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STRUCTURE REPRESENTATION IN OBJECT ORIENTED
KNOWLEDGE REPRESENTATION SYSTEMS

KATALIN BOGNÁR

Abstract. This paper deals with structure representation in object oriented

knowledge representation systems. Structures can appear in various forms -
spatial, composites, text, etc. - and can be used in a lot of applications. In this

paper we offer a kind of representation for structures based on a formalism of
pattern recognition. A reasoning method allowing manipulating the structures
is defined which is based on the subsumption relation and classification.

1. Introduction

In a great number of problems it is indispensable to represent and manipulate
structures with various proprieties. For example, the goal of the representation and
classification of landscape structures is to make diagnosis and forecast on agriculture
([Le Ber]); in organic chemistry the representation and manipulation of molecular
structure have the reason to make plans of the molecular syntheses ([Lieber]); in
data mining the representation and manipulation of structured or semi-structured
text documents have the goal to index the text by its content.

General problems on structures arise in:
representation: to represent entities having physical reality and intern or-

ganization or structure: molecules, grounds, text documents, etc.
reasoning: recognize and classify structures to solve problems on the inves-

tigated domain.
These structures can be concerned on abstract level as non (necessarily) oriented

graphs, which consist of arcs and nodes. Relationships among arcs specify the
environment of structures or inter structural constraints.

By author’s knowledge there is no language general enough to offer the rep-
resentation and manipulation of structures in the various domains. In pattern
recognition the structure description has been studied in detail and a formal and
practical frame was suggested, which is next to the approach of this paper.

In this paper a theoretical formalism is described which can be realized in prac-
tice, and which is based on some results in pattern recognition. This formalism is
adapted to object oriented knowledge representation (OOKR later on).

The paper is organized as follows: at the beginning the formalism to represent
and manipulate structures in KADS is shown, then the notion of extended structural
description is given. In the next section the hierarchy of structural descriptions is
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defined to show a reasoning method based on classification. The paper ends with
a short conclusion.

2. Modeling and description of structures

2.1. Structures in the formalism of KADS. In [Breuker] the structure S is
defined by the set of instanced relations, that is

S = {r1(x1
1, . . . , x

1
n), . . . , rm(xm1 , . . . , x

m
k )},

where ri is the name of relation and xji are elementary objects.
The list and graphs are special relations:

• The list l = (x1, x2, . . . , xn) can be seen as the structure

{s(x1, x2), s(x2, x3), . . . , s(xn−1, xn)}

where s(xi, xi+1) denotes the fact that xi+1 is the successor of xi in the list
l (all the relations ri are defined by successor relation s).
• The graph G = (V,E) can be considered as the structure

{E(v1, v2), E(v2, v3) . . . , E(vn−1, vn)}

where V = {v1, v2, . . . , vn} is the set of nodes and

E = {(v1, v1′), (v2, v2′), . . . , (vn, vn′)}

is the set of edges.

The elementary operations defined on the structures are composition, decomposi-
tion, transformation and selection (object or relation). The composition constructs
the structure from the set of elementary objects. The decomposition is an opposite
operation of the composition which consists in finding elements of the structure.
The transformation allows changing a structure to another one without modifying
elements and relations (sort) or modifying relations (pass from a linear structure
to a hierarchic one). The selection operation of elementary objects or relationships
consists of verifying the existence of an elementary object or relationship.

2.2. Structure description in pattern recognition. Structure description (SD)
was investigated in pattern recognition to recognize and match objects. SD-s can
be considered as a set of primitives connected with one another. They may be used
to model a lot of forms of physical structures.

Definition 1. The primitive of the concept C is defined by the couple (attribute:
value).

Definition 2. The primitive part of the concept C is defined by a set of primitives,
that is a set of

{(attribute1 : value1), (attribute2 : value2), . . . , (attributek : valuek)}, (k ≥ 1).

