Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 23 (2007), 47-54 www.emis.de/journals ISSN 1786-0091

SOME COMMON FIXED POINT THEOREMS FOR SELFMAPPINGS IN UNIFORM SPACE

MEMUDU O. OLATINWO

ABSTRACT. In this paper, we establish some common fixed point theorems for selfmappings in uniform spaces by employing the concepts of an Adistance, an E-distance as well as the notion of comparison function. A more general contractive condition than that used to establish some of the results of Aamri and El Moutawakil [1] is employed to obtain our results. Our results are generalizations of some of the results of [1].

1. INTRODUCTION

A uniform space (X, Φ) is a nonempty set X equipped with a nonempty family Φ of subsets of $X \times X$ satisfying the following properties:

- (i) if U is in Φ , then U contains the diagonal $\{(x, x) | x \in X\}$;
- (ii) if U is in Φ and V is a subset of $X \times X$ which contains U, then V is in Φ ;
- (iii) if U and V are in Φ , then $U \cap V$ is in Φ ;
- (iv) if U is in Φ , then there exists V in Φ , such that, whenever (x, y) and (y, z) are in V, then (x, z) is in U;
- (v) if U is in Φ , then $\{(y, x) | (x, y) \in U\}$ is also in Φ .

 Φ is called the *uniform structure* of X and its elements are called *entourages* or neighbourhoods or surroundings.

The space (X, Φ) is called *quasiuniform* if property (v) is omitted. The definition of uniform space is contained in Bourbaki [4], Zeidler [13] as well as available on the internet (by Wikipedia, the free encyclopedia).

The concept of a W-distance on metric space was introduced by Kada et al [6] to generalize some important results in nonconvex minimizations and in fixed point theory for both W-contractive and W-expansive maps. The theory of fixed point or common fixed point for contractive or expansive selfmappings in complete metric space has been well-developed. Interested readers can consult Berinde [2, 3], Jachymski [5], Kada et al [6], Kang [7], Rhoades [8], Rus

²⁰⁰⁰ Mathematics Subject Classification. 47H06, 47H10.

Key words and phrases. Comparison functions; uniform space; A-distance; E-distance.

[10], Rus et al [11], Wang et al [12] and Zeidler [13] for further study of fixed point or common fixed point theory.

Using the ideas of Kang [7], Montes and Charris [9] established some results on fixed and coincidence points of maps by means of appropriate W-contractive or W-expansive assumptions in uniform space. Furthermore, Aamri and El Moutawakil [1] proved some common fixed point theorems for some new contractive or expansive maps in uniform spaces by introducing the notions of an A-distance and an E-distance.

In Aamri and El Moutawakil [1], the following contractive definition was employed: Let $f, g: X \to X$ be selfmappings of X. Then, we have

(1)
$$p(f(x), f(y)) \le \psi(p(g(x), g(y))), \forall x, y \in X,$$

where $\psi \colon \mathbf{R}^+ \to \mathbf{R}^+$ is a nondecreasing function satisfying

- (i) for each $t \in (0, +\infty), 0 < \psi(t)$,
- (ii) $\lim_{n \to \infty} \psi^n(t) = 0, \forall t \in (0, +\infty).$

 ψ satisfies also the condition $\psi(t) < t$, for each t > 0.

In this paper, we shall establish some common fixed point theorems by employing a more general contractive condition than (1).

We shall employ the concepts of an A-distance, an E-distance as well as the notion of comparison function in this work. Berinde [2, 3] extended the Banach's fixed point theorem using different contractive definitions involving the concept of the comparison functions. Rus [10] and Rus et al [11] also contain various generalizations and extensions of the Banach's fixed point theorem in which the contractive conditions involve some comparison functions.

Our results are generalizations of Theorems 3.1–3.3 of [1].

2. Preliminaries

We shall require the following definitions and lemma in the sequel. The Remark 2.1 and Definitions 2.2–2.7 are contained in Aamri and El Moutawakil [1]. Let (X, Φ) be a uniform space.

Remark 2.1. When topological concepts are mentioned in the context of a uniform space (X, Φ) , they always refer to the topological space $(X, \tau(\Phi))$.

Definition 2.2. If $V \in \Phi$ and $(x, y) \in V, (y, x) \in V$, x and y are said to be V-close. A sequence $\{x_n\}_{n=0}^{\infty} \subset X$ is said to be a Cauchy sequence for Φ if for any $V \in \Phi$, there exists $N \ge 1$ such that x_n and x_m are V-close for $n, m \ge N$.

