Noncommutative compact manifolds constructed from quivers

Lieven Le Bruyn* Universitaire Instelling Antwerpen B-2610 Antwerp (Belgium) lebruyn@wins.uia.ac.be

Abstract

The moduli spaces of θ -semistable representations of a finite quiver can be packaged together to form a noncommutative compact manifold.

If noncommutative affine schemes are geometric objects associated to affine associative \mathbb{C} -algebras, affine smooth noncommutative varieties ought to correspond to *quasi-free (or formally smooth) algebras* (having the lifting property for algebra morphisms modulo nilpotent ideals). Indeed, J. Cuntz and D. Quillen have shown that for an algebra to have a rich theory of differential forms allowing natural connections it must be quasi-free [1, Prop. 8.5].

M. Kontsevich and A. Rosenberg introduced noncommutative spaces generalizing the notion of stacks to the noncommutative case [5, §2]. It is hard to construct noncommutative compact manifolds in this framework, due to the scarcity of faithfully flat extensions for quasi-free algebras. An alternative was outlined by M. Kontsevich in [4] and made explicit in [5, §1] (see also [7] and [6]). Here, the geometric object corresponding to the quasi-free algebra A is the collection $(rep_n A)_n$ where $rep_n A$ is the affine GL_n -scheme of n-dimensional representations of A. As A is quasi-free each $rep_n A$ is smooth and endowed with Kapronov's formal noncommutative structure [2]. Moreover, this collection has equivariant sum-maps $rep_n A \times rep_m A \longrightarrow rep_{m+n} A$.

We define a *noncommutative compact manifold* to be a collection $(Y_n)_n$ of projective varieties such that each Y_n is the quotient-scheme of a smooth GL_n -scheme X_n which is locally isomorphic to $\operatorname{rep}_n A_\alpha$ for a fixed set of quasi-free algebras A_α ; moreover, we require that the X_n are endowed with formal noncommutative structure, as well as with equivariant sum-maps $X_m \times X_n \longrightarrow X_{m+n}$. In this note we will construct of a large class of examples.

An illustrative example : let $M_{\mathbb{P}_2}(n;0,n)$ be the moduli space of semi-stable vectorbundles of rank n over the projective plane \mathbb{P}_2 with Chern-numbers $c_1 = 0$ and $c_2 = n$, then the collection $(M_{\mathbb{P}_2}(n;0,n))_n$ is a noncommutative compact manifold. In general, let Q be a quiver on k vertices without oriented cycles and let $\theta = (\theta_1, \ldots, \theta_k) \in \mathbb{Z}^k$. For a finite dimensional representation N of Q with dimension vector $\alpha = (a_1, \ldots, a_k)$ we denote $\theta(N) = \sum_i \theta_i a_i$ and $d(\alpha) = \sum_i a_i$. A representation M of Q is called θ -semistable if $\theta(M) = 0$ and $\theta(N) \ge 0$ for every subrepresentation N of M. A. King studied the moduli spaces $M_Q(\alpha, \theta)$ of θ semistable representations of Q of dimension vector α and proved that these are projective varieties [3, Prop 4.3]. We will prove the following result.

^{*}Research director of the FWO (Belgium)

Theorem 1 With notations as above, the collection of projective varieties

$$(\bigsqcup_{d(\alpha)=n} M_Q(\alpha,\theta))_n$$

is a noncommutative compact manifold.

The claim about moduli spaces of vectorbundles on \mathbb{P}_2 follows by considering the quiver • \longrightarrow • and $\theta = (-1, 1)$.

Let C be a smooth projective curve of genus g and $M_C(n,0)$ the moduli space of semi-stable vectorbundles of rank n and degree 0 over C. We expect the collection $(M_C(n,0))_n$ to be a noncommutative compact manifold.

1 The setting.

Let Q be a *quiver* on a finite set $Q_v = \{v_1, \ldots, v_k\}$ of vertices having a finite set Q_a of arrows. We assume that Q has *no oriented cycles*.

The path algebra $\mathbb{C}Q$ has as underlying \mathbb{C} -vectorspace basis the set of all oriented paths in Q, including those of length zero which give idempotents corresponding to the vertices v_i . Multiplication in $\mathbb{C}Q$ is induced by (left) concatenation of paths. $\mathbb{C}Q$ is a finite dimensional quasi-free algebra.