Definition 3. The ordinary structure description of the concept C is the pair
D = {P,R} where

• P = {P1, P2, . . . , Pn} and each Pi (i = 1, 2, . . . , n) is a primitive part of
concept C.
• R = {PR1, PR2, . . . , PRm} is a set of relations between the primitive parts

such that in PRi = (NRi, Ri) NRi is the name of relationship and Ri is
the primitive part, that is Ri ⊆ P l for an integer l.
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D = {P,R}
P = {P1, P2, P3, P4}
P1 = {(form: cube), (colour: black)}
P2 = {(form: cube), (colour: white)}
P3 = {(form: sphere), (colour: white)}
P4 = {(form: pyramid), (colour: black)}
R = {PR1, PR2}
PR1 = {(on, R1)}
R1 = {(P2, P1), (P3, P2)}
PR2 = {(left, R2)}
R2 = {(P4, P1)}

Figure 1. Example of ordinary SD.

For example, let us consider ([Napoli]) an universe consisting of: P1 black cube,
P2 white cube, P3 white sphere, P4 black pyramid, and the construction where P3

is on P2, P2 is on P1, and P4 is on the left hand side of P1. The ordinary structure
description representing this construction can be seen in the Figure 1. The four
primitive parts (P1, P2, P3, P4) describe two pairs of attributes, where the attributes
are the form and the colour. The relationships among the primitive parts are “on”
and “left”. The set R describes the configuration of the ordinary SD.

The ordinary structure description can be considered as a composite object,
where the components represent the primitive parts and the relationships among
components represent the relations among primitive parts. In pattern recognition
the ordinary structure description is used to guide the recognition process. The base
of a recognition system contains some ordinary SD of prototype objects, which can
serve as a model during the recognition. The system analyses the description of
candidate building its ordinary SD and comparing it with the model. The matching
process is oriented in the meaning that it relies the primitive parts and relations
associated to the model with the set of primitive parts and set of relations associated
to the candidate. So the matching considers the primitive parts and relations at
the same time.

• Let us consider P and Q as the set of primitive parts and h : P → Q a map
from primitive parts of P to primitive parts of Q. The primitive part Qj
of the candidate matches to the primitive part Pi of prototype P , if the set
of attribute-value pair in Pi is a subset of attribute-value pairs of Qj .
• The matching between the candidate and prototype relation is based on

the notion of relational homomorphism, which put into S the tuples of Ri
relations. The relational homomorphism from R to S is a map h : P → Q
satisfying R ◦ h ⊆ S, where S ⊆ Qn and

R◦h = {(Q1, Q2, . . . , Qn) ∈ Qn|∃(P1, P2, . . . , Pn) ∈ R : h(Pi) = Qi, i = 1, 2, . . . , n}.

Definition 4. Let us consider Dp = {P,R} as an ordinary SD—the prototype—
where P = {P1, P2, . . . , Pn} and R = {(NR1, R1), (NR2, R2), . . . , (NRk, Rk)}.
Furthermore Dc = {Q,S} as an ordinary SD—the candidate—where

Q = {Q1, Q2, . . . , Qm}
and S = {(NS1, S1), (NS2, S2), . . . , (NSk, Sk)}. We say that there exists an exact
matching from Dp to Dc (or Dc matches to Dp) if there exists a map h : P → Q
satisfying

(1) h(Pi) = Qj implies that Pi ⊆ Qj
(2) NRi = NSj implies that Ri ◦ h ⊆ Sj .
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The consequence of the definition shows that if one of the relations Ri in Dp

has the same name as one of the relations Sj in Dc then h (mapping prototype
primitives Dp to candidate primitives Dc) has to be a relational homomorphism
from Ri to Sj . In R and S are the same number of relations.

2.3. Generalization of the ordinary structure description. The formaliza-
tion presented above gives us the frame to define the structure formalization on the
domain of OOKR, generalizing the definition of structure description to typed SD
and generalized SD.

2.3.1. Typed structure description. The first extension of SD introduces the typed
SD allowing attribute-type instead of attribute-value pair. Let τ denote the set of
primitive types of the system. Thus Pi ⊆ (A× τ)k where A is the set of attribute
names.

Definition 5. The primitive type of concept C is defined by the set

{(attribute1 : type1), (attribute2 : type2), . . . , (attributek : typek)}, (k ≥ 1).

Definition 6. The typed structure description of concept C is the pair D = {P,R}
where

• P = {P1, P2, . . . , Pn} and each Pi (i = 1, 2, . . . , n) is a primitive type of
concept C.
• R = {PR1, PR2, . . . , PRm} is a set of relations between the primitive types

such that in PRi = (NRi, Ri) NRi is the name of relationship and Ri is
the primitive type, that is Ri ⊆ P l for an integer l.

