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SOME REMARKS ON BERWALD MANIFOLDS AND

LANDSBERG MANIFOLDS

TADASHI AIKOU

Abstract. In the present paper, we shall prove new characterizations of
Berwald spaces and Landsberg spaces. The main idea inthis research is the
use of the so-called average Riemannian metric.

1. Introduction

Several years ago, Professor Makoto Matsumoto [6] raised the following ques-
tion: are there non-Berwald Landsberg metrics at all? In his research he es-
tablished a number of results which suggested the conjecture: the class of these
Finsler manifolds is empty. Recently, the conjecture was affirmatively answered
by Z. I. Szabó [9]. It turned out, however, that Szabó’s proof contains a gap
([7],[10]), and the problem is still open. In the present paper, after reviewing
these special metrics, we shall prove new characterizations of them (Theorem 4.1
and 4.3). The main idea is the use of the average Riemannian metric of the
metric tensor of Finsler metric developed in [9] for characterization of Berwald
manifolds.

We also need the well-known characterization of Landsberg manifolds in terms
of the ‘horizontal incompressibility’ of its volume form (Theorem 4.2, cf. [2]). A
further key observation is our theorem 4.1, which characterizes Berwald metrics
by the property that the horizontal lifts of the vector fields on the base manifold
are Killing fields for the natural lift of a Riemannian metric on the base manifold.

For the reader’s convenience and to make the paper more readable, in sections
2 and 3 we briefly summarize our setup. Section 4 is devoted to the above
mentioned characterizations of Berwald and Landsberg manifolds.
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2. Finsler functions

Let M be a smooth connected manifold of dim M = n, and π : TM → M
its tangent bundle. We denote by (x, y) a point in TM if y ∈ π−1(x) = TxM .
We introduce a coordinate system on TM as follows. Let U ⊂ M be an open
set with local coordinate (x1, . . . , xn). By setting v =

∑
yi
(
∂/∂xi

)
x

for every

v ∈ π−1(U), we write (x, y) = (x1, . . . , xn, y1, . . . , yn) on π−1(U).

Definition 2.1. A function L : TM → R is called a Finsler function over M if
L is a smooth assignment of a norm ‖v‖ of every vector field v on M , that is,
the conditions

(F1) L(x, y) ≥ 0, and L(x, y) = 0 if and only if y = 0,
(F2) L(x, λy) = λL(x, y) for all λ ∈ R

+,
(F3) L is smooth on the punctured tangent bundle E = TM\{0}

are satisfied. Then the pair (M, L) is said to be a Finsler manifold. The norm
of a vector v = (x, y) ∈ TM is defined by ‖v‖ = L(x, y).

A Finsler function L is said to be strongly convex if its Hessian (Gij) defined
by

(2.1) Gij =
1

2

∂2L2

∂yi∂yj

is positive-definite on E. In the sequel, we assume the convexity of L.
Let V = kerπ∗ be the vertical bundle over E, and let π∗TM denote the

pull-back of TM to E via π. Then

(2.2) 0 → V
i→ TE

π∗→ π∗TM → 0

is a short exact sequence of bundle maps. After the identification V(x,y) =
Ty(TxM), the Hessian (Gij) defines an inner product G on V by

(2.3) G

(
∂

∂yi
,

∂

∂yj

)
= Gij .

The multiplicative group R
+ acts on TM by multiplication

mλ : TxM ∋ v → λ · v ∈ TxM

for all λ ∈ R
+. This action generates a natural section E ∈ Γ (V ) given by

E(v) = (v, v). Its expression in local coordinates is

(2.4) E =
∑

yi ∂

∂yi
.

This section is called the tautological section of V .
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3. Chern-Rund connection

We denote by Ak(V ) the space of V -valued k-forms on E. In this section, we
shall define the Chern-Rund connection in the Riemannian vector bundle (V, G).
Let ∇ : A0(V ) → A1(V ) be a connection on V . We suppose that a V -valued
1-form θ ∈ A1(V ) defined by

(3.1) θ = ∇E
satisfies the homogeneity condition m∗

λθ = θ and the splitting condition θ ◦ i =
Id. Then H = ker θ is a subbundle of TE complementary to V . H is called
the horizontal bundle. If these assumption are satisfied, we call ∇ a Finsler
connection in the vertical bundle V .

Under the identification π∗TM ∼= V , we consider π∗ as the natural projection
π∗ : TE → V , and write

π∗ =
∑ ∂

∂yi
⊗ dxi.

Definition 3.1. ([3]) A Finsler connection ∇ in (V, G) is called the Chern-Rund
connection if it satisfies the following conditions.

(1) ∇ is symmetric:

(3.2) ∇π∗ = 0.

(2) ∇ is almost G-compatible:

(3.3) (∇XH G)(Y, Z) = 0,

for every XH ∈ Γ (H) and for all Y, Z ∈ Γ (V ).

