ON THE LATTICE OF COTILTING MODULES

ASLAK BAKKE BUAN, HENNING KRAUSE, AND ØYVIND SOLBERG

1. The lattice

Let Λ be an associative ring. In this note we show that the collection of (not necessarily finitely generated) cotilting modules over Λ carries the structure of a lattice. We work in the category Mod Λ of (right) Λ -modules and denote by mod Λ the full subcategory of finitely presented Λ -modules. Changing slightly¹ the definition in [1], we say that a Λ -module T is a *cotilting module* if

- (T1) the injective dimension of T is finite;
- (T2) $\operatorname{Ext}^{i}_{\Lambda}(T^{\alpha}, T) = 0$ for all i > 0 and every cardinal α ;
- (T3) there exists an injective cogenerator Q and a long exact sequence $0 \to T_n \to \cdots \to T_1 \to T_0 \to Q \to 0$ with T_i in Prod T for all $i = 0, 1, \dots, n$;
- (T4) T is pure-injective.

Here, Prod T denotes the closure under products and direct factors of T. Two cotilting modules T and T' are equivalent if $\operatorname{Prod} T = \operatorname{Prod} T'$. Our first result is a consequence of the fact that the equivalence class of a cotilting module T is determined by

$${}^{\perp}T = \{ X \in \operatorname{Mod} \Lambda \mid \operatorname{Ext}^{i}_{\Lambda}(X,T) = 0 \text{ for all } i \ge 1 \}.$$

Theorem 1.1. The equivalence classes of Λ -cotilting modules form a set of cardinality at most 2^{κ} where $\kappa = \max(\aleph_0, \operatorname{card} \Lambda)$.

Proof. Recall that a class \mathcal{X} of Λ -modules is *definable* if \mathcal{X} is closed under taking products, filtered colimits, and pure submodules. In this case

 $\mathcal{X} = \{X \in \operatorname{Mod} \Lambda \mid \operatorname{Hom}_{\Lambda}(\phi, X) \text{ is surjective for all } \phi \in \Phi\}$

where Φ is the set of all maps in mod Λ such that $\operatorname{Hom}_{\Lambda}(\phi, X)$ is surjective for all $X \in \mathcal{X}$; see [4, Section 2.3].

If T is a cotilting module, then $\perp T$ is definable. This follows from Theorem 5.6 and Proposition 5.7 in [9]. The cardinality of the set of isomorphism classes of maps in mod Λ is bounded by κ , and therefore we have at most 2^{κ} equivalence classes of cotilting modules.

We denote by $\operatorname{Cotilt} \Lambda$ the set of equivalence classes of Λ -cotilting modules and we have a natural partial ordering via

$$T \le T' \quad \Longleftrightarrow \quad {}^{\perp}T \subseteq {}^{\perp}T'$$

for $T, T' \in \text{Cotilt } \Lambda$. For finite dimensional algebras, the collection of finitely generated (co)tilting modules has some interesting combinatorial structure which is closely related to this partial ordering [10, 11, 3]. Our aim is to show that $\text{Cotilt } \Lambda$

¹(T4) is added to avoid set-theoretic problems. For instance, the classification of modules satisfying (T1) – (T3) over a fixed Dedekind domain R seems to depend on set-theoretic properties of R.

is in fact a lattice. For this we need the concept of a cotorsion pair. We fix a pair $(\mathcal{X}, \mathcal{Y})$ of full subcategories of Mod Λ . Let

$$\mathcal{X}^{\perp} = \{ Y \in \operatorname{Mod} \Lambda \mid \operatorname{Ext}^{i}_{\Lambda}(X, Y) = 0 \text{ for all } i \geq 1 \text{ and } X \in \mathcal{X} \},\$$

 ${}^{\perp}\mathcal{Y} = \{ X \in \operatorname{Mod} \Lambda \mid \operatorname{Ext}^{i}_{\Lambda}(X, Y) = 0 \text{ for all } i \geq 1 \text{ and } Y \in \mathcal{Y} \}.$

The pair $(\mathcal{X}, \mathcal{Y})$ is called a *cotorsion pair* for Mod Λ if the following conditions are satisfied:

- (1) $\mathcal{X} = {}^{\perp}\mathcal{Y}$ and $\mathcal{Y} = \mathcal{X}^{\perp}$;
- (2) every $A \in \operatorname{Mod} \Lambda$ fits into exact sequences $0 \to Y_1 \to X_1 \to A \to 0$ and $0 \to A \to Y_2 \to X_2 \to 0$ with $X_i \in \mathcal{X}$ and $Y_i \in \mathcal{Y}$.

