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SOME COMMON FIXED POINT THEOREMS FOR
SELFMAPPINGS IN UNIFORM SPACE

MEMUDU O. OLATINWO

Abstract. In this paper, we establish some common fixed point theorems
for selfmappings in uniform spaces by employing the concepts of an A-
distance, an E-distance as well as the notion of comparison function. A
more general contractive condition than that used to establish some of the
results of Aamri and El Moutawakil [1] is employed to obtain our results.
Our results are generalizations of some of the results of [1].

1. Introduction

A uniform space (X,Φ) is a nonempty set X equipped with a nonempty
family Φ of subsets of X ×X satisfying the following properties:

(i) if U is in Φ, then U contains the diagonal {(x, x)|x ∈ X};
(ii) if U is in Φ and V is a subset of X ×X which contains U , then V is in

Φ;
(iii) if U and V are in Φ, then U

⋂
V is in Φ;

(iv) if U is in Φ, then there exists V in Φ, such that, whenever (x, y) and
(y, z) are in V , then (x, z) is in U ;

(v) if U is in Φ, then {(y, x)|(x, y) ∈ U} is also in Φ.

Φ is called the uniform structure of X and its elements are called entourages
or neighbourhoods or surroundings.

The space (X,Φ) is called quasiuniform if property (v) is omitted. The
definition of uniform space is contained in Bourbaki [4], Zeidler [13] as well as
available on the internet (by Wikipedia, the free encyclopedia).

The concept of a W -distance on metric space was introduced by Kada et
al [6] to generalize some important results in nonconvex minimizations and in
fixed point theory for both W -contractive and W -expansive maps. The theory
of fixed point or common fixed point for contractive or expansive selfmappings
in complete metric space has been well-developed. Interested readers can con-
sult Berinde [2, 3], Jachymski [5], Kada et al [6], Kang [7], Rhoades [8], Rus
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[10], Rus et al [11], Wang et al [12] and Zeidler [13] for further study of fixed
point or common fixed point theory.

Using the ideas of Kang [7], Montes and Charris [9] established some results
on fixed and coincidence points of maps by means of appropriateW -contractive
or W -expansive assumptions in uniform space. Furthermore, Aamri and El
Moutawakil [1] proved some common fixed point theorems for some new con-
tractive or expansive maps in uniform spaces by introducing the notions of an
A-distance and an E-distance.

In Aamri and El Moutawakil [1], the following contractive definition was
employed: Let f, g : X → X be selfmappings of X. Then, we have

(1) p(f(x), f(y)) ≤ ψ(p(g(x), g(y))),∀x, y ∈ X,
where ψ : R+ → R+ is a nondecreasing function satisfying

(i) for each t ∈ (0,+∞), 0 < ψ(t),
(ii) lim

n→∞
ψn(t) = 0,∀t ∈ (0,+∞).

ψ satisfies also the condition ψ(t) < t, for each t > 0.
In this paper, we shall establish some common fixed point theorems by

employing a more general contractive condition than (1).
We shall employ the concepts of an A-distance, an E-distance as well as the

notion of comparison function in this work. Berinde [2, 3] extended the Ba-
nach’s fixed point theorem using different contractive definitions involving the
concept of the comparison functions. Rus [10] and Rus et al [11] also contain
various generalizations and extensions of the Banach’s fixed point theorem in
which the contractive conditions involve some comparison functions.

Our results are generalizations of Theorems 3.1–3.3 of [1].

2. Preliminaries

We shall require the following definitions and lemma in the sequel. The
Remark 2.1 and Definitions 2.2–2.7 are contained in Aamri and El Moutawakil
[1]. Let (X,Φ) be a uniform space.

Remark 2.1. When topological concepts are mentioned in the context of a
uniform space (X,Φ), they always refer to the topological space (X, τ(Φ)).

Definition 2.2. If V ∈ Φ and (x, y) ∈ V, (y, x) ∈ V , x and y are said to be
V -close. A sequence {xn}∞n=0 ⊂ X is said to be a Cauchy sequence for Φ if for
any V ∈ Φ, there exists N ≥ 1 such that xn and xm are V -close for n,m ≥ N .