Remark 3.1. The V -valued 1-form θ defined by (3.1) is the Cartan’s (or Berwald’s)
non-linear connection in [3]. For any vector field v on the base manifold M , there
exists a unique vector field vH ∈ Γ (H) satisfying π∗

(
vH
)

= v. Such a vector

field vH is called the horizontal lift of v with respect to θ.

We denote by
(
ωi

j

)
the family of connection forms of ∇ with respect to the

natural frame:

(3.4) ∇ ∂

∂yj
=
∑ ∂

∂yi
⊗ ωi

j .

Since

∇π∗ = ∇
(∑ ∂

∂yi
⊗ dxi

)
=
∑(∑ ∂

∂yi
⊗ ωi

j

)
∧ dxj ,

the connection forms ωi
j satisfy

∑
ωi

j ∧ dxj = 0. Taking into account that

the assumption (3.3) can be written in the form XHG(Y, Z) = G(∇XH Y, Z) +
G(Y,∇XH Z), the connection forms ωi

j =
∑

Γ i
jk(x, y)dxk of ∇ are determined

by the Christoffel symbols

(3.5) Γ i
jk =

1

2

∑
Gim

(
δGjm

δxk
+

δGmk

δxj
− δGjk

δxm

)
,
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where we set

δ

δxk
:=

(
∂

∂xi

)H

=
∂

∂xk
−
∑

yjΓ i
jk

∂

∂yi
.

The local functions N i
j =

∑
ymΓ i

mj are called the coefficients of Cartan’s non-
linear connection. It is well-known that these coefficients satisfy the symmetric
property

(3.6)
∂N i

j

∂yk
=

∂N i
k

∂yj
.

Then θ is of form θ =
∑ ∂

∂yi
⊗ θi, where the 1-forms θi (i = 1, . . . , n) are given

by

(3.7) θi = dyi +
∑

N i
j(x, y)dxj ,

and {θ1, . . . , θn} defines a local frame field on the dual bundle V ∗.

Remark 3.2. Using the Cartan’s non-linear connection θ, let

DXY :=

{
θ[X, Y ] if X ∈ Γ (H)

X(Y ) if X ∈ Γ (V )

for all Y ∈ Γ (V ). Then it is easy to see that D : A0(V ) → A1(V ) is also a
Finsler connection, called the Berwald connection of (M, L). The coefficients
Gi

jk of D are given by

Gi
jk =

∂N i
j

∂yk
,

and the connection D is given by

(3.8) D
∂

∂yj
=
∑ ∂

∂yi
⊗
(∑

Gi
jkdxk

)
.

It is clear from (3.6) that D has the symmetry property Dπ∗ = 0.

We have two projections from TE to V . The first one is the natural projection
π∗ and second one is θ defined by (3.1).

Definition 3.2. The torsion form T of ∇ is defined by the V -valued 2-form
given by

(3.9) T = ∇θ.
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By direct calculations, we obtain

T =
∑

∇ ∂

∂yi
∧ θi +

∑ ∂

∂yi
⊗ dθi

=
∑ ∂

∂yi
⊗
(
ωi

j ∧ θj + dN i
j ∧ dxj

)

=
∑ ∂

∂yi
⊗
[
∑

(
δN i

j

δxk
− δN i

k

δxj

)
dxj ∧ dxk +

(
Γ i

jk − Gi
jk

)
dxj ∧ θk

]
.

In the sequel we set

T HH =
∑ ∂

∂yi
⊗
(∑

Ri
jkdxj ∧ dxk

)

and

T HV =
∑ ∂

∂yi
⊗
(∑

P i
jkdxj ∧ θk

)
,

where we put

Ri
jk =

δN i
j

δxk
− δN i

k

δxj

and

P i
jk = Γ i

jk − Gi
jk.

Since

θ

[
δ

δxj
,

δ

δxk

]
=
∑

Ri
jk

∂

∂yi
,

the horizontal part T HH of T measures the integrability of H .

Definition 3.3. A Finsler manifold (M, L) is called a Landsberg manifold if
T HV = 0 is satisfied.

It follows at once that the Chern-Rund connection ∇ coincides with the
Berwald connection D if L is Landsberg. A geometrical meaning of the mixed
part T HV will be explained soon.

Next we consider the curvature of ∇. The curvature form Ω =
(
Ωi

j

)
of ∇ is

defined by

∇2 ∂

∂yj
=
∑ ∂

∂yi
⊗ Ωi

j .

By direct calculations, we have

Ωi
j = dωi

j +
∑

ωi
m ∧ ωm

j =
∑

Ri
jkldxk ∧ dxl +

∑
P i

jkldxk ∧ θl,

where we put

(3.10) Ri
jkl =

δΓ i
jk

δxl
−

δΓ i
jl

δxk
+
∑(

Γ i
mkΓ m

jl − Γ i
mlΓ

m
jk

)
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and

(3.11) P i
jkl = −

∂Γ i
jk

∂yl
.

