COUNTING EQUIVALENCE CLASSES OF IRREDUCIBLE REPRESENTATIONS

Edward S. Letzter

June 2001.

ABSTRACT. Let n be a positive integer, and let R be a (possibly infinite dimensional) finitely presented algebra over a computable field of characteristic zero. We describe an algorithm for deciding (in principle) whether R has at most finitely many equivalence classes of ndimensional irreducible representations. When R does have only finitely many such equivalence classes, they can be effectively counted (assuming that k[x] possesses a factoring algorithm).

1. INTRODUCTION

Let n be a positive integer, fixed throughout. In [5] we observed that the existence of ndimensional irreducible representations of finitely presented noncommutative algebras can be algorithmically decided. In this note we outline a procedure for effectively "counting" the number of such irreducible representations, up to equivalence, in characteristic zero. Our approach combines standard computational commutative algebra with results from [1] and [9].

1.1. Assume that k is a computable field of characteristic zero, and that k is the algebraic closure of k.

Henceforth, let

$$R = k\{X_1, \ldots, X_s\}/\langle f_1, \ldots, f_t \rangle,$$

for some fixed choice of f_1, \ldots, f_t in the free associative k-algebra $k\{X_1, \ldots, X_s\}$. In a slight abuse of notation, " X_ℓ " will also denote its image in R, for $1 \le \ell \le s$.

By an *n*-dimensional representation of R we will always mean a unital k-algebra homomorphism from R into the k-algebra $M_n(\overline{k})$ of $n \times n$ matrices over \overline{k} . Representations $\rho, \rho': R \to M_n(\overline{k})$ are equivalent if there exists a matrix $Q \in GL_n(\overline{k})$ such that

$$\rho'(X) = Q\rho(X)Q^{-1},$$

Typeset by $\mathcal{A}_{\mathcal{M}}\!\mathcal{S}\text{-}T_{\!E}\!X$

The author's research was supported in part by NSF grant DMS-9970413. Also, a part of this research was completed while the author was a participant (February 2000) in the MSRI program on noncommutative algebra.

for all $X \in R$.

We will say that the representation $\rho: R \to M_n(\overline{k})$ is irreducible when $\overline{k}\rho(R) = M_n(\overline{k})$ (cf. [1, §9]). Observe that ρ is irreducible if and only if $\rho \otimes 1: R \otimes_k \overline{k} \to M_n(\overline{k})$ is surjective, if and only if $\rho \otimes 1$ is irreducible in the more common use of the term. (In particular, our approach below will use calculations over the computable field k to study representations over the algebraically closed field \overline{k} .)

1.2. The existence of an *n*-dimensional representation of *R* depends only on the consistency of a system of algebraic equations, over k, in $(t.n^2)$ -many variables. Consequently, the existence of *n*-dimensional representations of *R* is decidable (in principle) using Groebner basis methods. This idea is extended in [5] to give a procedure for deciding the existence of *n*-dimensional irreducible representations. On the other hand, possessing a nonzero finite dimensional representation is a Markov property, and so the existence – in general – of a finite dimensional representation of *R* cannot be effectively decided, by [3].

We now state our main result; the proof will be presented in $\S2$.

Theorem. Having at most most finitely many equivalence classes of irreducible n-dimensional representations is an algorithmically decidable property of R.

1.3. Assume that k[x] is equipped with a factoring algorithm. If it has been determined that R has at most finitely many equivalence classes of n-dimensional irreducible representations, these equivalence classes can (in principle) be effectively counted; see (2.9).

2. Proof of Theorem

2.1. (i) Set

$$B = k[x_{ij}(\ell) : 1 \le i, j \le n, 1 \le \ell \le s]$$

For $1 \leq \ell \leq s$, let \mathbf{x}_{ℓ} denote the $n \times n$ generic matrix $(x_{ij}(\ell))$, in $M_n(B)$. For $g \in k\{X_1, \ldots, X_s\}$, let $g(\mathbf{x})$ denote the image of g, in $M_n(B)$, under the canonical map

$$k\{X_1,\ldots,X_s\} \xrightarrow{X_\ell \mapsto \mathbf{x}_\ell} M_n(B).$$

Identify B with the center of $M_n(B)$.

(ii) Let $\operatorname{Rel}(M_n(B))$ be the ideal of $M_n(B)$ generated by $f_1(\mathbf{x}), \ldots, f_t(\mathbf{x})$.