Definition 2.3. A function p : X ×X → R+ is said to be an A-distance if for
any V ∈ Φ, there exists δ > 0 such that if p(z, x) ≤ δ and p(z, y) ≤ δ for some
z ∈ X, then (x, y) ∈ V .

Definition 2.4. A function p : X ×X → R+ is said to be an E-distance if

(p1) p is an A-distance,
(p2) p(x, y) ≤ p(x, z) + p(z, y), ∀x, y ∈ X.
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Definition 2.5. A uniform space (X,Φ) is said to be Hausdorff if and only
if the intersection of all V ∈ Φ reduces to the diagonal {(x, x)|x ∈ X}, i.e.
if (x, y) ∈ V for all V ∈ Φ implies x = y. This guarantees the uniqueness
of limits of sequences. V ∈ Φ is said to be symmetrical if V = V −1 =
{(y, x)|(x, y) ∈ V }.
Definition 2.6. Let (X,Φ) be a uniform space and p be an A-distance on X.

(i) X is said to be S-complete if for every p-Cauchy sequence {xn}∞n=0,
there exists x ∈ X with lim

n→∞
p(xn, x) = 0.

(ii) X is said to be p-Cauchy complete if for every p-Cauchy sequence
{xn}∞n=0, there exists x ∈ X with lim

n→∞
xn = x with respect to τ(Φ).

(iii) f : X → X is said to be p-continuous if lim
n→∞

p(xn, x) = 0 implies that

lim
n→∞

p(f(xn), f(x)) = 0.

(iv) f : X → X is τ(Φ)-continuous if lim
n→∞

xn = x with respect to τ(Φ)

implies lim
n→∞

f(xn) = f(x) with respect to τ(Φ).

(v) X is said to be p-bounded if δp(X) = sup {p(x, y)|x, y ∈ X} <∞.

Definition 2.7. Let (X,Φ) be a Hausdorff uniform space and p an A-distance
on X. Two selfmappings f and g on X are said to be p-compatible if, for each
sequence {xn}∞n=0 of X such that lim

n→∞
p(f(xn), u) = lim

n→∞
p(g(xn), u) = 0 for

some u ∈ X, then we have lim
n→∞

p(f(g(xn)), g(f(xn))) = 0.

We shall also state the following definition of a comparison function which is
required in the sequel to establish some common fixed point results in uniform
space.

Definition 2.8 (Berinde [2,3]). A function ψ : R+ → R+ is called a compari-
son function if:

(i) ψ is monotone increasing;
(ii) lim

n→∞
ψn(t) = 0,∀t ≥ 0.

The definition is also contained in [10, 11].

Remark 2.9. Every comparison function satisfies the condition ψ(0) = 0.
Also, both conditions (i) and (ii) imply that ψ(t) < t, ∀t > 0.

In this paper, we shall employ the following contractive definition:
Let f, g : X → X be selfmappings of X. There exist L ≥ 0 and a comparison

function ψ : R+ → R+ such that ∀x, y ∈ X, we have

(2) p(f(x), f(y)) ≤ Lp(x, g(x)) + ψ(p(g(x), g(y))).

Remark 2.10. The contractive condition (2) is more general than (1) in the
sense that if L = 0 in (2), then we obtain (1) stated in this paper which was
employed by Aamri and El Moutawakil [1].
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The following Lemma shall be required in the sequel.

Lemma 2.11. Let (X,Φ) be a Hausdorff uniform space and p be an A-distance
on X. Let {xn}∞n=0 , {yn}∞n=0 be arbitrary sequences in X and {αn}∞n=0 , {βn}∞n=0

be sequences in R+ converging to 0. Then, for x, y, z ∈ X, the following hold:

(a) If p(xn, y) ≤ αn and p(xn, z) ≤ βn,∀n ∈ N, then y = z. In particular,
if p(x, y) = 0 and p(x, z) = 0, then y = z.

(b) If p(xn, yn) ≤ αn and p(xn, z) ≤ βn, ∀n ∈ N, then {yn}∞n=0 converges
to z.

(c) If p(xn, xm) ≤ αn∀m > n, then {xn}∞n=0 is a Cauchy sequence in (X,Φ).

Remark 2.12. Lemma 2.11 is contained in [1], [7] and [9].

Remark 2.13. A sequence in X is p-Cauchy if it satisfies the usual metric
condition. See [1] for this remark.