For $n \in \mathbb{N}$ we write $\mathcal{I}_n(\Lambda) = \{X \in \operatorname{Mod} \Lambda \mid \operatorname{id} X \leq n\}$ and let $\mathcal{I}(\Lambda) = \bigcup_{n \in \mathbb{N}} \mathcal{I}_n(\Lambda)$, where $\operatorname{id} X$ denotes the injective dimension of a module X. We need the following example:

Example 1.2. For all $n \in \mathbb{N}$ there exists a cotorsion pair $({}^{\perp}\mathcal{I}_n(\Lambda), \mathcal{I}_n(\Lambda))$. This follows from Theorem 10 in [6] since

$$\mathcal{I}_n(\Lambda) = \{ Y \in \operatorname{Mod} \Lambda \mid \operatorname{Ext}^1_{\Lambda}(\Omega^n(\Lambda/\mathfrak{a}), Y) = 0 \text{ for all right ideals } \mathfrak{a} \subseteq \Lambda \}$$

by Baer's criterion.

We have a description of cotilting modules in terms of cotorsion pairs which follows directly from work of Angeleri Hügel and Coelho [1, Theorem 4.2], in combination with [9, Proposition 5.7].

Proposition 1.3. For a full subcategory $\mathcal{X} \subseteq \operatorname{Mod} \Lambda$ the following are equivalent:

(1) $\mathcal{X} = {}^{\perp}T$ for some cotilting module T with $\operatorname{id} T \leq n$;

(2) \mathcal{X} is definable and there is a cotorsion pair $(\mathcal{X}, \mathcal{X}^{\perp})$ with $\mathcal{X}^{\perp} \subseteq \mathcal{I}_n(\Lambda)$.

Moreover, in this case $\mathcal{X} \cap \mathcal{X}^{\perp} = \operatorname{Prod} T$.

Observe that Proposition 1.3 shows how to compute for a cotilting module T its injective dimension:

$$\operatorname{id} T = \inf\{n \in \mathbb{N} \mid {}^{\perp}\mathcal{I}_n(\Lambda) \subseteq {}^{\perp}T\}.$$

The next result describes the infimum of a collection of cotilting modules in Cotilt Λ .

Proposition 1.4. Let $(T_i)_{i \in I}$ be a family of cotilting modules and suppose that $\sup\{ \text{id } T_i \mid i \in I \} < \infty$. Then there exists a cotilting module T such that

$${}^{\perp}T = \bigcap_{i \in I} {}^{\perp}T_i.$$

Moreover, $\operatorname{id} T = \sup \{ \operatorname{id} T_i \mid i \in I \}$. The module T is unique up to equivalence and is denoted by $\bigwedge_{i \in I} T_i$.

Proof. We apply Proposition 1.3. There exists a cotorsion pair $(\mathcal{X}, \mathcal{Y})$ with $\mathcal{X} = {}^{\perp}(\prod_i T_i)$ since $\prod_i T_i$ is pure-injective; see [5, Corollary 10]. Each ${}^{\perp}T_i$ is definable and contains ${}^{\perp}\mathcal{I}_n(\Lambda)$ where $n = \sup\{ \operatorname{id} T_i \mid i \in I \}$. Therefore $\mathcal{X} = \bigcap_{i \in I} {}^{\perp}T_i$ is definable and contains ${}^{\perp}\mathcal{I}_n(\Lambda)$. Thus $\mathcal{Y} \subseteq \mathcal{I}_n(\Lambda)$, and we obtain $\mathcal{X} = {}^{\perp}T$ for some cotilting module T.