(iii) Let $\operatorname{Rel}(B)$ denote the ideal of B generated by the entries of the matrices $f_1(\mathbf{x})$, $\dots, f_t(\mathbf{x}) \in M_n(B)$. Note that

$$\operatorname{Rel}(B) = \operatorname{Rel}(M_n(B)) \cap B.$$

(iv) Let

$$A = k\{\mathbf{x}_1, \ldots, \mathbf{x}_s\},\$$

the k-subalgebra of $M_n(B)$ generated by the generic matrices $\mathbf{x}_1, \ldots, \mathbf{x}_s$. Set

$$\operatorname{Rel}(A) = \operatorname{Rel}(M_n(B)) \cap A.$$

2.2. Every *n*-dimensional representation of R can be written in the form

$$R \xrightarrow{X_{\ell} \longmapsto \mathbf{x}_{\ell} + \operatorname{Rel}(A)} \left(\frac{A}{\operatorname{Rel}(A)} \right) \xrightarrow{\operatorname{inclusion}} \left(\frac{M_n(B)}{\operatorname{Rel}(M_n(B))} \right) \longrightarrow M_n(\overline{k}),$$

and every k-algebra homomorphism

$$M_n(B) / \operatorname{Rel}(M_n(B)) \to M_n(\overline{k})$$

is completely determined by the induced map

$$B/\operatorname{Rel}(B) \to \overline{k}.$$

For each representation $\rho: R \to M_n(\overline{k})$, let $\chi_{\rho}: B \to \overline{k}$ be the homomorphism (with $\operatorname{Rel}(B) \subseteq \ker \chi_{\rho}$) given by this correspondence.

2.3. Let T be the k-subalgebra of B generated by the coefficients of the characteristic polynomials of elements in A. (Since the characteristic of k is zero, T is in fact generated by the traces, as $n \times n$ matrices, of the elements in A.) Set

$$\operatorname{Rel}(T) = \operatorname{Rel}(B) \cap T.$$

Note, when $\rho, \rho': R \to M_n(\overline{k})$ are equivalent representations, that the restrictions of χ_{ρ} and $\chi_{\rho'}$ to T will coincide.

2.4. Let $\operatorname{simple}_n(R)$ denote the set of equivalence classes of irreducible *n*-dimensional representations of *R*. By (2.3) there is a well-defined function

$$\Phi: \operatorname{simple}_n(R) \longrightarrow V(\operatorname{Rel}(T)),$$

where V(Rel(T)) denotes the \overline{k} -affine algebraic set of points on which the polynomials in Rel(T) vanish. It follows from [1, pp. 558–559] that Φ is injective.

2.5. (i) Recall the *m*th standard identity

$$s_m = \sum_{\sigma \in S_m} (\operatorname{sgn} \sigma) Y_{\sigma(1)} \cdots Y_{\sigma(m)} \in \mathbb{Z} \{ Y_1, \dots, Y_m \}.$$

If Λ is a commutative ring, then the Amitsur-Levitzky Theorem ensures that $M_n(\Lambda)$ satisfies s_m if and only if $m \ge 2n$; see, for example, [6, 13.3.2, 13.3.3].

(ii) Let S denote the finite subset of $T (\subseteq B)$ comprised of

trace
$$(M_0 \cdot s_{2(n-1)}(M_1, \ldots, M_{2(n-1)}))$$
,

for all monic monomials $M_0, \ldots, M_{2(n-1)}$, in the generic matrices $\mathbf{x}_1, \ldots, \mathbf{x}_s$, of length less than

$$p = n\sqrt{2n^2/(n-1) + 1/4} + n/2 - 2.$$

(The choice of p will follow from [7]; see [5, 2.2].) Let $\rho: R \to M_n(\overline{k})$ be a representation. It now follows from [5, §2] that ρ is irreducible if and only if

$$S \not\subseteq \ker \chi_{\rho}$$
.

(Other sets of polynomials can be substituted for S; see [5, 2.6vi,vii].)

2.6. (i) Set

$$W = V(\operatorname{Rel}(T)) \setminus V(S).$$

Combining (2.4) with (2.5ii), we obtain a bijection

$$\Phi : \operatorname{simple}_n(R) \longrightarrow W$$

(ii) Set

$$J = \operatorname{ann}_B\left(\frac{\operatorname{Rel}(B) + B.S}{\operatorname{Rel}(B)}\right), \text{ and } I = J \cap T = \operatorname{ann}_T\left(\frac{\operatorname{Rel}(T) + T.S}{\operatorname{Rel}(T)}\right).$$

A finite generating set for J can be specified, using standard methods, and we can identify T/I with its image in B/J. Since V(I) is the Zariski closure of W, to prove the theorem it suffices to find an effective procedure for determining whether or not T/I is finite dimensional. (When not indicated otherwise, "dimension" refers to "dimension as a k-vector space.")

