
Acta Mathematica Academiae Paedagogicae Nýıregyháziensis
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THE INDEX OF A GEODESIC IN A RANDERS SPACE AND

SOME REMARKS ABOUT THE LACK OF REGULARITY OF

THE ENERGY FUNCTIONAL OF A FINSLER METRIC

ERASMO CAPONIO

Abstract. In a series of papers ([2, 3, 4]) the relations existing between
the metric properties of Randers spaces and the conformal geometry of
stationary Lorentzian manifolds were discovered and investigated. These
relations were called in [4] Stationary-to-Randers Correspondence (SRC).
In this paper we focus on one aspect of SRC, the equality between the
index of a geodesic in a Randers space and that of its lightlike lift in
the associated conformal stationary spacetime. Moreover we make some
remarks about regularity of the energy functional of a Finsler metric on
the infinite dimensional manifold of H

1 curves connecting two points, in
connection with infinite dimensional techniques in Morse Theory.

1. Introduction

Let S be a manifold of dimension n and R =
√

h + ω be a Randers metric
on S. To (S, R) we associate a one-dimensional higher manifold M = S × R

endowed with the bilinear symmetric tensor

g = h − (ω − dt)2.

The condition on the norm of ω ensuring that R is a positive definite function
on TS, i.e (ωp(v))2 < hp(v, v) for all v ∈ TpS and for all p ∈ S, makes g a
non-degenerate symmetric bilinear form of index 1, that is a Lorentzian metric
on S × R.

Let t be the natural coordinate on R. The vector field ∂t = ∂
∂t on S × R

is timelike at any point (i.e. gp(∂t, ∂t) < 0, for all p ∈ M) and it is a Killing

2000 Mathematics Subject Classification. 53C22, 53C50, 53C60, 58B20.
Key words and phrases. Stationary Lorentzian manifolds, lightlike geodesics, Morse index,

Finsler metric, Randers space.
Supported by M.I.U.R. Research project PRIN07 “Metodi Variazionali e Topologici nello

Studio di Fenomeni Nonlineari”.

265



266 ERASMO CAPONIO

vector field for g. A Lorentzian manifold admitting a timelike Killing vector
field is called stationary (see for instance [12, p. 119]) and whenever the timelike
Killing vector field is irrotational is said static.

For any fixed p ∈ S, the function R(p, ·) : TpS → [0, +∞) arises as the non-
negative solution of the equation in the variable τ

(1) hp(v, v) − (ωp(v) − τ)2 = 0.

Eq. (1) and τ ≥ 0 are the conditions that a future pointing lightlike vector
(v, τ) ∈ TpS × R has to satisfy by definition.

We recall that a Lorentzian manifold (M, g) is said time-oriented if it admits
a smooth timelike vector field Y . In particular a stationary Lorentzian manifold
is time-oriented by one of its timelike Killing vector field. A vector v ∈ TpM is
said future pointing (resp. past pointing) if gp(v, Y ) < 0 (resp. gp(v, Y ) > 0) and
lightlike if gp(v, v) = 0. Analogously, a smooth curve γ : [a, b] → M is said future
pointing, past pointing, lightlike iff its velocity vector field is future pointing,
past pointing, lightlike. Observe that if (v, τ) is past pointing and lightlike then
τ is equal to the non-positive solution of (1) and −τ is equal to the Randers
metric obtained reversing R, that is −τ = R(p,−v).

In analogy with a terminology used for static spacetimes (cf. [9, p. 360]), a
stationary Lorentzian manifold (M, g) is said standard if it is isometric to a
product manifold S × R endowed with the metric

g0 + w ⊗ dt + dt ⊗ w − βdt2,

where g0, w and β are respectively a Riemannian metric, a one-form and a
positive function on S. The conditions defining future pointing lightlike vectors
on (M, g) define now the non-negative function on TS

R =
√

g0/β + (w/β)2 + w/β.

Whatever the one-form w is, the norm of w/β with respect to the Riemannian
metric

(2) h = g0/β + (w/β)2

is less than 1 and thus R is a Randers metric.
Since Eq. (1) is invariant under conformal transformations of the metric g, the

same Randers metric R is associated to the conformal class of g. Conversely, a
Randers space (S, R) individuates the conformal standard stationary Lorentzian
manifold (S × R, h − (ω − dt)2).