In the sequel, we set

RHH

(
∂

∂yj

)
=
∑ ∂

∂yi
⊗
∑

Ri
jkldxk ∧ dxl

and

RHV

(
∂

∂yj

)
=
∑ ∂

∂yi
⊗
∑

P i
jkldxk ∧ θl.

4. Berwald and Landsberg manifolds

Definition 4.1. A Finsler manifold (M, L) is called a Berwald manifold if
RHV = 0 is satisfied.

Using the Ricci identity ∇2E = R(E), we obtain the identity RHV (E) = T HV

which implies that all Berwald manifolds are Landsberg manifolds.

Remark 4.1. By this definition and (3.11), if (M, L) is a Berwald manifold,
then the coefficients Γ i

jk are independent of the fibre coordinate (y1, . . . , yn).
Therefore ∇ may be considered as a linear connection on the base manifold M ,
and we obtain the relation

Gi
jk =

∂

∂yk

[∑
ymΓ i

mj(x)
]

= Γ i
jk ◦ π.

Hence, roughly speaking, a Finsler manifold (M, L) is a Berwald manifold if and
only if its Berwald connection D is a linear connection on M .

A Riemannian manifold is an obvious example of Berwald manifolds. The
following theorem due to [8] played an important role in understanding Berwald
manifolds.

Theorem 4.1. ([8]) If (M, L) is a Berwald manifold, then there exists a Rie-
mannian metric g on M such that the ∇ = π∗∇g for the Levi-Civita connection
∇g of (M, g).

Let v =
∑

vi ∂

∂xi
be a vector field on the base manifold M , and {ϕt} be the

1-parameter group of local transformations ϕt (|t| < ε) on M generated by v. If
we denote by ϕ̃t the horizontal lift of ϕt, then π ◦ ϕ̃t = ϕt and

(4.1)
dϕ̃t

dt t=0
= vH ,
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where vH is the horizontal lift of v with respect to the Cartan’s non-linear

connection θ. For each t, we denote by Φ̃t the automorphism acting on tensor
fields. Then the Lie derivation LvH G with respect to vH is defined by

(4.2) LvH G =
d

dt t=0

[
Φ̃t(Gt)

]

By Theorem 3.1, if L is a Berwald function, then θ is given by

θ =
∑ ∂

∂yi
⊗
(
dyi +

∑
yj
(
γi

jk ◦ π
)
dxk

)
,

where γi
jk are the Christoffel symbols of the Levi-Civita connection of the asso-

ciated to g. Let g̃ be the lifted metric of g:

g̃

(
∂

∂yi
,

∂

∂yj

)
= gij ◦ π.

Then we obtain

(LvH g̃)

(
∂

∂yi
,

∂

∂yj

)
= vH g̃

(
∂

∂yi
,

∂

∂yj

)
− g̃

([
vH ,

∂

∂yi

]
,

∂

∂yj

)

− g̃

(
∂

∂yi
,

[
vH ,

∂

∂yj

])

=
∑(

vk ◦ π
)(∂gij

∂xk
−
∑

grjγ
r
ki −

∑
girγ

r
kj

)
= 0.

It is extremely useful that the converse of this fact is also true.

Theorem 4.2. A Finsler function L is Berwald if and only if there exists a
Riemannian metric g on M satisfying

(4.3) LvH g̃ = 0

for the horizontal lift vH of every vector field v on M .

Proof. Suppose that there exists a Riemannian metric g on M satisfying (4.3).
Then, similarly to the computation above, we obtain

(LvH g̃)

(
∂

∂yi
,

∂

∂yj

)
=
∑(

vk ◦ π
)(∂gij

∂xk
−
∑

grjG
r
ki −

∑
girG

r
kj

)
.

Since Gi
jk have the symmetry property Gi

jk = Gi
kj , we obtain

Gi
jk =

1

2

∑
gir

(
∂gjr

∂xk
+

∂grk

∂xj
− ∂gji

∂xr

)
= γi

jk ◦ π.

Therefore (M, L) is a Berwald manifold. �
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If (M, L) is Berwald, a Riemannian metric satisfying (4.3) is constructed as
follows. Since the metric G on vertical subbundle V is given by G =

∑
Gijθ

i⊗θj ,
we may define an n-form dµ on V by

(4.4) dµ :=
√

det (Gij) θ1 ∧ . . . ∧ θn.

The restriction of dµ to each fibre TxM is the volume form of the Riemannian
space (TxM, Gx). For the unit ball Bx = {y ∈ TxM | L(x, y) ≤ 1} in TxM ,
Szabó[9] introduced an average Riemannian metric g on M by the integral

(4.5) g(z, w) =

∫

Bx

G(z, w)dµ,

for all vector field z, w on M , where, at the right-hand side, we consider z, w as
sections of V .