Definition 2.3. A function $p: X \times X \to \mathbf{R}^+$ is said to be an *A*-distance if for any $V \in \Phi$, there exists $\delta > 0$ such that if $p(z, x) \leq \delta$ and $p(z, y) \leq \delta$ for some $z \in X$, then $(x, y) \in V$.

Definition 2.4. A function $p: X \times X \to \mathbf{R}^+$ is said to be an *E*-distance if

- (p_1) p is an A-distance,
- $(p_2) \ p(x,y) \le p(x,z) + p(z,y), \forall x,y \in X.$

Definition 2.5. A uniform space (X, Φ) is said to be *Hausdorff* if and only if the intersection of all $V \in \Phi$ reduces to the diagonal $\{(x, x) | x \in X\}$, i.e. if $(x,y) \in V$ for all $V \in \Phi$ implies x = y. This guarantees the uniqueness of limits of sequences. $V \in \Phi$ is said to be symmetrical if $V = V^{-1} =$ $\{(y, x) | (x, y) \in V\}.$

Definition 2.6. Let (X, Φ) be a uniform space and p be an A-distance on X.

- (i) X is said to be S-complete if for every p-Cauchy sequence $\{x_n\}_{n=0}^{\infty}$, there exists $x \in X$ with $\lim_{n \to \infty} p(x_n, x) = 0$.
- (ii) X is said to be p-Cauchy complete if for every p-Cauchy sequence
- $\{x_n\}_{n=0}^{\infty}$, there exists $x \in X$ with $\lim_{n \to \infty} x_n = x$ with respect to $\tau(\Phi)$. (iii) $f: X \to X$ is said to be *p*-continuous if $\lim_{n \to \infty} p(x_n, x) = 0$ implies that
- $\lim_{n \to \infty} p(f(x_n), f(x)) = 0.$ (iv) $f: X \to X$ is $\tau(\Phi)$ -continuous if $\lim_{n \to \infty} x_n = x$ with respect to $\tau(\Phi)$ implies $\lim_{n \to \infty} f(x_n) = f(x)$ with respect to $\tau(\Phi)$.
- (v) X is said to be *p*-bounded if $\delta_p(X) = \sup \{p(x,y) | x, y \in X\} < \infty$.

Definition 2.7. Let (X, Φ) be a Hausdorff uniform space and p an A-distance on X. Two selfmappings f and g on X are said to be *p*-compatible if, for each sequence $\{x_n\}_{n=0}^{\infty}$ of X such that $\lim_{n\to\infty} p(f(x_n), u) = \lim_{n\to\infty} p(g(x_n), u) = 0$ for some $u \in X$, then we have $\lim_{n\to\infty} p(f(g(x_n)), g(f(x_n))) = 0$.

We shall also state the following definition of a comparison function which is required in the sequel to establish some common fixed point results in uniform space.

Definition 2.8 (Berinde [2,3]). A function $\psi \colon \mathbf{R}^+ \to \mathbf{R}^+$ is called a *compari*son function if:

- (i) ψ is monotone increasing;
- (ii) $\lim_{n \to \infty} \psi^n(t) = 0, \forall t \ge 0.$

The definition is also contained in [10, 11].

Remark 2.9. Every comparison function satisfies the condition $\psi(0) = 0$. Also, both conditions (i) and (ii) imply that $\psi(t) < t, \forall t > 0$.

In this paper, we shall employ the following contractive definition:

Let $f, g: X \to X$ be selfmappings of X. There exist $L \ge 0$ and a comparison function $\psi \colon \mathbf{R}^+ \to \mathbf{R}^+$ such that $\forall x, y \in X$, we have

(2)
$$p(f(x), f(y)) \le Lp(x, g(x)) + \psi(p(g(x), g(y))).$$

Remark 2.10. The contractive condition (2) is more general than (1) in the sense that if L = 0 in (2), then we obtain (1) stated in this paper which was employed by Aamri and El Moutawakil [1].

The following Lemma shall be required in the sequel.