The bijection between Randers spaces and conformal standard stationary Lo-
rentzian manifolds has been called in [4] Stationary-to-Randers correspondence
(SRC) and it has been used in [2] and in [4] to study the causal structure of a
conformal standard stationary Lorentzian manifold.

One of the basic observation about SRC is that there is a one-to-one cor-
respondence between lightlike geodesics of the conformal standard stationary
Lorentzian manifold and the geodesics of the associated Randers space. Going
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into more details, we mention that lightlike geodesics on a Lorentzian mani-
fold are invariant under conformal changes of the metric in the sense that if
γ : [0, 1] → M is a lightlike geodesic of (M, g) then γ is a pregeodesic of λg for
any positive function λ, i. e. there exists a reparametrization σ : [0, 1] → [0, 1]
such that γ ◦ σ is a lightlike geodesic of (M, λg) (see for example [8, p. 14]). We
consider now a conformal standard stationary Lorentzian manifold (S×R, g) and
we take, as representative of the class, the metric h− (ω−dt)2, where h is equal
to (2) and ω = w/β. If z(s) = (x(s), t(s)) is a future pointing lightlike geodesic
of (S×R, h−(ω−dt)2) then (see [2, Theorem 4.5] x is a geodesic of the Randers

space (S, R), R =
√

h + ω, parametrized with h(ẋ, ẋ) = const. The fact that x
has to be parametrized with constant Riemannian speed can be seen recalling
that g(ż, ż) = 0 and, since ∂t is a Killing vector field, g(ż, ∂t) = ω(ẋ)− ṫ = const.
thus also h(ẋ, ẋ) has to be constant.

The other way round, a geodesic x = x(s) in (S, R) can be lifted to a future
pointing lightlike curve on S × R by taking

(3) t = t(s) = t0 +

∫ s

s0

R(x, ẋ).

If x is parametrized with constant Riemannian speed, its future pointing lightlike
lift is a lightlike geodesic of (S × R, h − (ω − dt)2).

The same relation holds between geodesics of the reversed metric R̃(x, v) =
R(x,−v) and past pointing lightlike geodesic of (S × R, h − (ω − dt)2).

In Section 2 of this note, we focus on one aspect of SRC that is the equality
between the index of a geodesic in the Randers space (S, R) and the index of its
future pointing lightlike lift in (S × R, h − (ω − dt)2).

An immediate consequence of this equality (which holds also for a geodesic

of the reversed Randers metric R̃ and the corresponding past pointing lightlike
geodesic of (S × R, h − (ω − dt)2)), is that the index of a lightlike geodesic is a
conformal invariant for standard stationary Lorentzian manifolds. This gives an
alternative proof to a well known fact which holds for any conformal Lorentzian
manifold (see for example [8, Theorem 2.36]).

Another consequence of this equality is that the Morse theory for future
pointing lightlike geodesic connecting a point p̃ = (p, t0) to an integral line of
the timelike Killing vector field ∂t passing through the point q̃ = (q, t0), can be
reduced to the Morse theory for geodesics connecting the points p and q in the
associated Randers space.

Altough Morse theory for geodesics connecting two points on a Finsler man-
ifold (M, F ) can be developed by using finite dimensional approximations of
the path space by broken geodesics (see [10]), infinite dimensional techniques in
Morse theory can be adapted to work in the Sobolev manifold Ωp,q(M) of the
H1 curves connecting the points p and q. The main problem in regard to this
approach is the lack of twice Frechet differentiability of the energy functional
E of a Finsler metric at any critical point with respect to the H1–topology.
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Anyway E has enough regularity to get a version of the Morse Lemma which
allows us to compute the critical groups and to obtain the Morse relations (see
[3]). In Section 3 we illustrate what is the problem in trying to prove that E is
twice Frechet differentiable with respect to the H1–topology and we will extend
to the Finsler case a recent argument by A. Abbandondandolo and M. Schwartz
[1]. In fact, in [1] the authors prove that a smooth time dependent Lagrangian
L : [0, 1] × TM → R, which is subquadratic in the velocities and whose action
functional is twice Frechet differentiable at a regular curve on the Sobolev man-
ifold Ω(M) of all the H1 curves on M , must be a polynomial of degree at most
two in the velocity variables along the curve. This fact can be seen as an infinite
dimensional version of the well known property that if the square of a Finsler
metric is C2 on the whole TM then actually it is the square of the norm of a
Riemannian metric.