Example 1.5 (Happel). Fix a field k and let Λ be the path algebra of the quiver $\cdot \rightarrow \cdot \rightarrow \cdot$ which is tame hereditary. Denote by $S_1 = (1, 0, 1)$ and $S_2 = (0, 1, 0)$ the

quasi-simples from the unique exceptional tube of rank 2. Then there are cotilting modules

$$T_1 = (1,0,1) \oplus (2,1,1) \oplus (1,0,0)$$
 and $T_2 = (0,1,0) \oplus (2,2,1) \oplus (1,1,0)$

such that ${}^{\perp}T_1 \cap {}^{\perp}T_2 = {}^{\perp}T$ for $T = \widehat{S}_1 \amalg \widehat{S}_2 \amalg (\coprod_S S_{\infty})$ where S runs through the isomorphism classes of quasi-simples different from S_1 and S_2 . Here, S_{∞} denotes the Prüfer and \widehat{S} denotes the adic module corresponding to S. Moreover, no finite dimensional cotilting module is equivalent to T.

Corollary 1.6. The partially ordered set $\text{Cotilt } \Lambda$ is a lattice. More precisely, for a family $(T_i)_{i \in I}$ in $\text{Cotilt } \Lambda$ the following holds:

- (1) The infimum $\inf\{T_i \mid i \in I\}$ of all T_i exists if and only if $\sup\{\operatorname{id} T_i \mid i \in I\} < \infty$. In this case $\inf\{T_i \mid i \in I\} = \bigwedge_{i \in I} T_i$.
- (2) The supremum $\sup\{T_i \mid i \in I\}$ of all T_i equals the infimum $\inf\{T \in Cotilt \Lambda \mid T_i \leq T \text{ for all } i \in I\}.$

Corollary 1.7. The map $(\operatorname{Cotilt} \Lambda, \leq) \longrightarrow (\mathbb{N}, \leq)$ sending T to $\operatorname{id} T$ has the following properties:

- (1) $T \leq T'$ implies $\operatorname{id} T' \leq \operatorname{id} T$.
- (2) $\operatorname{id}(\inf\{T_i \mid i \in I\}) = \sup\{\operatorname{id} T_i \mid i \in I\}$ for every family $(T_i)_{i \in I}$, provided that $\sup\{\operatorname{id} T_i \mid i \in I\} < \infty$.
- (3) $\operatorname{id}(\sup\{T_i \mid i \in I\}) \leq \inf\{\operatorname{id} T_i \mid i \in I\}$ for every family $(T_i)_{i \in I}$.

2. FINITISTIC DIMENSION

In this section we relate the finitistic dimension of Λ to the structure of Cotilt Λ^{op} . Recall that the *finitistic dimension* Fin. dim Λ is the supremum of all projective dimensions of Λ -modules having finite projective dimension. Restriction to finitely presented Λ -modules gives fin. dim Λ . The *finitistic injective dimension* of Λ is by definition

Fin. inj. dim
$$\Lambda = \sup \{ \operatorname{id} X \mid X \in \operatorname{Mod} \Lambda \text{ and } \operatorname{id} X < \infty \}.$$

Observe that Fin. dim Λ = Fin. inj. dim Λ^{op} provided that Λ is artinian.

Proposition 2.1. Let Λ be an artin algebra and let C be a class of finitely presented Λ -modules. If $\operatorname{id} C = \sup \{ \operatorname{id} X \mid X \in C \} < \infty$, then there exists a cotilting module T such that ${}^{\perp}T = {}^{\perp}C$ and $\operatorname{id} T = \operatorname{id} C$.