Lemma 2.11. Let (X, Φ) be a Hausdorff uniform space and p be an A-distance on X. Let $\{x_n\}_{n=0}^{\infty}, \{y_n\}_{n=0}^{\infty}$ be arbitrary sequences in X and $\{\alpha_n\}_{n=0}^{\infty}, \{\beta_n\}_{n=0}^{\infty}$ be sequences in \mathbb{R}^+ converging to 0. Then, for $x, y, z \in X$, the following hold:

- (a) If $p(x_n, y) \leq \alpha_n$ and $p(x_n, z) \leq \beta_n, \forall n \in \mathbb{N}$, then y = z. In particular, if p(x, y) = 0 and p(x, z) = 0, then y = z.
- (b) If $p(x_n, y_n) \leq \alpha_n$ and $p(x_n, z) \leq \beta_n, \forall n \in \mathbf{N}$, then $\{y_n\}_{n=0}^{\infty}$ converges to z.
- (c) If $p(x_n, x_m) \leq \alpha_n \forall m > n$, then $\{x_n\}_{n=0}^{\infty}$ is a Cauchy sequence in (X, Φ) .

Remark 2.12. Lemma 2.11 is contained in [1], [7] and [9].

Remark 2.13. A sequence in X is p-Cauchy if it satisfies the usual metric condition. See [1] for this remark.

3. The Main Results

The main results of this paper are the following:

Theorem 3.1. Let (X, Φ) be a Hausdorff uniform space and p an A-distance on X. Suppose that X is p-bounded and S-complete. Suppose that the sequence $\{x_n\}_{n=0}^{\infty}$ is defined by

$$x_n = f(x_{n-1}), n = 1, 2, \dots,$$

with $x_0 \in X$. Let f and g be commuting p-continuous or $\tau(\Phi)$ -continuous selfmappings of X such that

- (i) $f(X) \subseteq g(X)$, (ii) $p(f(x_i), f(x_i)) = 0, \forall x_i \in X, i = 0, 1, 2, \dots$,
- (iii) $f, g: X \to X$ satisfy the contractive condition (2).

Suppose also that $\psi \colon \mathbf{R}^+ \to \mathbf{R}^+$ is a comparison function. Then, f and g have a common fixed point.

Proof. Let $x_0 \in X$. Choose $x_1 \in X$ such that $f(x_0) = g(x_1)$, choose $x_1 \in X$ such that $f(x_1) = g(x_2)$, and in general, choose $x_n \in X$ such that $f(x_{n-1}) = g(x_n)$.

We recall that $x_n = f(x_{n-1}), n = 1, 2, \dots$, so that by conditions (ii) and (iii) of the Theorem, we obtain

$$p(f(x_n), f(x_{n+m})) \leq Lp(x_n, g(x_n)) + \psi(p(g(x_n), g(x_{n+m})))$$

= $Lp(f(x_{n-1}), f(x_{n-1})) + \psi(p(f(x_{n-1}), f(x_{n+m-1})))$
= $\psi(p(f(x_{n-1}), f(x_{n+m-1})))$
 $\leq \psi(Lp(x_{n-1}, g(x_{n-1})) + \psi(p(g(x_{n-1}), g(x_{n+m-1}))))$
= $\psi(Lp(f(x_{n-2}), f(x_{n-2})) + \psi(p(f(x_{n-2}), f(x_{n+m-2}))))$
= $\psi(\psi(p(f(x_{n-2}), f(x_{n+m-2}))))$
= $\psi^2(p(f(x_{n-2}), f(x_{n+m-2})))$
 $\leq \cdots \leq \psi^n(p(f(x_0), f(x_m)) \leq \psi^n(\delta_p(X)),$

from which we have that

(3)
$$p(f(x_n), f(x_{n+m})) \le \psi^n(\delta_p(X)),$$

where $p(f(x_0), f(x_m)) \leq \delta_p(X)$ and $\delta_p(X) = \sup \{p(x, y) | x, y \in X\} < \infty$. Therefore, using the definition of comparison function in (3) yields

 $\psi^n(\delta_n(X)) \to 0 \text{ as } n \to \infty,$

from which it follows that

$$p(f(x_n), f(x_{n+m})) \to 0 \text{ as } n \to \infty.$$

Hence, by applying Lemma 2.11(c), we have that $\{f(x_n)\}_{n=0}^{\infty}$ is a *p*-Cauchy sequence. Since X is S-complete, $\lim_{n\to\infty} p(f(x_n), u) = 0$, for some $u \in X$, and therefore $\lim_{n \to \infty} p(g(x_n), u) = 0.$ Since f and g are p-continuous, then

$$\lim_{n \to \infty} p(f(g(x_n)), f(u)) = \lim_{n \to \infty} p(g(f(x_n)), g(u)) = 0.$$

Also, since f and g are commuting, then fg = gf, so that we have

$$\lim_{n \to \infty} p(f(g(x_n)), f(u)) = \lim_{n \to \infty} p(f(g(x_n)), g(u)) = 0$$

so that by Lemma 2.11(a), we obtain that f(u) = g(u).