2. The equality between the indexes

Let M be a Lorentzian or a Finsler manifold and let γ be a geodesic on M .
By µ(γ) we denote the index of γ, that is the number of conjugate points along γ
counted with their multiplicity. The equality between µ(x), where x is a geodesic
of the Randers space (S, R), and µ(z), where z is the future pointing lightlike
lift of x in (S×R, g = h−(ω−dt)2), can be carried out by comparing the Jacobi
equation of x in (S, R) with the Jacobi equation of z in (S × R, h − (ω − dt)2),
as done in [3, Theorem 13].

Here we give a different proof based on a comparison of the Morse index of
the energy functional of the Randers metric at x and the Morse index at z of
the functional introduced by Uhlenbeck in [11]:

J(σ) =

∫ 1

0

(

g(σ̇, σ̇) +
(dP (σ)

ds

)2)
ds.

Here σ belongs to the set of piecewise differentiable curves on S × R, satisfying
the constraint g(σ̇, σ̇) = 0 and the boundary conditions σ(0) = p̃ ∈ S × R,
σ(1) ∈ l(R), where l = l(s) is an integral line of the Killing vector field ∂t

(p̃ 6∈ l(R)) and P : S × R → R is the natural projection on R.
The critical point of J are the lightlike geodesics connecting p̃ to l(R). More-

over J admits second variation at any critical point. A critical point is non
degenerate if and only if its endpoints are non-conjugate. The Morse index of a
critical point is finite and it is equal to µ(z) (see [11, Lemma 4.2]). Using these
properties of J we can prove the following

Theorem 2.1. Let (S ×R, h− (ω − dt)2) be the conformal standard stationary
spacetime associated by SRC to (S, R) and z(s) = (x(s), t(s)) : [0, 1] → S × R

be the future pointing lightlike geodesic associated to the geodesic x(s) in (S, R).
Then the points x(0) and x(1) are non-conjugate along x in (S, R) if and only
if the points z(0) and z(1) are non-conjugate along z in (S × R, h − (ω − dt)2).
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Moreover

µ(z) = µ(x).

Proof. Consider the energy functional of the Randers metric R

E(γ) = 1
2

∫ 1

0

R2(γ, γ̇)ds.

Since the Morse index of E at the geodesic x is equal to µ(x) (see [6]) and the
Morse index of J at z is equal to µ(z), it is enough to prove the equality for the
Morse indexes. To this end, we will show that the set Wx of continuous piecewise
smooth vector field along x vanishing at x(0) and x(1) is isomorphic to the set of
admissible variations Uz for J which is given by the continuous piecewise smooth
vector fields U along z, vanishing at z(0) and z(1) and such that g(ż, U) = 0 (see
[11]). Let us denote by Px(0),x(1)(S) and Lz(0),l(S × R) respectively the set of
the continuous, piecewise smooth curves on S, parametrized on the interval [0, 1]
and connecting x(0) to x(1) and the set of the continuous, piecewise smooth,
future pointing, lightlike curves on S ×R, parametrized on [0, 1] and connecting
z(0) to l(R). Consider the map

Ψ(γ)(s) =

(

γ(s), t0 +

∫ s

0

R(γ, γ̇)dν

)

.

Recalling that the future pointing lightlike lift of a curve γ in S has t component
in S×R given by (3), we immediately see that Ψ maps Px(0),x(1)(S) to Lz(0),l(S×
R).

We are going to show that the isomorphism between Wx and Uz is given by
Ψ′(x) where, for each W ∈ Wx, Ψ′(x)[W ] is the vector field along z belonging
to Uz defined as ∂

∂r (Ψ ◦ ϕ0)(r, s)|r=0 where ϕ0 = ϕ0(r, s) : (−ε, ε)× [0, 1] → S is
the variation of the geodesic x defined by W . Observe that, since x is a critical

point of the length functional x 7→
∫ 1

0 R(x, ẋ)ds, for any W ∈ Wx there holds

(Ψ′(x)[W ]) (0) = (Ψ′(x)[W ]) (1) = 0.

Let I be the functional defined in the same way as J

I(σ) =

∫ 1

0

(

g(σ̇, σ̇) +
(dP (σ)

ds

)2)
ds

but now σ varies on the set of the continuous, piecewise smooth, future pointing
curves, non necessarily lightlike, connecting z(0) to l(R). For any future pointing
lightlike curve σ(s) = (γ(s), τ(s)) we have

J(σ) = I(Ψ(γ)) = 2E(γ).