Let $\alpha = (a_1, \ldots, a_k)$ be a *dimension vector* such that $d(\alpha) = n$. Let $\operatorname{rep}_Q(\alpha)$ be the affine space of α -dimensional representations of the quiver Q. That is,

$$\operatorname{rep}_Q(\alpha) = \bigoplus_{\substack{\mathbf{o}_j \\ \mathbf{o}_j \\ \mathbf{o}_i}} M_{a_j \times a_i}(\mathbb{C})$$

 $GL(\alpha) = GL_{a_1} \times \ldots \times GL_{a_k}$ acts on this space via basechange in the vertexspaces. For $\theta = (\theta_1, \ldots, \theta_k) \in \mathbb{Z}^k$ we denote with $\operatorname{rep}_Q^{ss}(\alpha, \theta)$ the open (possibly empty) subvariety of θ -semistable representations in $\operatorname{rep}_Q(\alpha)$. Applying results of A. Schofield [8] there is an algorithm to determine the (α, θ) such that $\operatorname{rep}_Q^{ss}(\alpha, \theta) \neq \emptyset$. Consider the diagonal embedding of $GL(\alpha)$ in GL_n and the quotient morphism

$$X_n = \bigsqcup_{d(\alpha)=n} GL_n \times^{GL(\alpha)} rep_Q^{ss}(\alpha, \theta) \xrightarrow{\pi_n} Y_n = \bigsqcup_{d(\alpha)=n} M_Q(\alpha, \theta).$$

Clearly, X_n is a smooth GL_n -scheme and the direct sum of representations induces sum-maps $X_m \times X_n \longrightarrow X_{m+n}$ which are equivariant with respect to $GL_m \times GL_n \hookrightarrow GL_{m+n}$. Y_n is a projective variety by [3, Prop. 4.3] and its points correspond to isoclasses of *n*-dimensional representations of $\mathbb{C}Q$ which are direct sums of θ -stable representations by [3, Prop. 3.2]. Recall that a θ -semistable representation M is called θ -stable provided the only subrepresentations N with $\theta(N) = 0$ are M and 0.

2 Universal localizations.

We recall the notion of *universal localization* and refer to [9, Chp. 4] for full details. Let A be a \mathbb{C} -algebra and projmod A the category of finitely generated projective left A-modules. Let Σ be some class of maps in this category. In [9, Chp. 4] it is shown that there exists an algebra map $A \xrightarrow{j_{\Sigma}} A_{\Sigma}$ with the universal property that the maps $A_{\Sigma} \otimes_A \sigma$ have an inverse for all $\sigma \in \Sigma$. A_{Σ} is called

the universal localization of A with respect to the set of maps Σ . In the special case when A is the path algebra $\mathbb{C}Q$ of a quiver on k vertices, we can identify the isomorphism classes in projmod $\mathbb{C}Q$ with \mathbb{N}^k . To each vertex v_i corresponds an *indecomposable* projective left $\mathbb{C}Q$ -ideal P_i having as \mathbb{C} -vectorspace basis all paths in Q starting at v_i . We can also determine the space of homomorphisms

where p is an oriented path in Q starting at v_j and ending at v_i . Therefore, any A-module morphism σ between two projective left modules

$$P_{i_1} \oplus \ldots \oplus P_{i_u} \xrightarrow{\sigma} P_{j_1} \oplus \ldots \oplus P_{j_v}$$

can be represented by an $u \times v$ matrix M_{σ} whose (p,q)-entry m_{pq} is a linear combination of oriented paths in Q starting at v_{j_q} and ending at v_{i_p} .

Now, form an $v \times u$ matrix N_{σ} of free variables y_{pq} and consider the algebra $\mathbb{C}Q_{\sigma}$ which is the quotient of the free product $\mathbb{C}Q * \mathbb{C}\langle y_{11}, \ldots, y_{uv} \rangle$ modulo the ideal of relations determined by the matrix equations

$$M_{\sigma}.N_{\sigma} = \begin{bmatrix} v_{i_1} & 0 \\ & \ddots & \\ 0 & & v_{i_u} \end{bmatrix} \qquad N_{\sigma}.M_{\sigma} = \begin{bmatrix} v_{j_1} & 0 \\ & \ddots & \\ 0 & & v_{j_v} \end{bmatrix}.$$

Repeating this procedure for every $\sigma \in \Sigma$ we obtain the universal localization $\mathbb{C}Q_{\Sigma}$. Observe that if Σ is a finite set of maps, then the universal localization $\mathbb{C}Q_{\Sigma}$ is an affine algebra.

It is easy to see that $\mathbb{C}Q_{\Sigma}$ is quasi-free and that the representation space rep_n $\mathbb{C}Q_{\sigma}$ is an open subscheme (but possibly empty) of rep_n $\mathbb{C}Q$. Indeed, if $m = (m_a)_a \in \operatorname{rep}_Q(\alpha)$, then m determines a point in rep_n $\mathbb{C}Q_{\Sigma}$ if and only if the matrices $M_{\sigma}(m)$ in which the arrows are all replaced by the matrices m_a are invertible for all $\sigma \in \Sigma$. In particular, this induces numerical conditions on the dimension vectors α such that $\operatorname{rep}_n \mathbb{C}Q_{\Sigma} \neq \emptyset$. Let $\alpha = (a_1, \ldots, a_k)$ be a dimension vector such that $\sum a_i = n$ then every $\sigma \in \Sigma$ say with

$$P_1^{\oplus e_1} \oplus \ldots \oplus P_k^{\oplus e_k} \xrightarrow{\sigma} P_1^{\oplus f_1} \oplus \ldots \oplus P_k^{\oplus f_k}$$

gives the numerical condition $e_1a_1 + \ldots + e_ka_k = f_1a_1 + \ldots + f_ka_k$.