2.7. (i) For the generic matrices $\mathbf{x}_1, \ldots, \mathbf{x}_s$, set Trace =

$$\left\{ \operatorname{trace}(\mathbf{y}_1\mathbf{y}_2\cdots\mathbf{y}_u):\mathbf{y}_1,\ldots,\mathbf{y}_u\in\{\mathbf{x}_1,\ldots,\mathbf{x}_s\} \text{ and } 1\leq u\leq n^2 \right\}.$$

In [9] (cf. [4, p. 54]) it is shown that T = k[Trace]. (A larger finite generating set for T was established in [8].)

(ii) By (2.6ii), to prove the theorem it remains to find an algorithm for deciding whether the monomials in Trace ($\subseteq B$) are algebraic over k, modulo J. We accomplish this task using a variant of the subring membership test (cf., e.g., [2, p. 270]): Let C be a commutative polynomial ring, over k, in m variables. Let L be an ideal – equipped with an explicitly given list of generators – in C. Choose $f \in C$. Observe that f is algebraic over k, modulo L, if and only if $L \cap k[f] \neq \{0\}$. Next, embed C, in the obvious way, as a subalgebra of the polynomial ring $C' = k(t) \otimes_k C$. Observe that $L \cap k[f] \neq \{0\}$ if and only if 1 is contained in the ideal (t - f).C' + L.C' of C'. Hence, the decidability of ideal membership in C' implies the decidability of algebraicity modulo L in C.

The proof of the theorem follows.

2.8. Roughly speaking, the complexity of the procedure described in (2.1 - 2.7) varies according to the degrees of the polynomials involved in deciding the algebraicity of Trace modulo J. Note, for example, that the degrees of the members of S can be as large as p^{2n-1} , for p as in (2.5ii).

2.9. Assume that it has already been determined that the number (equal to |W|) of equivalence classes of irreducible *n*-dimensional representations of *R* is finite. Further assume that k[x] is equipped with a factoring algorithm. We conclude our study by sketching a procedure for calculating – in principal – this number.

Set D = T/I, and identify D with the (finite dimensional) k-subalgebra of B/J generated by the image of Trace. Since B/J can be given a specific finite presentation, finding a k-basis E for D amounts to solving systems of polynomial equations in B, and this task can be accomplished employing elimination methods. Next, using the regular representation of D, and the finite presentation of B/J, we can algorithmically specify E as a set of commuting $m \times m$ matrices over k, for some m. Furthermore, the nilradical N(D) will be precisely the set of elements of D whose traces, as $m \times m$ matrices, are zero. Consequently, we can effectively compute the dimension of D/N(D). This dimension is equal to |W|.

References

- M. Artin, On Azumaya algebras and finite dimensional representations of rings, J. Algebra 11 (1969), 532–563.
- T. Becker and V. Weispfenning, Gröbner Bases: A Computational Approach to Commutative Algebra, Graduate texts in mathematics no. 141, Springer-Verlag, New York, 1993.
- L. A. Bokut', Unsolvability of certain algorithmic problems in a class of associative rings, (Russian), Algebra i Logika 9 (1970), 137–144.
- 4. E. Formanek, The polynomial identites and invariants of $n \times n$ matrices, Conference board of the mathematical sciences regional conference series in mathematics no. 78, American Mathematical Society, Rhode Island, 1991.
- 5. E. S. Letzter, *Constructing irreducible representations of finitely presented algebras*, J. Symbolic Computation, (to appear).
- J. C. McConnell and J. C. Robson, Noncommutive noetherian rings, John Wiley and Sons, Chichester, 1987.
- C. J. Pappacena, An upper bound for the length of a finite-dimensional algebra, J. Algebra 197 (1997), 535–545.
- 8. C. Procesi, The invariant theory of $n \times n$ matrices, Adv. Math. 19 (1976), 306–381.
- Ju. P. Razmyslov, Identities with trace in full matrix algebras over a field of characteristic zero, (Russian), Izv. Akad. Nauk SSSR 38 (1974), 723–756.

DEPARTMENT OF MATHEMATICS, TEMPLE UNIVERSITY, PHILADELPHIA, PA 19122 *E-mail address*: letzter@math.temple.edu