3. The Main Results

The main results of this paper are the following:

Theorem 3.1. Let (X,Φ) be a Hausdorff uniform space and p an A-distance
on X. Suppose that X is p-bounded and S-complete. Suppose that the sequence
{xn}∞n=0 is defined by

xn = f(xn−1), n = 1, 2, . . . ,

with x0 ∈ X. Let f and g be commuting p-continuous or τ(Φ)-continuous
selfmappings of X such that

(i) f(X) ⊆ g(X),
(ii) p(f(xi), f(xi)) = 0,∀xi ∈ X, i = 0, 1, 2, . . . ,
(iii) f, g : X → X satisfy the contractive condition (2).

Suppose also that ψ : R+ → R+ is a comparison function. Then, f and g have
a common fixed point.

Proof. Let x0 ∈ X. Choose x1 ∈ X such that f(x0) = g(x1), choose x1 ∈ X
such that f(x1) = g(x2), and in general, choose xn ∈ X such that f(xn−1) =
g(xn).
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We recall that xn = f(xn−1), n = 1, 2, . . . , so that by conditions (ii) and (iii)
of the Theorem, we obtain

p(f(xn), f(xn+m)) ≤Lp(xn, g(xn)) + ψ(p(g(xn), g(xn+m)))

=Lp(f(xn−1), f(xn−1)) + ψ(p(f(xn−1), f(xn+m−1)))

=ψ(p(f(xn−1), f(xn+m−1)))

≤ψ(Lp(xn−1, g(xn−1)) + ψ(p(g(xn−1), g(xn+m−1))))

=ψ(Lp(f(xn−2), f(xn−2)) + ψ(p(f(xn−2), f(xn+m−2)))

=ψ(ψ(p(f(xn−2), f(xn+m−2)))

=ψ2(p(f(xn−2), f(xn+m−2))

≤ · · · ≤ ψn(p(f(x0), f(xm)) ≤ ψn(δp(X)),

from which we have that

(3) p(f(xn), f(xn+m)) ≤ ψn(δp(X)),

where p(f(x0), f(xm)) ≤ δp(X) and δp(X) = sup {p(x, y)|x, y ∈ X} <∞.
Therefore, using the definition of comparison function in (3) yields

ψn(δp(X)) → 0 as n→∞,

from which it follows that

p(f(xn), f(xn+m)) → 0 as n→∞.

Hence, by applying Lemma 2.11(c), we have that {f(xn)}∞n=0 is a p-Cauchy
sequence. Since X is S-complete, lim

n→∞
p(f(xn), u)) = 0, for some u ∈ X, and

therefore lim
n→∞

p(g(xn), u)) = 0.

Since f and g are p-continuous, then

lim
n→∞

p(f(g(xn)), f(u)) = lim
n→∞

p(g(f(xn)), g(u)) = 0.

Also, since f and g are commuting, then fg = gf , so that we have

lim
n→∞

p(f(g(xn)), f(u)) = lim
n→∞

p(f(g(xn)), g(u)) = 0,

so that by Lemma 2.11(a), we obtain that f(u) = g(u).
Since f(u) = g(u), fg = gf , we have f(f(u)) = f(g(u)) = g(f(u)) =

g(g(u)). Suppose that p(f(u), f(f(u))) 6= 0. Using (2) and the condition
ψ(t) < t, ∀t > 0 in the Remark 2., then, we have

p(f(u), f(f(u))) ≤Lp(u, g(u)) + ψ(p(g(u), g(f(u))))

=Lp(f(u), f(u)) + ψ(p(f(u), f(f(u))))

=ψ(p(f(u), f(f(u))) < p(f(u), f(f(u))),

which is a contradiction. Therefore, p(f(u), f(f(u))) = 0.
Condition (ii) of the Theorem yields p(f(u), f(u)) = 0. Since p(f(u), f(f(u)))

= 0 and p(f(u), f(u)) = 0, applying Lemma 2.11(a) then yields f(f(u)) =
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f(u). Thus, we have g(f(u)) = f(f(u)) = f(u). Hence, f(u) is a common
fixed point of f and g.