3 Local structure.

Fix $\theta = (\theta_1, \dots, \theta_k) \in \mathbb{Z}^k$ and let $\Sigma = \bigcup_{z \in \mathbb{N}_+} \Sigma_z$ where Σ_z is the set of all morphisms σ

$$P_{i_1}^{\oplus z\theta_{i_1}} \oplus \ldots \oplus P_{i_u}^{\oplus z\theta_{i_u}} \xrightarrow{\sigma} P_{j_1}^{\oplus -z\theta_{j_1}} \oplus \ldots \oplus P_{j_v}^{\oplus -z\theta_{j_v}}$$

where $\{i_1, \ldots, i_u\}$ (resp. $\{j_1, \ldots, j_v\}$) is the set of indices $1 \leq i \leq k$ such that $\theta_i > 0$ (resp. $\theta_i < 0$). Fix a dimension vector α with $\langle \theta, \alpha \rangle = 0$, then θ determines a character χ_{θ} on $GL(\alpha)$ defined by $\chi_{\theta}(g_1, \ldots, g_k) = \prod det(g_i)^{\theta_i}$. With notations as before, the function $d_{\sigma}(m) = det(M_{\sigma}(m))$ for $m \in \operatorname{rep}_Q(\alpha)$ is a semi-invariant of weight $z\chi_{\theta}$ in $\mathbb{C}[\operatorname{rep}_Q(\alpha)]$ if $\sigma \in \Sigma_z$.

The open subset $X_{\sigma}(\alpha) = \{m \in \operatorname{rep}_Q(\alpha) \mid d_{\sigma}(m) \neq 0\}$ consists of θ -semistable representations which are also *n*-dimensional representations of the universal

localization $\mathbb{C}Q_{\sigma}$. Under this correspondence θ -stable representations correspond to simple representations of $\mathbb{C}Q_{\sigma}$. If we denote

$$X_{\sigma,n} = \bigsqcup_{d(\alpha)=n} GL_n \times^{GL(\alpha)} X_{\sigma}(\alpha) \hookrightarrow X_n$$

then $X_{\sigma,n} = \operatorname{rep}_n \mathbb{C}Q_\sigma$ and the restriction of π_n to $X_{\sigma,n}$ is the GL_n -quotient map $\operatorname{rep}_n \mathbb{C}Q_\sigma \longrightarrow \operatorname{fac}_n \mathbb{C}Q_\sigma$ which sends an *n*-dimensional representation to the isomorphism class of the semi-simple *n*-dimensional representation of $\mathbb{C}Q_\sigma$ given by the sum of the Jordan-Hölder components, see [7, 2.3]. As the semiinvariants d_σ for $\sigma \in \Sigma$ cover the moduli spaces $M_Q(\alpha, \theta)$ this proves the local isomorphism condition for the collection $(Y_n)_n$.

A point $y \in Y_n$ determines a unique closed orbit in X_n corresponding to a representation

$$M_{u} = M_{1}^{\oplus e_{1}} \oplus \ldots \oplus M_{l}^{\oplus e_{l}}$$

with the $M_i \theta$ -stable representations occurring in M_y with multiplicity e_i . The local structure of Y_n near y is completely determined by a *local quiver* Γ_y on l vertices which usually has loops and oriented cycles and a dimension vector $\beta_y = (e_1, \ldots, e_l)$. The quiver-data (Γ_y, β_y) is determined by the canonical A_∞ -structure on $Ext^*_{\mathbb{C}Q}(M_y, M_y)$. As $\mathbb{C}Q$ is quasi-free, this ext-algebra has only components in degree zero (determining the vertices and the dimension vector β_y) and degree one (giving the arrows in Γ_y).

Using [9, Thm 4.7] and the correspondence between θ -stable representations and simples of universal localizations, the local structure is the one outlined in [7, 2.5]. In particular, it can be used to locate the singularities of the projective varieties Y_n .

