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NONLOCAL SEMILINEAR SECOND-ORDER DIFFERENTIAL
INCLUSIONS IN ABSTRACT SPACES

WITHOUT COMPACTNESS

Martina Pavlačková and Valentina Taddei

Abstract. We study the existence of a mild solution to the nonlocal initial
value problem for semilinear second-order differential inclusions in abstract
spaces. The result is obtained by combining the Kakutani fixed point theorem
with the approximation solvability method and the weak topology. This com-
bination enables getting the result without any requirements for compactness
of the right-hand side or of the cosine family generated by the linear operator.

1. Introduction

The main goal of the paper is to investigate the existence of a solution to the
following nonlocal initial value problem for semilinear second-order differential
inclusion in a Banach space

(1.1)
{
ẍ(t) ∈ Ax(t) + F (t, x(t)) , for a.a. t ∈ [0, T ] ,
x(0) = g(x) ẋ(0) = h(x) .

Throughout the paper, we assume that
(i) E is a reflexive Banach space having a Schauder basis;
(ii) A : D(A) ⊂ E → E is a closed linear densely defined operator generating a

cosine family {C(t)}t∈R;
(iii) F : [0, T ] × E ( E is a multivalued mapping with nonempty, bounded,

closed and convex values;
(iv) g, h : C([0, T ], E)→ E.

Differential equations and inclusions in Banach spaces have been attracting quite
big attention (see, e.g., [1,2,5,13,23,24]). In particular, as pointed out by Byszewski
and Lakshmikantham in [11], the study of nonlocal conditions is of significance due
to their applicability in many physical and engineering problems and also in other
areas of applied mathematics. Since then several authors have been investigated

2020 Mathematics Subject Classification: primary 34A60; secondary 34G25.
Key words and phrases: second-order differential inclusion, nonlocal conditions, Banach spaces,

cosine family, approximation solvability method, mild solution.
Received July 21, 2022, accepted November 7, 2022. Editor Z. Došlá.
DOI: 10.5817/AM2023-1-99

http://www.emis.de/journals/AM/
http://dx.doi.org/10.5817/AM2023-1-99


100 M. PAVLAČKOVÁ AND V. TADDEI

problems with nonlocal initial conditions for different classes of abstract differential
equations or inclusions (see, e.g., [4, 12,14]).
One of the key tools that will be used in the paper is an approximation solvability
method that was introduced in [6] to study fully nonlinear first-order problems in
Hilbert spaces. Its application was afterwards extended to first-order semilinear
problems in Banach spaces in [8] and to fully nonlinear second-order problems in
Hilbert spaces in [7]. Recently, it was applied to Cauchy problems for semilinear
second-order differential inclusions in [20].
Motivated by the above works, the main objective of this paper is proving the
existence of a mild solution to the second-order semilinear differential inclusion in
a Banach space satisfying nonlocal conditions without converting it into first-order
problem. To obtain desired results, we will transfer the original problem into a
sequence of problems in finite dimensional spaces using the approximation solvability
method. Afterwards, the solvability of approximating problems will be shown by the
Kakutani fixed point problem for multivalued mappings. Finally, the convergence
of obtained solutions to the solution of the original problem will be proven. This
procedure will enable to obtain the existence result under easily verifiable and not
restrictive conditions on the cosine family generated by the linear operator or on
the right-hand side and to avoid any requirement for compactness.

2. Preliminaries

In this section, the basic notions dealing with natural projections and cosine
families will be mentioned.

A sequence {en}n of vectors in E is a Schauder basis for E if, for every x ∈ E,
there exists a unique sequence of real numbers αn = αn(x), n ∈ N, such that
‖x−

∑n
i=1 αiei‖ → 0, as n→∞.

Given a Schauder basis {en}n for E, let En = span{e1, . . . , en} denote the
n-dimensional Banach space generated by the first n vectors of the basis, and
let Pn : E → En be the natural projection of E onto En, i.e., Pn (

∑∞
k=1 αkek) =∑n

k=1 αkek . It holds that Pn is linear and bounded, for every n ∈ N, and that the
sequence {‖Pn‖}n is bounded, i.e. that there exists K ≥ 1 such that

‖Pn(x)‖ ≤ K‖x‖ ∀n ∈ N , ∀ x ∈ E .