Proof. We apply Proposition 1.3 to obtain the cotilting module T satisfying ${}^{\perp}T = {}^{\perp}\mathcal{C}$. It follows from Theorem 2 in [9] that every definable and resolving subcategory \mathcal{X} of Mod Λ induces a cotorsion pair $(\mathcal{X}, \mathcal{X}^{\perp})$. Recall that \mathcal{X} is resolving if \mathcal{X} is closed under extensions, kernels of epimorphisms, and contains all projectives. Clearly, ${}^{\perp}\mathcal{C}$ is resolving. Using the fact that the modules in \mathcal{C} are finitely presented, it is not difficult to check that ${}^{\perp}\mathcal{C}$ is definable; see for example the proof of [9, Corollary 6.4]. Finally, we have ${}^{\perp}\mathcal{I}_n(\Lambda) \subseteq {}^{\perp}\mathcal{C}$ if and only if $\mathcal{C} \subseteq \mathcal{I}_n(\Lambda)$, because $({}^{\perp}\mathcal{I}_n(\Lambda))^{\perp} = \mathcal{I}_n(\Lambda)$. Therefore id $T = \mathrm{id}\,\mathcal{C}$.

Corollary 2.2. Let Λ be an artin algebra. Then

Fin. dim $\Lambda \ge \sup\{ \operatorname{id} T \mid T \in \operatorname{Cotilt} \Lambda^{\operatorname{op}} \} \ge \operatorname{fin. dim} \Lambda.$

3. MINIMAL COTILTING MODULES

If Fin. inj. dim $\Lambda < \infty$, then we define

$$T_{\min} = \bigwedge_{T \in \operatorname{Cotilt} \Lambda} T$$

to be the (unique) minimal element in $\operatorname{Cotilt} \Lambda$. We have always ${}^{\perp}\mathcal{I}(\Lambda) \subseteq {}^{\perp}T_{\min}$ and in this section we ask when both subcategories are equal. To this end we introduce another module which is of potential interest.

Lemma 3.1. Let Λ be right noetherian and suppose that Fin. inj. dim $\Lambda < \infty$. Then there exists a Λ -module T such that

$$^{\perp}\mathcal{I}(\Lambda) \cap \mathcal{I}(\Lambda) = \operatorname{Add} T.$$

Proof. We have a cotorsion pair $({}^{\perp}\mathcal{I}(\Lambda), \mathcal{I}(\Lambda))$ since Fin. inj. dim $\Lambda < \infty$. Observe that $\mathcal{I}(\Lambda)$ and ${}^{\perp}\mathcal{I}(\Lambda)$ both are closed under taking kernels of epimorphisms. Therefore every epimorphism in ${}^{\perp}\mathcal{I}(\Lambda) \cap \mathcal{I}(\Lambda)$ splits. Now fix an exact sequence $0 \to \Lambda \to T \to X \to 0$ with $T \in \mathcal{I}(\Lambda)$ and $X \in {}^{\perp}\mathcal{I}(\Lambda)$. Clearly, $T \in {}^{\perp}\mathcal{I}(\Lambda) \cap \mathcal{I}(\Lambda)$. Taking coproducts we get for each cardinal α an exact sequence $0 \to \Lambda^{(\alpha)} \to T^{(\alpha)} \to X^{(\alpha)} \to 0$ with $T^{(\alpha)} \in {}^{\perp}\mathcal{I}(\Lambda) \cap \mathcal{I}(\Lambda)$ and $X^{(\alpha)} \in {}^{\perp}\mathcal{I}(\Lambda)$, since $\mathcal{I}(\Lambda)$ is closed under coproducts. Thus every map $\phi \colon \Lambda^{(\alpha)} \to Y$ with $Y \in \mathcal{I}(\Lambda)$ factors through $\Lambda^{(\alpha)} \to T^{(\alpha)}$ via some map $\phi' \colon T^{(\alpha)} \to Y$. If $Y \in {}^{\perp}\mathcal{I}(\Lambda) \cap \mathcal{I}(\Lambda)$ and ϕ is an epi, then ϕ' splits. Thus ${}^{\perp}\mathcal{I}(\Lambda) \cap \mathcal{I}(\Lambda) = \text{Add }T$.

By abuse of notation we denote by T_{inj} a module satisfying ${}^{\perp}\mathcal{I}(\Lambda) \cap \mathcal{I}(\Lambda) =$ Add T_{inj} .

