Acta Mathematica Academiae Paedagogicae Nyiregyhdziensis
26 (2010), 139-148

www.emis.de/journals

ISSN 1786-0091

SOME REMARKS ON BERWALD MANIFOLDS AND
LANDSBERG MANIFOLDS

TADASHI AIKOU

ABSTRACT. In the present paper, we shall prove new characterizations of
Berwald spaces and Landsberg spaces. The main idea inthis research is the
use of the so-called average Riemannian metric.

1. INTRODUCTION

Several years ago, Professor Makoto Matsumoto [6] raised the following ques-
tion: are there non-Berwald Landsberg metrics at all? In his research he es-
tablished a number of results which suggested the conjecture: the class of these
Finsler manifolds is empty. Recently, the conjecture was affirmatively answered
by Z. I. Szab6 [9]. It turned out, however, that Szabd’s proof contains a gap
([7],[10]), and the problem is still open. In the present paper, after reviewing
these special metrics, we shall prove new characterizations of them (Theorem 4.1
and 4.3). The main idea is the use of the average Riemannian metric of the
metric tensor of Finsler metric developed in [9] for characterization of Berwald
manifolds.

We also need the well-known characterization of Landsberg manifolds in terms
of the ‘horizontal incompressibility’ of its volume form (Theorem 4.2, cf. [2]). A
further key observation is our theorem 4.1, which characterizes Berwald metrics
by the property that the horizontal lifts of the vector fields on the base manifold
are Killing fields for the natural lift of a Riemannian metric on the base manifold.

For the reader’s convenience and to make the paper more readable, in sections
2 and 3 we briefly summarize our setup. Section 4 is devoted to the above
mentioned characterizations of Berwald and Landsberg manifolds.
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2. FINSLER FUNCTIONS

Let M be a smooth connected manifold of dim M = n, and 7: TM — M
its tangent bundle. We denote by (z,y) a point in TM if y € 7~ Y(z) = T, M.
We introduce a coordinate system on T'M as follows. Let U C M be an open
set with local coordinate (z!,...,2"). By setting v = > ¢’ (8/8a:i)x for every
ven Y(U), we write (z,y) = (2',..., 2™y, ...,y on 71 (U).

Definition 2.1. A function L: TM — R is called a Finsler function over M if
L is a smooth assignment of a norm |[|v|| of every vector field v on M, that is,
the conditions

(F1) L(z,y) >0, and L(x,y) = 0 if and only if y = 0,

(F2) L(x, \y) = AL(z,y) for all A\ € R,

(F3) L is smooth on the punctured tangent bundle £ = TM\{0}

are satisfied. Then the pair (M, L) is said to be a Finsler manifold. The norm
of a vector v = (z,y) € TM is defined by ||v| = L(x,y).

A Finsler function L is said to be strongly convex if its Hessian (G;;) defined
by
1P
Y2 9yioyd

(2.1)

is positive-definite on F. In the sequel, we assume the convexity of L.
Let V = kerm, be the vertical bundle over E, and let 7#*T M denote the
pull-back of TM to E via w. Then

(2.2) 0>V LTED 7*TM — 0

is a short exact sequence of bundle maps. After the identification V(. ,) =
T, (T, M), the Hessian (G;;) defines an inner product G on V' by

o 0
(23) G(&v”&ﬂ) G

The multiplicative group R™ acts on 7'M by multiplication
max: T M>v—>ANveTl,M

for all A € RT. This action generates a natural section & € I'(V) given by
E(v) = (v,v). Its expression in local coordinates is

(2.4) E=>y o

This section is called the tautological section of V.
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3. CHERN-RUND CONNECTION

We denote by A*(V) the space of V-valued k-forms on E. In this section, we
shall define the Chern-Rund connection in the Riemannian vector bundle (V, G).
Let V: A%(V) — AYV) be a connection on V. We suppose that a V-valued
1-form @ € AY(V) defined by

(3.1) 0 =vVE

satisfies the homogeneity condition m3}6 = 6 and the splitting condition 6 o ¢ =
Id. Then H = kerf is a subbundle of TE complementary to V. H is called
the horizontal bundle. If these assumption are satisfied, we call V a Finsler
connection in the vertical bundle V.

Under the identification 7*T'M = V', we consider m, as the natural projection
me: TE — V, and write

Ty = Z 8(;' ® dz’.

Definition 3.1. ([3]) A Finsler connection V in (V, G) is called the Chern-Rund
connection if it satisfies the following conditions.

(1) V is symmetric:
(3.2) V. =0.
(2) V is almost G-compatible:
) (VxuG)(Y,Z) =0,
for every X € I'(H) and for all Y, Z € I'(V).
Remark 3.1. The V-valued 1-form 6 defined by (3.1) is the Cartan’s (or Berwald’s)
non-linear connection in [3]. For any vector field v on the base manifold M, there
exists a unique vector field v € I'(H) satisfying 7. (UH ) = v. Such a vector
field v is called the horizontal lift of v with respect to 6.