For the main properties of the projection Pn, we remind to [8], [9] and [19]. We
recall, in particular, that if xn ⇀ x, then Pn(xn) ⇀ x.
A one parameter family {C(t)}t∈R of bounded linear operators mapping the space
E into itself is called a strongly continuous cosine family if
• C(t+ s) + C(s− t) = 2C(s)C(t), for all t, s ∈ R;
• C(0) = I;
• the map t→ C(t)x is continuous in R, for each fixed x ∈ E.

If {C(t)}t∈R is a strongly continuous cosine family, then there exist M ≥ 1 and
ω ≥ 0 such that, for all t ∈ R,

(2.1) ‖C(t)‖ ≤Meω|t| .
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We also recall that the map c : [0, T ] × E → E defined as c(t, x) = C(t)x is
continuous (see [20, Lemma 3]).
The one parameter family {S(t)}t∈R of bounded linear operators mapping the
space E into itself defined, for all t ∈ R and x ∈ E, by

S(t)x =
∫ t

0
C(s)x ds

is called the strongly continuous sine family associate to the cosine family. It follows
from the definition of {S(t)}t∈R that, for every t ∈ [0, T ],

‖S(t)‖ ≤ K0 ,

where

K0 =
{
M eωT−1

ω if ω 6= 0
MT if ω = 0 .

For more information about sine and cosine families and their properties, see, e.g.,
[22].

The notion of a solution to (1.1) will be understood in a mild sense. Namely, by
a mild solution of the problem (1.1) we mean a continuous function x : [0, T ]→ E
such that, for all t ∈ [0, T ],

x(t) = C(t) g(x) + S(t)h(x) +
∫ t

0
S(t− s)f(s) ds ,

where

f ∈ S1
F, x = {f ∈ L1([0, T ], E) : f(t) ∈ F (t, x(t)), for a.a. t ∈ [0, T ]} .

3. Existence result

Theorem 3.1. Consider the problem (1.1) and let F : [0, T ] × E ( E satisfies
the following assumptions:

(F1) F (t, x) is nonempty, convex, closed, and bounded, for every t ∈ [0, T ] and
x ∈ E,

(F2) for every x ∈ E, F (·, x) has a measurable selection,
(F3) for a.a. t ∈ [0, T ], F (t, ·) : Ew ( Ew, where Eω denotes the space E

endowed with the weak topology, is u.s.c.,
(F4) for every n ∈ N, there exists ϕn ∈ L1([0, T ],R), with

lim inf
n→∞

‖ϕn‖L1

n
= 0 ,

such that
‖z‖ ≤ ϕn(t),

for a.a. t ∈ [0, T ], every x ∈ E with ‖x‖ ≤ n and every z ∈ F (t, x).
Moreover let g and h satisfy:

(gh1) g, h : C([0, T ], E)w → Ew are continuous;
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(gh2)
lim
n→∞

Ln
n

= R ,

where
Ln = max

{
sup
‖x‖≤n

‖g(x)‖, sup
‖x‖≤n

‖h(x)‖
}
,

with
R <

1
K(KMeωT +K0) .

Then the problem (1.1) has a solution.

Proof. In order to get the existence of a solution to the problem (1.1), we will
use the approximation solvability method. Thus, for each m ∈ N, consider the
multimap Gm : [0, T ] × E → Em defined as Gm = Pm ◦ F and the operator
Σm : C([0, T ], Em)( C([0, T ], Em) defined as

Σm(q)(t) =
{

PmC(t) Pmg(q) + PmS(t)h(q) +
∫ t

0
PmS(t− s)f(s) ds : f ∈ S1

Gm, q

}
.

Let us note that the existence of a selection f ∈ S1
Gm, q

is guaranteed, e.g., by
[9, Proposition 2.2].

In order to show that Σm has a fixed point, we will prove that it satisfies
all assumptions of the Kakutani fixed point theorem ([17, Theorem 1]). For this
purpose, given n ∈ N, we use the following notation

nBm = {q ∈ C([0, T ];Em) : ‖q(t)‖ ≤ n, for every t ∈ [0, T ]} .
Notice that Σm(q) = Σ1

m(q) + Σ2
m(q), where Σ1

m is a single valued map defined as
Σ1
m(q)(t) = PmC(t) Pmg(q) + PmS(t)h(q) ,

while Σ2
m is a multivalued map defined as

Σ2
m(q) =

{∫ t
0

PmS(t− s)f(s) ds : f ∈ S1
Gm, q

}
.