Lemma 3.2. Let Λ be right noetherian and suppose that Fin. inj. dim $\Lambda = n < \infty$. Then a Λ -module C has finite injective dimension if and only if there is an exact sequence

$$(*) \qquad \qquad 0 \longrightarrow T_{n+1} \longrightarrow \cdots \longrightarrow T_1 \longrightarrow T_0 \longrightarrow C \longrightarrow 0$$

with $T_i \in \text{Add} T_{\text{ini}}$ for all *i*.

Proof. We have a cotorsion pair $({}^{\perp}\mathcal{I}(\Lambda), \mathcal{I}(\Lambda))$. Starting with $Y_0 = C \in \mathcal{I}(\Lambda)$, we obtain exact sequences $\varepsilon_i : 0 \to Y_{i+1} \to T_i \to Y_i \to 0$ for each $i \ge 0$, with $Y_i \in \mathcal{I}(\Lambda)$ and $T_i \in \text{Add} T_{\text{inj}}$ for all i. Using dimension shift, one sees that ε_n splits. Thus $Y_{n+1} \in \text{Add} T_{\text{inj}}$, and splicing together the ε_i produces a sequence of the form (*). Conversely, if C fits into a sequence (*), then $C \in \mathcal{I}(\Lambda)$ since $\mathcal{I}(\Lambda)$ is closed under taking cokernels of monomorphisms.

Recall that a module C is Σ -pure-injective if every coproduct $C^{(\alpha)}$ is pure-injective.

Theorem 3.3. Let Λ be right noetherian and suppose that Fin. inj. dim $\Lambda < \infty$. Then the following are equivalent:

- (1) $^{\perp}\mathcal{I}(\Lambda) = {}^{\perp}T_{\min};$
- (2) $\perp \mathcal{I}(\Lambda)$ is closed under taking products;
- (3) T_{inj} is product complete, that is, Add $T_{\text{inj}} = \text{Prod } T_{\text{inj}}$;
- (4) T_{inj} is a Σ -pure-injective cotilting module.

Moreover, in this case T_{\min} and T_{\min} are equivalent cotilting modules.

Proof. (1) \Rightarrow (2): Clear, since ${}^{\perp}T_{\min}$ is closed under products.

 $(2) \Rightarrow (3)$: If ${}^{\perp}\mathcal{I}(\Lambda)$ is closed under products, then ${}^{\perp}\mathcal{I}(\Lambda) \cap \mathcal{I}(\Lambda)$ is closed under products. Thus every product of copies of T_{inj} belongs to Add T_{inj} . It follows that

 T_{inj} is Σ -pure-injective and therefore Add $T_{\text{inj}} \subseteq \operatorname{Prod} T_{\text{inj}}$; see [8]. Thus T_{inj} is product complete.

 $(3) \Rightarrow (4)$: A product complete module is Σ -pure-injective. For T_{inj} , the defining conditions of a cotilting module are obviously satisfied, except (T3) which follows from Lemma 3.2.

 $(4) \Rightarrow (1)$: First observe that Add $T_{inj} \subseteq \operatorname{Prod} T_{inj}$ since T_{inj} is Σ -pure-injective. The cotilting module T_{inj} induces a cotorsion pair $({}^{\perp}T_{inj}, ({}^{\perp}T_{inj})^{\perp})$ by Proposition 1.3. We claim that $\mathcal{I}(\Lambda) = ({}^{\perp}T_{inj})^{\perp}$. We need to check $\mathcal{I}(\Lambda) \subseteq ({}^{\perp}T_{inj})^{\perp}$ and this follows from Lemma 3.2 since Add $T_{inj} \subseteq \operatorname{Prod} T_{inj}$. Thus ${}^{\perp}\mathcal{I}(\Lambda) = {}^{\perp}T_{inj}$ and therefore T_{inj} is equivalent to the minimal cotilting module T_{\min} .

Remark 3.4. A cotilting module T is Σ -pure-injective if and only if $({}^{\perp}T)^{\perp}$ is closed under coproducts. In this case let T' be the coproduct of a representative set of indecomposable modules in Prod T. Then T' is a product complete cotilting module which is equivalent to T.