(3.3

We denote by (w;) the family of connection forms of V with respect to the
natural frame:

0 o

Since 5 5
_ i) — ( J
Vﬂ'*—V( ayi®dx)_z<z(9yi®wj>/\dx’
the connection forms w? satisfy > w? A da/ = 0. Taking into account that

the assumption (3.3) can be written in the form X#G(Y,Z) = G(VxuY,Z) +
G(Y,VxuZ), the connection forms w§ = ijk(x,y)dack of V are determined
by the Christoffel symbols

1 (5Gim  6Gmr G
(3.5) : ZG“”(GJ 4 0Gme Gﬂ’“),

ik =9 ok oxd dxm
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where we set

5 a\" o )
2 -9 _ Jri
dzk (83}’) ozk Zy L oyt

The local functions N ; => y™I fnj are called the coefficients of Cartan’s non-
linear connection. It is well-known that these coefficients satisfy the symmetric

property
ON; _ONi
oyk oyJ

(3.6)

Then 6 is of form 6 = Z
by

(3.7) 0" = dy' + Z N;(x, y)da?

o . )
5 ® 60", where the 1-forms 0" (i = 1,...,n) are given
Y

and {01, ...,0"} defines a local frame field on the dual bundle V*.

Remark 3.2. Using the Cartan’s non-linear connection 6, let

Day o {Q[X, Y] if X € I(H)
X(Y) ifXel(V)

for all Y € I'(V). Then it is easy to see that D: A%(V) — AY(V) is also a

Finsler connection, called the Berwald connection of (M, L). The coefficients
G; i of D are given by

;0N
T

and the connection D is given by

? 0 Z.
(3.8) Dy =2 5 © (- Ginaat).

It is clear from (3.6) that D has the symmetry property D, = 0.

We have two projections from T'E to V. The first one is the natural projection
7. and second one is 6 defined by (3.1).

Definition 3.2. The torsion form T of V is defined by the V-valued 2-form
given by

(3.9) T = V9.
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By direct calculations, we obtain
0 , 0 .
T= — N0 - ® df*
T2y L

=Z%®(w§A9j+dN;/\d:rj)

9 SNi 6N\ R
:Zﬁyi © [Z <5T’g_ﬁ) dxj/\dl‘k—’—( jk_ij)dlL“j/\Qk] .

In the sequel we set

T =y 8‘; @ (3 Ripda? A da)

and

T =3 azi ® ( Piodad 9’“) ,

where we put

. 0N} ONj

=Sk
and

Py = I = Gl
Since

o 0 . 0
0| —,—| = {A——
{51‘]’5:10’“} ZRjkayz’

the horizontal part T7H of T measures the integrability of H.
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Definition 3.3. A Finsler manifold (M, L) is called a Landsberg manifold if

THV — ( is satisfied.

It follows at once that the Chern-Rund connection V coincides with the
Berwald connection D if L is Landsberg. A geometrical meaning of the mixed

THV

part will be explained soon.

Next we consider the curvature of V. The curvature form {2 = (Q;) of V is

defined by
0 0 ~
By direct calculations, we have
2 =dwl + > wh Al =" Ridat Adat +) 0 Phdat A6
where we put

i Mﬁk 5F'il i m i m
(3.10) ikl = 5—;1 - ﬁ ‘1‘2 (I T jk)



144 TADASHI ATKOU
and

i 8F}k

In the sequel, we set

9 9 .
RHH (a—ya> =y 57 © > " R dz" A da!

o
v [ 9
. (&w) >3 oy

and

Pjydz® A6

4. BERWALD AND LANDSBERG MANIFOLDS

Definition 4.1. A Finsler manifold (M, L) is called a Berwald manifold if
RV = () is satisfied.

Using the Ricci identity V2E = R(E), we obtain the identity RV (€) = TV
which implies that all Berwald manifolds are Landsberg manifolds.

Remark 4.1. By this definition and (3.11), if (M, L) is a Berwald manifold,
then the coefficients I' ;k are independent of the fibre coordinate (y!,...,y").
Therefore V may be considered as a linear connection on the base manifold M,
and we obtain the relation

= ENG [Zymp } =TIjom.

Hence, roughly speaking, a Finsler manifold (M, L) is a Berwald manifold if and
only if its Berwald connection D is a linear connection on M.

A Riemannian manifold is an obvious example of Berwald manifolds. The
following theorem due to [8] played an important role in understanding Berwald
manifolds.

Theorem 4.1. ([8]) If (M, L) is a Berwald manifold, then there exists a Rie-
mannian metric g on M such that the V = 1*V9 for the Levi-Civita connection
Va of (M, g).