In [20, Theorem 1], we proved a result similar to the present one in the case when
the non-linear term depends also on the first derivative, but the nonlocal conditions
are replaced by the Cauchy conditions. In this proof, we shall outline only the
differences with respect to the proof of the quoted result. In particular, it is possible
to prove by using [18, Theorem 5.1.1] together with [20, Theorem 1] that Σ2

m has
convex values, a closed graph and that it maps bounded sets into relatively compact
sets. Let us now prove that Σ1

m satisfies the same properties. Clearly, Σ1
m is convex

valued, because it is single valued.
Assume that

(
qk, Σ1

m(qk)
)
→ (q, y) in C([0, T ], Em) × C([0, T ], Em), and let us

prove that y = Σ1
m (q). According to (gh1) and the boundedness of C(t), S(t) and

Pm, since Em is finite dimensional, it follows that
Σ1
m(qk)(t)→ PmC(t) Pmg(q) + PmS(t)h(q) ,

for every t ∈ [0, T ]. Since the convergence in C([0, T ], Em) implies the pointwise
convergence, we get that y = Σ1

m (q), i.e. that Σ1
m has a closed graph.
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Take now n ∈ N. Condition (gh2) implies that {g(x) : x ∈ nBm} is bounded, thus
A = {Pmg(x) : x ∈ nBm} is relatively compact, because Em is finite dimensional.
Since (t, x)→ C(t)x is continuous, it is uniformly continuous in the compact set
[0, T ]×A. We then get that, for every ε > 0 there exists δ > 0 such that, for every
t, t0 ∈ [0, T ], x ∈ nBm

‖C(t)Pmg(x)− C(t0)Pmg(x)‖ ≤ ε .

Moreover, for every x ∈ nBm there exists ddtS(t)h(x) = C(t)h(x). (2.1) and (gh2)
then imply that ∥∥∥∥ ddtS(t)h(x)

∥∥∥∥ ≤MeωTLn ,

for every t ∈ [0, T ], x ∈ nBm. Therefore, Σ1
m is equicontinuous in nBm, for every

n ∈ N.
In order to show that Σm maps bounded sets into bounded sets and that there

exists a bounded set D ⊂ C1([0, T ];Em) such that Σm(D) ⊂ D, it is sufficient
to notice that, according to (F4) and (gh2) for every n, m ∈ N, q ∈ nBm and
h ∈ Σm(q), there exists f ∈ S1

Gm, q
and Ln ∈ R, ϕn ∈ L1([0, T ],R) such that, for

every t ∈ [0, T ], the following holds

‖h(t)‖ ≤ ‖Pm‖2‖C(t)‖‖g(q)‖+ ‖Pm‖‖S(t)‖‖h(q)‖

+
∫ T

0
‖Pm‖‖S(t− s)‖‖f(s)‖ ds

≤ K2MeωTLn +KK0Ln +KK0‖ϕn‖L1 .

Therefore,
‖h‖C ≤ K2MeωTLn +KK0Ln +KK0‖ϕn‖L1

for every m, n ∈ N, q ∈ nBm, h ∈ Σm(q). In particular, Σ1
m maps bounded sets

into bounded and equicontinuous sets, i.e. relatively compact sets in the space
C([0, T ], Em).

Take N > 0 such that
LN
N

<
1

K(KMeωT +K0) and ‖ϕN‖L1

N
<

1
KK0

[
1− LN

N
K(KMeωT +K0)

]
.

Such N exists because of (F4) and (gh2). Afterwards,

K2MeωTLN +KK0LN +KK0||ϕN ||L1

N
< 1 ,

which guarantees that Σm(NBm) ⊂ NBm, for all m ∈ N.
Since Σm is closed and maps bounded sets into relatively compact sets, it has

compact values; hence, it is u.s.c. Thus, Σm : NBm ( NBm is a u.s.c. compact
map with convex and closed values. Applying the Kakutani fixed point theorem,
we obtain that, for all m ∈ N, the operator Σm has a fixed point qm. Because of
the technique used, we are also able to localize the fixed point in the set