We can establish a parallelism between the notions of the ordinary SD - typed
SD and instances-classes. The typed SD corresponds to the notion of classes while
ordinary SD corresponds to the notion of instances.

The matching between typed SD-s can be defined as the generalization of match-
ing between ordinary SD-s. The typed SD Dc = {Q,S} matches to the typed SD
Dp = {P,R}, if there exists a map h : P → Q, that is h(Pi) = Qj implies that Qj
is a subtype of Pi.

Definition 7. Let us consider a typed SD prototype Dp = {P,R} where P =
{P1, P2, . . . , Pn} and each Pi (i = 1, 2, . . . , n) is a primitive type. Furthermore

R = {(NR1, R1), (NR2, R2), . . . , (NRk, Rk)}

is a set of relations existing between the primitive types. Similarly, Dc = {Q,S} is
a typed SD candidate where

Q = {Q1, Q2, . . . , Qm}

is a set of primitive types and

S = {(NS1, S1), (NS2, S2), . . . , (NSk, Sk)}

is a set of relations between the primitive types. We say, that there exists an exact
matching from Dp to Dc, if there exists a map h : P → Q such that

(1) h(Pi) = Qj implies that Qj is a subtype of Pi,
(2) NRi = NSj implies that Ri ◦ h ⊆ Sj considering types, that is the type of

elements of Sj is a subtype of the type of corresponding elements of Ri.
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2.3.2. Generalized structure description. If we want to represent a large number of
various structures by the SD formalism, we have to extend the definition to allow
recursivity, that is an SD might be defined with respect to other SD’s. Intuitively,
the generalized structure description (GSD in future) is a structure description
where the primitive part itself can be a structure description, so the set of primitive
parts becomes a set of substructures.

Definition 8. The generalized structure description of concept C is defined by the
pair

D = {P,R},

where

• The set P = {P1, P2, . . . , Pn} contains the substructures of concept C such
that each Pi (generalized primitive part) is either primitive part or primitive
type (or their combination), or a generalized structure description.
• The set R = {PR1, PR2, . . . , PRk} represents the relations among sub-

structures, that is it is a set of relations between primitive parts such that
in PRi = (NRi, Ri) NRi is the name of relation and Ri denotes generalized
primitive part in the relation.

It is obvious, that typed structure description is itself a generalized structure
description.

Definition 9. The GSD Dc = {Q,S} matches to the GSD Dp = {P,R}, if there
exists a map

h : P → Q

such that

a.) If Qj and Pi are primitive types (class to class match), then
– h(Pi) = Qj implies that Qj is a subtype of Pi.
– NRi = NSj implies that Ri ◦ h ⊆ Sj considering types, that is type

of elements of Sj is a subtype of the type of corresponding elements
of Ri.

b.) If Qj is a primitive part and Pi is a primitive type (instance-class)
– h(Pi) = Qj implies that Qj is an instance of the type Pi,
– NRi = NSj implies that Ri ◦ h ⊆ Sj considering types, that is the

elements of Sj are instances of the corresponding elements of Ri.
c.) If Qj and Pi are primitive parts (instance-instance)

– h(Pi) = Qj implies that Pi ⊆ Qj ,
– NRi = NSj implies that Ri ◦ h ⊆ Sj .

2.4. An example of the generalized structure description. Let us suppose
that an auto consists of car-body, motor and four wheels. The car-body consists of
3 doors and bonnet, and the wheel consists of tyre and rim. The auto is represented
by the GSD in Figure 2, where

PR1 = {(composition, R1)}

and R1 = {(P2, P1)} means that P2 is a component of the substructure of P1.
The composed structure is represented by a GSD, where we can see components
and configuration of these components. The name of the component comes from
its attribute and it is possible that more components have the same type (e.x. 4
wheels). In this case the number of components is given by the number of attributes.
The name of the component corresponds to the root of the hierarchy of composition
which is attached to this component.
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D = {P,R}
P = {P1, P2, D

′, D”}
P1 = {(name: Auto)}
P2 = {(name: Motor), (number-of-cylinders: 4)}

D′ = {P ′, R′}
P ′ = {P3, P4, P5}
P3 = {(name: Car-body)}
P4 = {(name: Bonnet), (colour: Colour)}
P5 = {(name: Door), (number: 3), (colour: Colour)}
R′ = {PR2}
PR2 = {(composition, R2)}
R2 = {(P4, P3), (P5, P3)}