4 Formal structure.

In [2] M. Kapranov computes the formal neighborhood of commutative manifolds embedded in noncommutative manifolds. Equip a \mathbb{C} -algebra R with the *commutator filtration* having as part of degree -d

$$F_{-d} = \sum_{m} \sum_{i_1 + \dots + i_m = d} RR_{i_1}^{Lie} R \dots RR_{i_m}^{Lie} R$$

where R_i^{Lie} is the subspace spanned by all expressions $[r_1, [r_2, [\dots, [r_{i-1}, r_i] \dots]$ containing i-1 instances of Lie brackets. We require that for $R_{ab} = \frac{R}{F_{-1}}$ affine smooth, the algebras $\frac{R}{F_{-d}}$ have the lifting property modulo nilpotent algebras in the category of *d*-nilpotent algebras (that is, those such that $F_{-d} = 0$). The micro-local structuresheaf with respect to the commutator filtration then defines a sheaf of noncommutative algebras on $\text{SPec}R_{ab}$, the formal structure. Kapranov shows that in the affine case there exists an essentially unique such structure. For arbitrary manifolds there is an obstruction to the existence of a formal structure and when it exists it is no longer unique. We refer to [2, 4.6] for an operadic interpretation of these obstructions.

We will write down the formal structure on the affine open subscheme $\operatorname{rep}_n \mathbb{C}Q_{\Gamma}$ of X_n where Γ is a finite subset of Σ . Functoriality of this construction then implies that one can glue these structures together to define a formal structure on X_n finishing the proof of theorem 1.

If A is an affine quasi-free algebra, the formal structure on $\operatorname{rep}_n A$ is given by the micro-structuresheaf for the commutator filtration on the affine algebra

$$\sqrt[n]{A} = A * M_n(\mathbb{C})^{M_n(\mathbb{C})} = \{ p \in A * M_n(\mathbb{C}) \mid p.(1 * m) = (1 * m).p \ \forall m \in M_n(\mathbb{C}) \}$$

This follows from the fact that $\sqrt[n]{A}$ is again quasi-free by the coproduct theorems, [9, §2]. Specialize to the case when $A = \sqrt[n]{\mathbb{C}Q_{\Gamma}}$. Consider the extended quiver $\hat{Q}(n)$ obtained from Q by adding one vertex v_0 and by adding n arrows from v_0 to v_i , for every vertex v_i in Q; these new arrows are denoted x_{i1}, \ldots, x_{in} . Consider the morphism between projective left $\mathbb{C}\hat{Q}(n)$ -modules

$$P_1 \oplus P_2 \oplus \ldots \oplus P_k \xrightarrow{\tau} \underbrace{P_0 \oplus \ldots \oplus P_0}_n$$

determined by the matrix

$$M_{\tau} = \begin{bmatrix} x_{11} & \dots & x_{1n} \\ \vdots & & \vdots \\ x_{k1} & \dots & x_{kn} \end{bmatrix}.$$

Consider the universal localization $B = \mathbb{C}\hat{Q}(n)_{\Gamma \cup \{\tau\}}$. Then, $\sqrt[\eta]{\mathbb{C}Q_{\Gamma}} = v_0 B v_0$ the algebra of oriented loops based at v_0 .

5 Odds and ends.

One can build a global combinatorial object from the universal localizations $\mathbb{C}Q_{\Gamma}$ with Γ a finite subset of Σ and gluings coming from unions of these sets. This example may be useful to modify the Kontsevich-Rosenberg proposal of noncommutative spaces to the quasi-free world.

Finally, allowing oriented cycles in the quiver Q one can repeat the foregoing verbatim and obtain a projective space bundle over the collection $(fac_n \mathbb{C}Q)_n$.

References

- J. Cuntz and D. Quillen. Algebra extensions and nonsingularity, Journal AMS 8 (1995) 251-289.
- [2] M. Kapranov. Noncommutative geometry based on commutator expansions, http://xxx.lanl.gov/math.AG/9802041 (1998) 48pp.
- [3] A.D. King. Moduli of representations of finite dimensional algebras, Quat. J. Math. Oxford 45 (1994) 515-530.
- [4] M. Kontsevich. Formal non-commutative symplectic geometry, in 'The Gelfand Mathematical Seminars, 1990-1992', Birkhäuser (1993) 173-187.
- [5] M. Kontsevich and A. Rosenberg. Noncommutative smooth spaces, http://xxx.lanl.gov/math.AG/9812158 (1998) 18pp.
- [6] M. Kontsevich. Non-commutative smooth spaces, talk at the Arbeitstagung-Bonn (1999)
- [7] L. Le Bruyn. noncommutative geometry @_n, UIA-preprint 99-03 http://xxx.lanl.gov/math.AG/9904171 (1999) 14pp.
- [8] A. Schofield. General representations of quivers. Proc. Lond. Math. Soc. 65 (1992) 46-64.
- [9] A. Schofield. 'Representations of rings over skew fields' London Math. Soc. Lecture Notes 92 (1995).

[AMA - Algebra Montpellier Announcements - 01-1999][November 1999] Received July 21, 1999.