NB = {q ∈ C([0, T ], E) : ‖q(t)‖ ≤ N, for every t ∈ [0, T ]} .
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Let us now prove that the sequence {qm}m found in previous step admits a
subsequence pointwise weakly converging to a solution q of Problem (1.1).
The sequence {qm}m satisfies, for all m ∈ N and t ∈ [0, T ],

qm(t) = PmC(t) Pmg(qm) + PmS(t)h(qm) +
∫ t

0
PmS(t− s)fm(s) ds ,

where fm ∈ S1
Gm,qm

, for every m ∈ N.
Reasoning like in [20, Theorem 1], it is possible to prove that there exists a
subsequence, still denoted as the sequence, and a function f ∈ L1([0, T ], E) such
that ∫ t

0
PmS(t− s)fm(s) ds ⇀

∫ t
0
S(t− s)f(s) ds ,

for every t ∈ [0, T ].
Now, according to (gh2), since qm ∈ NB for every m ∈ N and E is reflexive, there
exists a subsequence, still denoted as the sequence, and g, h ∈ E such that

g(qm) ⇀ g and h(qm) ⇀ h ,

which implies that

PmC(t) Pmg(qm) + PmS(t)h(qm) ⇀ C(t)g + S(t)h ,

for every t ∈ [0, T ], i.e. that

qm(t) ⇀ q(t) = C(t)g + S(t)h+
∫ t

0
S(t− s)f(s) ds.

Thus, qm ⇀ q in C([0, T ], E) (see [10, Theorem 4.3]). Hence, according to (gh1),
g = g(q) and h = h(q), while, reasoning like in the proof of [20, Theorem 1] we get
that f ∈ S1

F, q, and the proof is complete. �

Remark 3.2. Let us note that assumption (gh2) is satisfied, e.g., when (cf.
assumption (gh2) in [12]):

(gh2′) there exists Q > 0 such that ‖g(q)‖ ≤ Q and ‖h(q)‖ ≤ Q, for all
q ∈ C([0, T ];E).

In such a case, R = 0 and Theorem 1 can be proved also replacing condition (F4)
by the following one:

(F4′) There exist α ∈ L1([0, T ], E) such that

‖z‖ ≤ α(t)(1 + ‖x‖) ,

for a.a. t ∈ [0, T ], every x ∈ E and every z ∈ F (t, x).
The only difference with respect to the proof of Theorem 1 concerns, in this case,
the existence of a bounded set H ⊂ C([0, T ], E) such that, for every m ∈ N, Σm
maps H ∩C([0, T ], Em) into itself. On this purpose, it is sufficient to reason like in
[20, Theorem 2], observing that, denoted, for every fixed j ∈ N,

qj = max
t∈[0,T ]

∫ T
0
e−j(t−s)χ[0,t](s)α(s) ds,
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it is possible to prove that there exists a subsequence, still denoted as the sequence,
such that qj → 0. Now take

H =
{
x ∈ C([0, T ], E) : max

t∈[0,T ]
e−jt‖x(t)‖ ≤ R

}
where j ∈ N and R ∈ R are chosen such that

1−KK0qj > 0 ,

and
R >

K2MeωTQ+KK0Q+KK0‖α‖L1

1−K2qj
.

Remark 3.3. We point out that our existence result is proved under quite weak
assumptions. Indeed, similar results are obtained in literature for even more general
equations and boundary conditions, but all with very strong assumptions.
In [3], an additional term Bẋ, with B linear and bounded, appears while h(x) ≡
x1 ∈ E, but the authors assume that C(t) is compact for every t. In [12], A generates
a fundamental system and g and h are assumed bounded. Moreover, they have to
satisfy, as well as F, a condition involving the Hausdorff measure of noncompactness.
In [14,15,16], the left-hand side is of type ddt (ẋ(t)−p(t, x, ẋ)) or the right-hand side
is of type F (t, x, x(a(t)), ẋ, ẋ(b(t))) or F (t,N(t)x) and g and h may depend also on
ẋ. However, the existence results there are proved assuming that S(t) is compact,
for every t, or that F maps bounded sets into relatively compact ones, eventually
that it satisfies a condition involving the Hausdorff measure of noncompactness.
Moreover, g and h are assumed completely continuous and bounded or globally
Lipschitz continuous. In [21], the nonlinear term depends also on the weighted
average of the solution and g and h depends also on ẋ, but the nonlinear term, g
and h are assumed globally Lipschitz continuous.
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