3). Thus, we have shown that function
(4.5) satisfies the fractional functional differential inequality (4.4) and possesses
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properties (4.3) i. e., the assumptions of Theorem 4.2 are satisfied. Application of
Theorem 4.2 leads us to the assertion required. �

Remark 4.3. Condition (4.2) appearing in the Theorem 4.1 presented are unim-
provable in the sense that, generally speaking, that condition can not be assumed
with ρ = 1. To check this, one can use, e.g., example 1 from [4].

5. Pantograph type model

Let us consider problem (2.1), (2.2) in view

(5.1) Dq
0u(t) =

m∑
i=1

Pi(t)u(λit) + f(t) , t ∈ [0, 1] , u(0) = c ,

where

(lu)(t) :=
m∑
i=1

Pi(t)u(λit) , and Pi(t) :=


pi11(t) pi12(t) . . . pi1n(t)
pi21(t) pi22(t) . . . pi2n(t)

...
...

. . .
...

pin1(t) pin2(t) . . . pinn(t)

(5.2)

have continuous components and λi ∈ (0, 1), m ∈ N, f ∈ C([0, 1],Rn).
Equation (5.1) is a famous equation called the pantograph type equation arising

in electrodynamics [11]. The pantograph is a device used in electric trains to collect
electric current from the overload lines.

Now let us establish exact conditions sufficient for the unique solvability of the
initial value problem (5.1).

Theorem 5.1. Suppose that

(5.3) σPi(t)σ ≥ 0 for almost all t ∈ [0, 1], 1 ≤ i ≤ m,

is fulfilled, where every Pi, i = 1, . . . , n, are defined by (5.2) and have continuous
components, σ is defined by (2.4), and assume that there exists a real number ρ > 1
such that the functional differential inequality

(5.4) σ(y0(t) + y1(t)− ρy2(t)) ≥ 0

is satisfied for almost all t from [0, 1] and increasing functions y0 and y1 with
properties (3.4), (3.5), (4.1) and

(5.5) y2(t) = ρ+ 1
Γ(q)

∫ t

0
(t− s)q−1

m∑
i=1

Pi(s)(y0(λis) + y1(λis))ds.

Then, the assertion of Theorem 4.1 is true for the problem (5.1).

Proof. Let us consider the function y from (4.5) in view:

y(t) = θy0(t) + θy1(t) + θy2(t), t ∈ [0, 1] θ ∈ (0,+∞),

where y2 defined by (5.5) and increasing {y0, y1} chosen so that (3.4), (3.5) and
(4.1) are fulfilled. Obviously, Dq

0y2(t) = (ρ+1)
∑m
i=1 Pi(s) (y0(λit)+y1(λit)), where
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h0 = h1 = ρ+ 1. Let us consider (4.8) with r = 2, m = 2, then

(5.6) ω(t) = θDq
0y0(t) + θDq

0y1(t) + θ

m∑
i=1

Pi(s)
(
y0(λit) + y1(λit) − ρy2(λit)

)
.

By the σ-positivity of the operator (5.2) (see condition (5.3) and Lemma 9 from
[4]), inequality (5.4) and properties (3.4), (3.5), (4.1) for increasing functions y0, y1
we get that continuous function ω(t) from (5.6) implies the condition (4.2) from
Theorem 4.1. The application of that theorem to the initial-value problem (5.1) and
corresponding homogeneous problem implies the assertions required. Theorem 5.1
is proved. �

Remark 5.2. It is shown above that condition (5.4), which was obtained from com-
plicated formula (4.2), is much more simple for an application then the inequality
(25) from [4].
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