Proposition 4.1. We suppose that (M, L) be Berwald. Then the Riemannian
metric g defined by (4.5) satisfies (4.3).

Proof. By the assumption, the coefficients Gi
jk are independent of the fibre co-

ordinates (y1, . . . , yn). Therefore we have

∂gij

∂xk
−
∑

grjG
r
ki −

∑
girG

r
kj

=
∂

∂xk

∫

Bx

Gijdµ −
∑(∫

Bx

Grjdµ

)
Gr

ki −
∑(∫

Bx

Girdµ

)
Gr

jk

=

∫

Bx

(
∂Gij

∂xk
−
∑

GrjG
r
ki −

∑
GirG

r
kj

)
dµ = 0.

Consequently we obtain (4.3). �

On the other hand, we have the following characterization of Landsberg man-
ifolds.

Theorem 4.3. A Finsler function L is Landsberg if and only if

(4.6) LvH G = 0

for the horizontal lift vH of every vector field v on M .

Proof. By direct computations, we have

(LvH G)

(
∂

∂yi
,

∂

∂yj

)
= vHGij − G

([
vH ,

∂

∂yi

]
,

∂

∂yj

)
− G

(
∂

∂yi
,

[
vH ,

∂

∂yj

])

=
∑(

vk ◦ π
)(δGij

δxk
−
∑

GrjG
r
ki −

∑
GirG

r
kj

)

=
∑(

vk ◦ π
) [δGij

δxk
−
∑

Grj (Γ r
ik − P r

ik) −
∑

Gir

(
Γ r

jk − P r
jk

)]

=
∑(

vk ◦ π
) (

GrjP
r
ik + GirP

r
jk

)
= 2

∑(
vk ◦ π

)
Pijk ,
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where we put Pijk =
∑

GirP
r
jk and use the well-known fact that Pijk are sym-

metric in the indices i, j, k. Therefore L is Landsberg if and only if (4.6) is
satisfied. �

As a consequence of this theorem, the metric G is invariant by each transfor-
mation ϕ̃t defined in (4.1), that is, ϕ̃∗

t G = G. This implies that each transfor-
mation ϕ̃t is an isometry from TxM to Tϕt(x)M .

We also calculate the Lie derivative of dµ with respect to the horizontal lift
vH of a vector field v on M . Using the definition of LvH , we obtain

(LvH dµ)

(
∂

∂y1
, . . . ,

∂

∂yn

)
= vH

(
dµ

(
∂

∂y1
, . . . ,

∂

∂yn

))

−
n∑

j=1

dµ

(
∂

∂y1
, . . . ,

[
vH ,

∂

∂yj

]
, . . . ,

∂

∂yn

)

=
∑(

vk ◦ π
)


 δ

δxk

(√
detG

)
−

n∑

j=1

dµ

(
∂

∂y1
, . . . ,

∑
Gm

kj

∂

∂ym
, . . . ,

∂

∂yn

)



=
∑(

vk ◦ π
)
[

δ

δxk

(√
detG

)
−

n∑

m=1

Gm
km

√
detG

]

=
∑(

vk ◦ π
) [1

2
(detG)

−1/2 · δ

δxk
(detG) −

(∑
Gm

km

)√
detG

]
.

Since
δ

δxk
(detG) = 2 detG

∑
Γ m

km, we find

(LvH dµ)

(
∂

∂y1
, . . . ,

∂

∂yn

)
=

√
detG

∑(
vk ◦ π

)
[

n∑

m=1

(Γ m
km − Gm

km)

]

=
√

detG
∑(

vk ◦ π
)
[

n∑

m=1

Pm
km

]
.

If we set (tr .T HV )(X) := trace{Y → T HV (X, Y )}, then we see that LvH dµ = 0
if and only if tr .T HV = 0. Therefore, if L is Landsberg, we have

(4.7) LvH dµ = 0,

that is, the volume form dµ is invariant by the automorphism Φ̃t:

(4.8) Φ̃t(dµt) = dµ.

A Finsler manifold (M, L) satisfying tr .T HV = 0 is called a weak Landsberg
space. The condition tr .T HV = 0 means that each fibre TxM is is minimal
submanifold in TM with some Sasakian-type metric (cf. [1]).
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[mr2447906]. Balkan J. Geom. Appl., 14(2):50–52, 2009.
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[10] Z. I. Szabó. Correction to “All regular Landsberg metrics are Berwald”. Ann. Global Anal.
Geom., 35(3):227–230, 2009.

Department of Mathematics and Computer Science,

Graduate School of Science and Engineering, Kagoshima University,

Kagoshima 890-0065, Japan

E-mail address: aikou@sci.kagoshima-u.ac.jp