Since f(u) = g(u), fg = gf, we have f(f(u)) = f(g(u)) = g(f(u)) =g(g(u)). Suppose that $p(f(u), f(f(u))) \neq 0$. Using (2) and the condition $\psi(t) < t, \forall t > 0$ in the Remark 2., then, we have

$$\begin{split} p(f(u), f(f(u))) &\leq Lp(u, g(u)) + \psi(p(g(u), g(f(u)))) \\ &= Lp(f(u), f(u)) + \psi(p(f(u), f(f(u)))) \\ &= \psi(p(f(u), f(f(u))) < p(f(u), f(f(u))), \end{split}$$

which is a contradiction. Therefore, p(f(u), f(f(u))) = 0.

Condition (ii) of the Theorem yields p(f(u), f(u)) = 0. Since p(f(u), f(f(u)))= 0 and p(f(u), f(u)) = 0, applying Lemma 2.11(a) then yields f(f(u)) = 0

MEMUDU O. OLATINWO

f(u). Thus, we have g(f(u)) = f(f(u)) = f(u). Hence, f(u) is a common fixed point of f and g.

The proof is similar when f and g are $\tau(\Phi)$ -continuous as S-completeness implies p-Cauchy completeness.

Remark 3.2. Theorem 3.1 is a generalization of Theorem 3.1 of Aamri and El Moutawakil [1]

Theorem 3.1 is an existence result for the common fixed point of f and g, while the next two results guarantee the uniqueness of the common fixed point.

Theorem 3.3. Let (X, Φ) be a Hausdorff uniform space and p an E-distance on X. Suppose that X is p-bounded and S-complete. Suppose that the sequence $\{x_n\}_{n=0}^{\infty}$ is defined by

$$x_n = f(x_{n-1}), n = 1, 2, \dots$$

with $x_0 \in X$. Let f and g be commuting p-continuous or $\tau(\Phi)$ -continuous selfmappings of X such that

- (i) $f(X) \subseteq g(X)$,
- (ii) $p(f(x_i), f(x_i)) = 0, \forall x_i \in X, i = 0, 1, 2, \dots$
- (iii) $f, g: X \to X$ satisfy the contractive condition (2).

Suppose also that $\psi \colon \mathbf{R}^+ \to \mathbf{R}^+$ is a comparison function. Then, f and g have a unique common fixed point.

Proof. f and g have a common fixed point since an E-distance function p is an A-distance. Suppose that there exist $u, v \in X$ such that f(u) = g(u) = u and f(v) = g(v) = v.

Let $p(u, v) \neq 0$. Then, we have

$$p(u, v) = p(f(u), f(v)) \le Lp(u, g(u)) + \psi(p(g(u), g(v)))$$

= $Lp(u, u) + \psi(p(u, v)) = \psi(p(u, v)) < p(u, v),$

which is a contradiction. Therefore, we have p(u, v) = 0. By carrying out a similar process, we also have that p(v, u) = 0.

Using condition (p_2) of Definition 2.4, we have $p(u, u) \leq p(u, v) + p(v, u)$, from which it follows that p(u, u) = 0. Since p(u, u) = 0 and p(u, v) = 0, then by Lemma 2.11(a), we have that u = v.

Remark 3.4. Theorem 3.3 is a generalization of Theorem 3.2 as well as corollaries 3.1 & 3.2 of Aamri and El Moutawakil [1].

Theorem 3.5. Let (X, Φ) be a Hausdorff uniform space and p an E-distance on X. Suppose that X is p-bounded and S-complete. Suppose that the sequence $\{x_n\}_{n=0}^{\infty}$ is defined by

$$x_n = f(x_{n-1}), n = 1, 2, \dots,$$

with $x_0 \in X$. Let f and g be p-compatible, p-continuous or $\tau(\Phi)$ -continuous selfmappings of X such that

- (i) $f(X) \subseteq g(X)$,
- (ii) $p(f(x_i), f(x_i)) = 0, \forall x_i \in X, i = 0, 1, 2, \dots$
- (iii) $f, g: X \to X$ satisfy the contractive condition (2).