Moreover, for any geodesic x of (S, R) and for any W ∈ Wx, we have

(4) (Ψ′(x)[W ]) (s) =

(

W (s),

∫ s

0

(Rx(x, ẋ)[W ] + Rv(x, ẋ)[Ẇ ])ds

)

;
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hence Ψ′(x) is an injective map (in the right-hand side of (4), we have used the

expression Rx(x, ẋ)[W ] + Rv(x, ẋ)[Ẇ ] which is meaningful only in local coordi-
nates).

Let U(s) = (W (s), u(s)) ∈ Uz. We are going to show that Ψ′(x)[W ] = U and
hence Ψ′(x) is also surjective.

As U ∈ Uz , we have

g(U, ż) = 0 ⇔ h(W, ẋ) − (ω(W ) − u)(ω(ẋ) − ṫ) = 0.

Since z is lightlike and future pointing ω(ẋ) − ṫ = −
√

h(ẋ, ẋ) and thus

u =
h(W, ẋ)
√

h(ẋ, ẋ)
+ ω(W )

Since x is a critical point of E and W (0) = 0, integrating by part the t compo-
nent of the vector field Ψ′(x)[W ] in (4) and using the Euler-Lagrange equation
satisfied by x, we deduce that such a component is equal to

Rv(x, ẋ)[W ] =
h(W, ẋ)
√

h(ẋ, ẋ)
+ ω(W ) = u.

Now let ϕ = ϕ(r, s) : (−ε, ε) × [0, 1] → S × R be a variation defined by the
admissible variational vector field U = (W, u), and

ϕ0 = ϕ0(r, s) : (−ε, ε) × [0, 1] → S

be the one defined by W , we have that

J ′′(z)(U, U) =
d2

dr2
J(ϕ(r, ·))∣

∣r=0

=
d2

dr2
I(Ψ(ϕ0(r, ·)))∣

∣r=0
= 2

d2

dr2
E(ϕ0(r, ·))∣

∣r=0
= 2E′′(x)(W, W ).

By polarization, the above equality gives the thesis. �

3. The lack of twice differentiability of the energy functional

with respect to the H1–topology

Let (M, F ) be a Finsler manifold and p, q ∈ M . Let Ω(M) be the Sobolev
manifold of the absolutely continuous curves γ : [0, 1] → M , whose square of the
norm of the velocity vector field is integrable with respect to a fixed (and then
to any) auxiliary Riemannian metric α on M . Let us denote by Ωp,q(M) the
submanifold of the curves in Ω(M), such that γ(0) = p, γ(1) = q (see [5]). Let
us consider the energy functional of F on Ωp,q(M):

E : Ωp,q(M) → R, E(γ) = 1
2

∫ 1

0

F 2(γ, γ̇)ds

It is well known that E is C1,1 on Ωp,q(M), [7].
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We are going to show that if E is twice differentiable on Ωp,q(M) at a regular
curve γ then F 2 is the square of the norm of a Riemannian metric along the
curve.

By regular curve we mean a curve γ ∈ Ωp,q(M) such that γ̇ 6= 0 a. e. in [0, 1].

Remark 3.1. We point out that in [1] the authors consider a time-dependent
Lagrangian L : [0, 1] × TM → R, L = L(t, q, v), which is C2 on TM and which
satisfies the following conditions: there exists a continuous positive function
C = C(q) such that for any (t, q, v) ∈ [0, 1] × TM :

‖∂vvL(t, q, v)‖ ≤ C(q),

‖∂vqL(t, q, v)‖ ≤ C(q)(1 +
√

α(v, v)),

‖∂qqL(t, q, v)‖ ≤ C(q)(1 + α(v, v)).

They prove that if the action functional of L

γ : Ω(M) →
∫ 1

0

L(t, γ(t), γ̇(t))dt,

is twice differentiable in Ω(M) at a curve γ, then the map

v ∈ Tγ(t)M 7→ L(t, γ(t), v)

is a polynomial of degree at most two. Thus, in particular, the subquadratic
and strongly convex in the velocities, time-independent, C2 Lagrangians whose
action functional is twice differentiable at any curve in Ω(M) are all and only of
the type

L(q, v) = hq(v, v) + ωq(v) + V (q),

where h, ω and V are respectively a Riemannian metric, a one-form and a
function on M . Clearly, the square of a Finsler metric satisfies the growth
conditions above but it is only a C1,1 function on TM (it is C2 on TM \ 0).
Anyway, as we show below, the proof in [1] does not involve existence and
continuity of the derivatives ∂vvL(t, q, v) for v = 0 and then it extends also to
the Finsler case. Another difference from [1] is that we consider the manifold
Ωp,q(M) and not Ω(M).