D” = {P”, R”}
P” = {P6, P7, P8}
P6 = {(name: Wheel), (number: 4)}
P7 = {(name: Tyre), (dimension: Number), (material: Rubber)}
P8 = {(name: Rim), (dimension: Number), (material: Steel)}
R” = {PR3, PR4}
PR3 = {(composition, R3)}
R2 = {(P7, P6), (P8, P6)}
PR4 = {(under, R4)}
R4 = {(P6, P3)}

R = {PR1}
PR1 = {(composition, R1)}
R1 = {(P2, P1), (D′, P1), (D”, P1)}

Figure 2. Generalized Structure Description.

3. Structure descriptions in OOKR systems

In this section we introduce briefly the object oriented knowledge representation
(OOKR) systems, then the representation of GSD in such a frame. Later on the
subsumption relation will be defined in order to organize GSD’s into a hierarchy
and realize a classification to build structures and to reason on theses structures.

3.1. Brief Introduction to OOKR. The OOKR system is based on a class-
hierarchy H = (χ, τ,v), where the subsumption relation is defined on the classes in
χ and τ is the root of hierarchy (the top element regarding the subsumption). Any
class represents a concept of the given domain and consists of the set of attributes.
These attributes describe properties and behaviors of the represented concept. The
class can be instantiated. Furthermore, the class can be described by conjunctions:
C = (a1, s1) u (a2, s2) . . . ,u(an, sn) where ai denote attributes (properties of the
concept, they are pairwise different) and sk denotes the specification attached to
the attributes and they precise for example, type, domain, cardinality of values
of the attribute. The class C specializes the class D by adding new attributes to
already defined attributes. If we want to determine if D subsumes C, we have to
verify the existence of attribute ak in C (that is with the same name) for each
attribute ak in D and verify associated specifications.
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At the end, the instance i of class C is denoted by

i = (a1, v1) u (a2, v2) . . . ,u(an, vn),

where vk is the value associated to ak in the instance i (eventually it is possible
that vk = 0).

3.2. Structural subsumption. In this section the notion of subsumption relation
between the classes of structures will be defined. Such notation allows us to organize
structures into hierarchy and to apply the reasoning based on classification on this
hierarchy.

Definition 10. Let us consider classes A and B representing the GSD

DA = {PA, RA}

and
DB = {PB , RB}.

We say, that class A subsumes the class B (or B is subsumed by A) if DB matches
DA (class to class match). Class A is said to be subsumer and class B may be
refered to as subsumed.

Notation: B v A.

The main properties of structural subsumption are the following:
• Reflexivity, that is A v A.
• Anti-symmetry, that is if B v A and A v B, then there exists an exact

matching from A to B, that is the generalized structural descriptions are
identical not considering isomorphism.
• Transitivity, that is if B v A and A v C, then B v C (considering the

composition of mappings in exact matching).
Consequently, the structural subsumption is an ordering relation and organizes

GSD’s into hierarchy. This hierarchy will be noted as HSD in the future.

3.3. Reasoning on structural descriptions.
• The goal of classification of classes is to insert a new GSD (class X) into
HSD hierarchy. This implies seeking the most specific subsumers and most
general subsumed of X.
• The classification of instance x (ordinary SD) consists of finding the GSD’s,

whose instance x may be.
• The partition of properties in HSD (inheritance of properties) consists of

finding which properties can be inherited by GSD in HSD. Especially, the
GSD of concept X inherits a property “prop” (for example an attribute-
specification pair), if X v Y where “prop” is attached to the concept Y .

• The selection of an object or relation in the structure leads to the classifi-
cation in the following way: the element x (object or relation) and a GSD
of class C are given. The question if x belongs to the class C means to find
or construct a class(x) class around x, then classify class(x) into HSD.

4. Conclusion

We here established a common formalism in pattern recognition and the object
oriented knowledge representation. The presented approach can be adapted and
used in a great number of problems in artificial intelligence. The formalism above
mentioned based on results in description logics ([Bognar]) and was inspired by
requirements in measurement of structures’ similarity in the course of the case-
based reasoning ([Al Hulou]).
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References

[Le Ber] Le Ber, F., Mangelinck, L., Napoli, A., Un treillis de relations pour la classification de
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