Suppose also that $\psi \colon \mathbf{R}^+ \to \mathbf{R}^+$ is a comparison function. Then, f and g have a unique common fixed point.

Proof. Just as in the proof of Theorem 3.1, we have for some $u \in X$ that $\lim_{n \to \infty} p(f(x_n, u)) = \lim_{n \to \infty} p(g(x_n, u)) = 0$. Since f and g are p-continuous, we have

$$\lim_{n \to \infty} p(f(g(x_n)), f(u)) = \lim_{n \to \infty} p(g(f(x_n)), g(u)) = 0,$$

while the assumption that f and g are p-compatible implies the following $\lim_{n\to\infty} p(f(g(x_n)), g(f(x_n))) = 0.$

Furthermore, by condition (p_2) of Definition 2.4, we have that

(3)
$$p(f(g(x_n)), g(u)) \le p(f(g(x_n)), g(f(x_n))) + p(g(f(x_n)), g(u)))$$

Taking limits in (3) and applying Lemma 2.11(a), then we have

$$\lim_{n \to \infty} p(f(g(x_n)), g(u)) = 0.$$

Since $\lim_{n \to \infty} p(f(g(x_n)), f(u)) = 0$ and $\lim_{n \to \infty} p(f(g(x_n)), g(u)) = 0$, then by Lemma 2.11(a) we have f(u) = g(u).

The rest of the proof is as in Theorem 3.3.

References

- M. Aamri and D. El Moutawakil. Common fixed point theorems for E-contractive or E-expansive maps in uniform spaces. Acta Math. Acad. Paedagog. Nyházi. (N.S.), 20(1):83–91 (electronic), 2004.
- [2] V. Berinde. A priori and a posteriori error estimates for a class of φ -contractions. Bulletins for Applied and Computing Math., pages 183–192, 1999.
- [3] V. Berinde. Iterative approximation of fixed points. Editura Efemeride, Baia Mare, 2002.
- [4] N. Bourbaki. Éléments de mathématique. Fasc. II. Livre III: Topologie générale. Chapitre 1: Structures topologiques. Chapitre 2: Structures uniformes. Quatrième édition. Actualités Scientifiques et Industrielles, No. 1142. Hermann, Paris, 1965.
- [5] J. Jachymski. Fixed point theorems for expansive mappings. Math. Japon., 42(1):131– 136, 1995.
- [6] O. Kada, T. Suzuki, and W. Takahashi. Nonconvex minimization theorems and fixed point theorems in complete metric spaces. *Math. Japon.*, 44(2):381–391, 1996.
- [7] S. M. Kang. Fixed points for expansion mappings. Math. Japon., 38(4):713–717, 1993.
- [8] B. E. Rhoades. A comparison of various definitions of contractive mappings. Trans. Amer. Math. Soc., 226:257–290, 1977.
- [9] J. Rodríguez-Montes and J. A. Charris. Fixed points for W-contractive or W-expansive maps in uniform spaces: toward a unified approach. Southwest J. Pure Appl. Math., 1:93–101 (electronic), 2001.

MEMUDU O. OLATINWO

- [10] I. A. Rus. *Generalized contractions and applications*. Cluj University Press, Cluj-Napoca, 2001.
- [11] I. A. Rus, A. Petruşel, and G. Petruşel. Fixed point theory: 1950–2000. Romanian contributions. House of the Book of Science, Cluj-Napoca, 2002.
- [12] S. Z. Wang, B. Y. Li, Z. M. Gao, and K. Iséki. Some fixed point theorems on expansion mappings. *Math. Japon.*, 29(4):631–636, 1984.
- [13] E. Zeidler. *Nonlinear functional analysis and its applications. I.* Springer-Verlag, New York, 1986. Fixed-point theorems, Translated from the German by Peter R. Wadsack.

Received 29 August, 2006.

DEPARTMENT OF MATHEMATICS, OBAFEMI AWOLOWO UNIVERSITY, ILE-IFE, NIGERIA. *E-mail address*: polatinwo@oauife.edu.ng, molaposi@yahoo.com