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A NOTE ON THE OSCILLATION PROBLEMS
FOR DIFFERENTIAL EQUATIONS WITH p(t)-LAPLACIAN

Kōdai Fujimoto

Abstract. This paper deals with the oscillation problems on the nonlinear dif-
ferential equation (a(t)|x′|p(t)−2x′)′+b(t)|x|λ−2x = 0 involving p(t)-Laplacian.
Sufficient conditions are given under which all proper solutions are oscillatory.
In addition, we give a-priori estimates for nonoscillatory solutions and propose
an open problem.

1. Introduction

We consider the second-order nonlinear differential equation

(1.1) (a(t)|x′|p(t)−2x′)′ + b(t)|x|λ−2x = 0, t ≥ t0 ,

where a(t), b(t), and p(t) > 1 are positive continuous functions and λ > 1 is a
constant. In addition, we assume

(1.2) lim sup
t→∞

a(t) <∞,

that is, there exists α > 0 such that a(t) < α for t ≥ t0.
Note that the differential operator in equation (1.1) is called p(t)-Laplacian.

Such operator appears in mathematical models in a wide range of research fields
such as nonlinear elasticity theory, electrorheological fluids, and image processing
(see [2, 10,14]). In recent years, increasing interest has been paid to the study of
ordinary differential equations with p(t)-Laplacian. For example, we can find those
results in [1, 4, 8, 9, 15,16,17,18] and the references cited therein.

A function x(t) is said to be a solution of equation (1.1) defined on (t0, τ), if
x(t) and its quasiderivative

x[1](t) = a(t)|x′(t)|p(t)−2x′(t)

are continuously differentiable, and x(t) satisfies equation (1.1) on (t0, τ). We study
solutions of equation (1.1) which are defined on (t0, τ); if τ <∞ then we suppose
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that x(t) is nonextendable to the right, i.e.,
lim sup
t→τ−

(|x(t)|+ |x′(t)|) =∞ .

A nontrivial solution x(t) of equation (1.1) is said to be a singular solution of the
first kind, if there exists Tx > t0 such that x(t) ≡ 0 for t ≥ Tx. It is said to be a
singular solution of the second kind, if τ < ∞. It is said to be a proper solution
if x(t) is not singular. The existence of proper solutions for equation (1.1) can be
referred to in [1]. A proper solution x(t) of equation (1.1) is said to be oscillatory
if there exists a sequence {tn} tending to ∞ such that x(tn) = 0. Otherwise, it is
said to be nonoscillatory.

Let p(t) ≡ p > 1. Then equation (1.1) becomes the so-called generalized
Emden-Fowler differential equation
(1.3) (a(t)|x′|p−2x′)′ + b(t)|x|λ−2x = 0, t ≥ t0
with the classical p-Laplacian. It is known that the study of equation (1.3) originates
from gas dynamics in astrophysics. Moreover, asymptotic behavior of solutions
of equation (1.3) corresponds to the concentration of a substance disappearing
according to an isothermal reaction in an finite slab of catalyst (see [13]). Hence, a lot
of papers have been devoted to the study of equation (1.3) (see [3,5,6,7,11,12,13]).
Especially, on the oscillation problems, the following theorem is proved in [12].

Theorem A. All proper solutions of equation (1.3) with a(t) ≡ 1 are oscillatory if

(1.4)
∫ ∞

b(t) dt =∞ .

According to the proof of Theorem A, we can easily get the analogue for equation
(1.1) when lim inft→∞ p(t) > 1 under (1.2). Here, a natural question now arises:
Are all proper solutions of equation (1.1) oscillatory when limt→∞ p(t) = 1? The
purpose of this paper is to answer the question. To be precise, we give sufficient
conditions under which all proper solutions of equation (1.1) are oscillatory. Our
main result is stated as follows.

Theorem 1.1. Assume (1.2). Suppose that there exists a constant c > 0 such that

(1.5) p(t) ≥ 1 + c

log log t .

Then, all proper solutions of equation (1.1) are oscillatory if (1.4) holds.

Remark 1.2. Theorem 1.1 contains not only the case of limt→∞ p(t) = 1, but
also the case of lim inft→∞ p(t) > 1.

This paper is organized as follows. In Section 2, we give the proof of Theorem 1.1.
In Section 3, we give some remarks and open problems.