Let v = Z v"=— be a vector field on the base manifold M, and {¢;} be the

1-parameter group of local transformations ¢, (|t| < ¢) on M generated by v. If
we denote by ¢; the horizontal lift of ¢;, then o ¢; = ; and
doy H
4.1 - =
( ) dt v Y
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H

where v'" is the horizontal lift of v with respect to the Cartan’s non-linear

connection 6. For each ¢, we denote by (1515 the automorphism acting on tensor
fields. Then the Lie derivation £,z G with respect to v is defined by

d

(4:2) LonG =2 [Bi(G)

By Theorem 3.1, if L is a Berwald function, then 6 is given by

0= Z 8(;' ® (dyi—l—Zyj ('y;k 07r) dxk>,

where 7;- . are the Christoffel symbols of the Levi-Civita connection of the asso-
ciated to g. Let g be the lifted metric of g:

(0 0 .
g 8yl7 8y] g J
Then we obtain

(0 0N a0 O\ ([a 0] 0
(£or5) (3_y“<9_7ﬂ)_v g<8y“3yj) g({v ’8yi]’8yﬂ'>
_g<8y“{v 8—y‘7D
k agl] T r
:Z(U OW) axk—zgrj’m—zgir%j =0.

It is extremely useful that the converse of this fact is also true.

Theorem 4.2. A Finsler function L is Berwald if and only if there exists a
Riemannian metric g on M satisfying

(4.3) L,ag=70
for the horizontal lift v of every vector field v on M.

Proof. Suppose that there exists a Riemannian metric g on M satisfying (4.3).
Then, similarly to the computation above, we obtain

~ 8 3 agz r T
(Lyng) (8—31“ 8—yﬂ) = Z (Uk O7T) (8x’z - Zgrj ki — Zgir ch) .

Since G;  have the symmetry property G; x = Gl ;» we obtain

i 1 ir [ 09jr  Ogrk 09y ;

Therefore (M, L) is a Berwald manifold. O
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If (M, L) is Berwald, a Riemannian metric satisfying (4.3) is constructed as
follows. Since the metric G on vertical subbundle V is given by G = Y~ G;,;0°®67,
we may define an n-form dy on V' by

(4.4) du = \/det (Gi;) O* A ... A O™

The restriction of du to each fibre T, M is the volume form of the Riemannian
space (T, M,G,). For the unit ball B, = {y e T,M | L(z,y) <1} in T, M,
Szabd[9] introduced an average Riemannian metric g on M by the integral

(4.5) oz, w) = /B Gz, w)dp,

for all vector field z,w on M, where, at the right-hand side, we consider z, w as
sections of V.

Proposition 4.1. We suppose that (M, L) be Berwald. Then the Riemannian
metric g defined by (4.5) satisfies (4.3).

Proof. By the assumption, the coefficients G;k are independent of the fibre co-
ordinates (y!,...,y"). Therefore we have

09,5
ai,ﬁ - ZQMG% - Zgir kj

0
=g, Gt~ (], Gate) G- (], et

:/‘ (aaijj > GrGri = GG ) =0.

Consequently we obtain (4.3). O

On the other hand, we have the following characterization of Landsberg man-
ifolds.

Theorem 4.3. A Finsler function L is Landsberg if and only if
(4.6) L,uG =0
for the horizontal lift v of every vector field v on M.

Proof. By direct computations, we have

9 N _ e —afler 2] 2 (2 [0
(,C,UHG) (8yz’8y3)_v Gm G(|: 8y:|78y]) G(ayz7|:v 78yj:|)
0Gy;
- (v’foﬂ(éx,:—zam -y e,
=) (vFom) {M/ﬂ > G (Tl = Pl) = Y G (T — ]Tk)]
:Z(vkoﬂ (Gr; Pjy, + Gir Pj, :2Z(UkO7T)Pijk::
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where we put P = > GWP]’-",€ and use the well-known fact that P;;, are sym-
metric in the indices ¢, j, k. Therefore L is Landsberg if and only if (4.6) is
satisfied. 0

As a consequence of this theorem, the metric G is invariant by each transfor-
mation ¢; defined in (4.1), that is, ;G = G. This implies that each transfor-
mation @; is an isometry from 7, M to T, (o) M.

We also calculate the Lie derivative of du with respect to the horizontal lift

H of a vector field v on M. Using the definition of £, u, we obtain

0 0 0 0
<£de“>(5§f*- ) = (9 (5 50))

S o )0
K A P

5 5 B
=Y (WFon) E< VaetG) - Zdu(al,...,ZG%y—m,...,a_w>

=3 (v o) % (m) _ zn: m \/det G

m=1

:Z(U’fow) %(detG>1/2 5 (det G) — <Zka> det ]

Since % (det G) = 2detGZF,ﬁ1, we find

['n

(Lyudpu) (%,...,%):vde‘cG Z(vkwr) Z(F;ZLTL— ko)

Lm=1

=VdetG ) (vFom) f: P
Llm=1

If we set (tr.THV)(X) := trace{Y — THV(X,Y)}, then we see that L,#dy = 0
if and only if tr .7V = 0. Therefore, if L is Landsberg, we have

(4.7) Lyadp =0,
that is, the volume form dy is invariant by the automorphism Qgt:

(4.8) 5t(dUt) = dp.

A Finsler manifold (M, L) satisfying tr .77V = 0 is called a weak Landsberg
space. The condition tr. 7Y = 0 means that each fibre T, M is is minimal
submanifold in 7'M with some Sasakian-type metric (cf. [1]).
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