It seems to be an interesting project to describe the minimal cotilting module for a given algebra. For example, $T_{\min} = \Lambda$ if Λ is a Gorenstein artin algebra.

In fact, there is a more general result which discribes when T_{\min} is finitely presented. This is inspired by a result about modules of finite projective dimension by Huisgen-Zimmermann and Smalø [7].

Proposition 3.5. Let Λ be an artin algebra. Then there exists a finitely presented minimal cotilting module if and only if the modules of finite injective dimension form a covariantly finite subcategory of mod Λ . Moreover, in this case the equivalent conditions of Theorem 3.3 are satisfied.

A similar result has been obtained independently by Happel and Unger for the category of finitely presented Λ -modules.

We do not give the complete proof but sketch the argument. Suppose first that $\mathcal{I}(\mod \Lambda) = \{X \in \mod \Lambda \mid \operatorname{id} X < \infty\}$ is covariantly finite. Using the correspondence for cotilting modules in $\operatorname{mod} \Lambda$, there exists a cotilting module T such that ${}^{\perp}T = {}^{\perp}\mathcal{I}(\operatorname{mod} \Lambda)$ in $\operatorname{mod} \Lambda$; see [2]. The assumption implies that every module of finite injective dimension is a filtered colimit of modules in $\mathcal{I}(\operatorname{mod} \Lambda)$. Using this, one proves that T is minimal. Conversely, if T_{\min} is finitely presented, then one can use Proposition 2.1 to show that $\mathcal{I}(\operatorname{mod} \Lambda)$ is covariantly finite in $\operatorname{mod} \Lambda$.

References

- L. ANGELERI HÜGEL AND F. U. COELHO: Infinitely generated tilting modules of finite projective dimension. Forum Math. 13 (2001), 239–250.
- [2] M. AUSLANDER AND I. REITEN: Applications of contravariantly finite subcategories. Adv. Math. 86 (1991), 111–152.
- [3] A. B. BUAN AND Ø. SOLBERG: Limits of pure-injective cotilting modules. Preprint (2001).
- [4] W. W. CRAWLEY-BOEVEY: Infinite-dimensional modules. In: The representation theory of finite-dimensional algebras. Algebras and modules, I (eds. I. Reiten, S. O. Smalø, and Ø. Solberg), CMS Conf. Proc. 23 (1998), 29–54.
- [5] P. EKLOF AND J. TRLIFAJ: Covers induced by Ext. J. Algebra 231 (2000), 640–651.
- [6] P. EKLOF AND J. TRLIFAJ: How to make Ext vanish. Bull. London Math. Soc. 33 (2001), 41–51.
- [7] B. HUISGEN-ZIMMERMANN AND S. O. SMALØ: A homological bridge between finite- and infinite-dimensional representations of algebras. Algebr. Represent. Theory 1 (1998), 169– 188.
- [8] H. KRAUSE AND M. SAORÍN: On minimal approximations of modules. In: Trends in the representation theory of finite dimensional algebras (eds. E. Green and B. Huisgen-Zimmermann), Contemp. Math. 229 (1998), 227–236.

BUAN, KRAUSE, AND SOLBERG

- [9] H. KRAUSE AND Ø. SOLBERG: Filtering modules of finite projective dimension. To appear in Forum Math.
- [10] C. RIEDTMANN AND A. SCHOFIELD: On a simplicial complex associated with tilting modules. Comment. Math. Helv. 66 (1991), 70–78.
- [11] L. UNGER: Shellability of simplicial complexes arising in representation theory. Adv. Math. 144 (1999), 211–246.

[AMA - Algebra Montpellier Announcements - 01-2002] [February 2002] Received January 2002.

Aslak Bakke Buan, Øyvind Solberg, Institutt for matematiske fag, NTNU, N-7491 Trondheim, Norway

E-mail address: aslakb@math.ntnu.no, oyvinso@math.ntnu.no

Henning Krause, Fakultät für Mathematik, Universität Bielefeld, D-33501 Bielefeld, Germany

 $E\text{-}mail\ address:\ \texttt{henning} \texttt{Q} \texttt{mathematik.uni-bielefeld.de}$

6