2. Proof of the main theorem

In this section, we give the proof of Theorem 1.1. We begin with the following
lemma.
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Lemma 2.1. Assume (1.2) and (1.5). Let y ∈ C1[t0,∞) be a function satisfying
y(t) 6= 0 for t ≥ t0. Then, for any T ≥ t0,

(2.1) lim sup
t→∞

{
a(t)|y′(t)|p(t)−2y′(t)
|y(t)|λ−2y(t) + (λ− 1)

∫ t

T

a(s)|y′(s)|p(s)

|y(s)|λ ds

}
≥ 0

holds.

Proof. Suppose, toward a contradiction, that (2.1) is false. Then, there exist
constants k > 0 and T ′ > t0 such that

(2.2) k|y(T ′)|λ−1

α
< 1

and
a(t)|y′(t)|p(t)−2y′(t)
|y(t)|λ−2y(t) + (λ− 1)

∫ t

T ′

a(s)|y′(s)|p(s)

|y(s)|λ ds ≤ −k ,

that is,

(2.3) k + (λ− 1)
∫ t

T ′

a(s)|y′(s)|p(s)

|y(s)|λ ds ≤ −a(t)|y′(t)|p(t)−2y′(t)
|y(t)|λ−2y(t)

for t ≥ T ′. Since the left-hand side of (2.3) is positive, we see that y(t)y′(t) < 0 for
t ≥ T ′.

Dividing (2.3) by its left-hand side and multiplying by −y′(t)/y(t), we get

−y
′(t)
y(t) ≤

a(t)|y′(t)|p(t)/|y(t)|λ

k + (λ− 1)
∫ t
T ′

{
a(s)|y′(s)|p(s)/|y(s)|λ

}
ds
,

and therefore, we obtain

−(log |y(t)|)′ ≤ 1
λ− 1

(
log
(
k + (λ− 1)

∫ t

T ′

a(s)|y′(s)|p(s)

|y(s)|λ ds

))′
for t ≥ T ′. Integrating the both sides of this inequality from T ′ to t, we have

− log |y(t)|+ log |y(T ′)|

≤ 1
λ− 1

(
log
(
k + (λ− 1)

∫ t

T ′

a(s)|y′(s)|p(s)

|y(s)|λ ds

)
− log k

)
for t ≥ T ′. Hence, we obtain

(2.4) k

∣∣∣∣y(T ′)
y(t)

∣∣∣∣λ−1
≤ k + (λ− 1)

∫ t

T ′

a(s)|y′(s)|p(s)

|y(s)|λ ds

for t ≥ T ′.
From (2.3) and (2.4), we have

k

∣∣∣∣y(T ′)
y(t)

∣∣∣∣λ−1
≤ −a(t)|y′(t)|p(t)−2y′(t)

|y(t)|λ−2y(t) ,

that is,
k|y(T ′)|λ−1 ≤ −a(t)|y′(t)|p(t)−2y′(t) sgn y(t)
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for t ≥ T ′. Using (1.2) and y(t)y′(t) < 0 for t ≥ T ′, we get

k|y(T ′)|λ−1 ≤ a(t)|y′(t)|p(t)−1 ≤ α|y′(t)|p(t)−1 ,

and therefore, we obtain

(2.5) |y′(t)| ≥
(
k|y(T ′)|λ−1

α

)1/(p(t)−1)

for t ≥ T ′. We note that

c0 := k|y(T ′)|λ−1

α
< 1

from (2.2).
According to (1.5), we have

1
p(t)− 1 ≤

log log t
c

,

and hence, we obtain

c
1/(p(t)−1)
0 ≥ c(log log t)/c

0 = (log t)(log c0)/c =
(

1
log t

)| log c0|/c

.

Together with (2.5), we get

|y′(t)| ≥
(

1
log t

)| log c0|/c

for t ≥ T ′. In the case of y(t) > 0, this implies

y′(t) ≤ −
(

1
log t

)| log c0|/c

.

Integrating the both sides of this inequality, we get

lim
t≥∞

y(t)− y(T ′) ≤ −
∫ ∞
T ′

(
1

log t

)| log c0|/c

dt = −∞ .