The proof is similar when f and g are τ(Φ)-continuous as S-completeness
implies p-Cauchy completeness. ¤
Remark 3.2. Theorem 3.1 is a generalization of Theorem 3.1 of Aamri and El
Moutawakil [1]

Theorem 3.1 is an existence result for the common fixed point of f and g,
while the next two results guarantee the uniqueness of the common fixed point.

Theorem 3.3. Let (X,Φ) be a Hausdorff uniform space and p an E-distance
on X. Suppose that X is p-bounded and S-complete. Suppose that the sequence
{xn}∞n=0 is defined by

xn = f(xn−1), n = 1, 2, . . . ,

with x0 ∈ X. Let f and g be commuting p-continuous or τ(Φ)-continuous
selfmappings of X such that

(i) f(X) ⊆ g(X),
(ii) p(f(xi), f(xi)) = 0,∀xi ∈ X, i = 0, 1, 2, . . .,
(iii) f, g : X → X satisfy the contractive condition (2).

Suppose also that ψ : R+ → R+ is a comparison function. Then, f and g have
a unique common fixed point.

Proof. f and g have a common fixed point since an E-distance function p is
an A-distance. Suppose that there exist u, v ∈ X such that f(u) = g(u) = u
and f(v) = g(v) = v.

Let p(u, v) 6= 0. Then, we have

p(u, v) =p(f(u), f(v)) ≤ Lp(u, g(u)) + ψ(p(g(u), g(v)))

=Lp(u, u) + ψ(p(u, v)) = ψ(p(u, v)) < p(u, v),

which is a contradiction. Therefore, we have p(u, v) = 0. By carrying out a
similar process, we also have that p(v, u) = 0.

Using condition (p2) of Definition 2.4, we have p(u, u) ≤ p(u, v) + p(v, u),
from which it follows that p(u, u) = 0. Since p(u, u) = 0 and p(u, v) = 0, then
by Lemma 2.11(a), we have that u = v. ¤
Remark 3.4. Theorem 3.3 is a generalization of Theorem 3.2 as well as corol-
laries 3.1 & 3.2 of Aamri and El Moutawakil [1].

Theorem 3.5. Let (X,Φ) be a Hausdorff uniform space and p an E-distance
on X. Suppose that X is p-bounded and S-complete. Suppose that the sequence
{xn}∞n=0 is defined by

xn = f(xn−1), n = 1, 2, . . . ,

with x0 ∈ X. Let f and g be p-compatible, p-continuous or τ(Φ)-continuous
selfmappings of X such that
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(i) f(X) ⊆ g(X),
(ii) p(f(xi), f(xi)) = 0,∀xi ∈ X, i = 0, 1, 2, . . . ,
(iii) f, g : X → X satisfy the contractive condition (2).

Suppose also that ψ : R+ → R+ is a comparison function. Then, f and g have
a unique common fixed point.

Proof. Just as in the proof of Theorem 3.1, we have for some u ∈ X that
lim

n→∞
p(f(xn, u)) = lim

n→∞
p(g(xn, u)) = 0. Since f and g are p-continuous, we

have

lim
n→∞

p(f(g(xn)), f(u)) = lim
n→∞

p(g(f(xn)), g(u)) = 0,

while the assumption that f and g are p-compatible implies the following
lim

n→∞
p(f(g(xn)), g(f(xn))) = 0.

Furthermore, by condition (p2) of Definition 2.4, we have that

(3) p(f(g(xn)), g(u)) ≤ p(f(g(xn)), g(f(xn))) + p(g(f(xn)), g(u))

Taking limits in (3) and applying Lemma 2.11(a), then we have

lim
n→∞

p(f(g(xn)), g(u)) = 0.

Since lim
n→∞

p(f(g(xn)), f(u)) = 0 and lim
n→∞

p(f(g(xn)), g(u)) = 0, then by Lemma

2.11(a) we have f(u) = g(u).
The rest of the proof is as in Theorem 3.3. ¤

Remark 3.6. Theorem 3.5 is a generalization of Theorem 3.3 of Aamri and El
Moutawakil [1].
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20(1):83–91 (electronic), 2004.

[2] V. Berinde. A priori and a posteriori error estimates for a class of ϕ-contractions.
Bulletins for Applied and Computing Math., pages 183–192, 1999.

[3] V. Berinde. Iterative approximation of fixed points. Editura Efemeride, Baia Mare, 2002.
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