This is a contradiction. In the case of y(t) < 0, as in the same manner in the
previous case, we obtain

lim
t→∞

y(t) =∞ ,

which is a contradiction. �

We are now ready to prove Theorem 1.1.
Proof of Theorem 1.1. Suppose, toward a contradiction, that equation (1.1)
has a nonoscillatory solution x(t). Then, from Lemma 2.1, we have (2.1) with
y(t) = x(t). Without loss of generality, we may assume x(t) 6= 0 for t ≥ t0. Then,
we can calculate

(|x(t)|λ−2x(t))′ = (λ− 1)x′(t)|x(t)|λ−2

and

(2.6) (a(t)|x′(t)|p(t)−2x′(t))′

|x(t)|λ−2x(t) =
(
a(t)|x′(t)|p(t)−2x′(t)
|x(t)|λ−2x(t)

)′
+ (λ− 1)a(t)|x′(t)|p(t)

|x(t)|λ .
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Dividing equation (1.1) by |x(t)|λ−2x(t), we have
(a(t)|x′(t)|p(t)−2x′(t))′

|x(t)|λ−2x(t) = −b(t) .

Integrating the both sides of this inequality from t0 to t, we get∫ t

t0

(a(s)|x′(s)|p(s)−2x′(s))′

|x(s)|λ−2x(s) ds = −
∫ t

t0

b(s) ds .

Together with (2.6), we obtain
a(t)|x′(t)|p(t)−2x′(t)
|x(t)|λ−2x(t) + (λ− 1)

∫ t

t0

a(s)|x′(s)|p(s)

|x(s)|λ ds

= a(t0)|x′(t0)|p(t0)−2x′(t0)
|x(t0)|λ−2x(t0) −

∫ t

t0

b(s) ds→ −∞

as t→∞. This is a contradiction to (2.1). �

3. Discussion and remarks

From Theorem 1.1, we see that if (1.5) holds (that is to say, p(t) tends to 1
more slowly than 1/ log log t) then there are no nonoscillatory solutions. On the
other hand, the nonexistence of nonoscillatory solutions is not guaranteed when
p(t) tends to 1 so rapidly. Hence, in this section, we consider the case when (1.5) is
false.

If a nonoscillatory solution x(t) of equation (1.1) is eventually negative, then
−x(t) is an eventually positive solution of equation (1.1). Hence, when we discuss
nonoscillatory solutions, we focus only on eventually positive solutions, and let us
simply call them positive solutions.

Let x(t) be a positive solution. Then, from equation (1.1), x[1](t) is decreasing.
Therefore, we see that the sign of x[1](t) is eventually constant, that is, x(t) has a
monotonicity for large t. The following proposition shows the a-priori estimate for
nonoscillatory solutions for equation (1.1).

Proposition 3.1. Assume (1.4). If there exists a nonoscillatory solution x(t) of
equation (1.1), then x(t) is decreasing to 0 as t→∞.

Proof. We first suppose that x(t) is nondecreasing. Integrating equation (1.1)
from t0 to ∞, we get

(x(t0))λ−1
∫ ∞
t0

b(t) dt ≤
∫ ∞
t0

b(t)(x(t))λ−1 dt = − lim
t→∞

x[1](t) + x[1](t0)

< x[1](t0) <∞ ,

which is a contradiction.
We next suppose that there exists a constant c1 > 0 such that x(t) is decreasing

to c1. Then, we have

−x[1](t) > −x[1](t) + x[1](t0) =
∫ t

t0

b(s)(x(s))λ−1 ds ≥ cλ−1
1

∫ t

t0

b(s) ds ,
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that is to say,

−x′(t) ≥
(
cλ−1

1
a(t)

∫ t

t0

b(s) ds
)1/(p(t)−1)

for t ≥ t0. Integrating the both sides of this inequality from t0 to ∞, we obtain∫ ∞
t0

(
cλ−1

1
a(t)

∫ t

t0

b(s) ds
)1/(p(t)−1)

dt ≤ − lim
t→∞

x(t) + x(t0) = −c1 + x(t0) <∞ .

On the other hand, from (1.2) and (1.4), we get
cλ−1

1
a(t)

∫ t

t0

b(s) ds > 1

for t sufficiently large, which implies that∫ ∞
t0

(
cλ−1

1
a(t)

∫ t

t0

b(s) ds
)1/(p(t)−1)

dt =∞ .

This is a contradiction. �

We finally propose the following open problem: Does equation (1.1) have a
nonoscillatory solution which is decreasing to 0 as t→∞ in the case when (1.5)
is false? If the nonexistence of such a solution is proved, then the condition (1.5)
can be removed from Theorem 1.1. Otherwise, it will be a discrepancy between
equations (1.1) and (1.3).
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