Before going into the details of the proof, we would like to point out what
is the problem in trying to prove that E is twice differentiable in Ωp,q(M) at a
regular curve. To fix ideas, we assume that F is defined on an open subset U
of R

n, F : TU → R, U ⊂ R
n. Arguing as in [1, Proposition 3.1] gives that E

is twice Gateaux differentiable in Ωp,q(U) at any regular curve x and its second
Gateaux differential is equal to

D2Ẽ(x)[ξ, η] =
1

2

∫ 1

0

(

∂qqF
2(x, ẋ)[ξ, η] + ∂vqF

2(x, ẋ)[ξ̇, η]
)

ds

+
1

2

∫ 1

0

(

∂qvF 2(x, ẋ)[ξ, η̇]
)

ds + ∂vvF 2(x, ẋ)[ξ̇, η̇]
)

ds.
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The problem is the continuity of the map

x ∈ Ωp,q(U) 7→
∫ 1

0

∂vvF 2(x, ẋ)[·, ·]ds,

where the target space is the space of bounded bilinear operators on H1
0 ([0, 1], U).

Namely, we can prove that if xn → x in Ωp,q(U) then
∫ 1

0

∂vvF 2(xn, ẋn)[ξ̇, η̇]ds →
∫ 1

0

∂vvF 2(x, ẋ)[ξ̇, η̇]ds,

as n → +∞, but we cannot prove that the convergence is uniform with respect
to ξ and η in the unit ball of H1

0 ([0, 1], U), unless ∂vvF 2 is independent from v
(and then F 2 is the square of the norm of a Riemannian metric). In fact, we
have the following

Proposition 3.2. If the energy functional of a Finsler metric F is twice differ-
entiable at a regular curve γ ∈ Ωp,q(M) then for a. e. s ∈ [0, 1] the function

v ∈ Tγ(s)M 7→ F 2(γ(s), v)

is a quadratic positive definite form.

Proof. For simplicity and without loss of generality, we prove the statement in
the case where M is an open subset of R

n. Since γ̇ 6= 0 a. e. on [0, 1], the thesis
is equivalent to the fact that for almost every s ∈ [0, 1], there holds

∂vF 2(γ(s), γ̇(s) + v) − ∂vF
2(γ(s), γ̇(s)) − ∂vvF 2(γ(s), γ̇(s))[v] = 0,

for all v ∈ R
n. By contradiction, we assume that there is a set of positive

measure J ⊂ [0, 1] and two non-zero vectors v, w ∈ R
n, and a positive number c

such that

(5)
(

∂vF 2(γ(s), γ̇(s) + v) − ∂vF
2(γ(s), γ̇(s)) − ∂vvF 2(γ(s), γ̇(s))[v]

)

· w > c,

For every ǫ > 0 smaller than the measure of J , choose a subset Jǫ ⊂ J of measure
ǫ, in such a way that Jǫ ⊂ Jǫ′ if ǫ < ǫ′. Define the following functions

ηǫ(s) = v

∫ s

0

(χǫ(t) − ǫ) dt, ξǫ(s) = w

∫ s

0

(χǫ(t) − ǫ) dt,

where χǫ is the characteristic function of Jǫ. Observe that, for any ε, the func-
tions ηǫ, ξǫ belong to TγΩp,q(M) = H1

0 ([0, 1], Rn) and

‖ηǫ‖H1

0

= |v|(ǫ − ǫ2)1/2 ‖ξǫ‖H1

0

= |w|(ǫ − ǫ2)1/2.

We can repeat the proof of Proposition 3.2 in [1] taking care only that the
derivatives of η and ξ here are given by v(χǫ − ǫ) and w(χǫ − ǫ) and the terms
involving integrals of the type

∫ 1

0

(

∂vF
2(γ + ηǫ, γ̇ + η̇ǫ) − ∂vF

2(γ, γ̇ + η̇ǫ) − ∂qvF 2(γ, γ̇ + η̇ǫ)[ηǫ]
)

· (ǫ w) ds
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belong to o(ǫ), as ǫ → 0 (such terms do not appear in [1] because the functions
playing the role of η and ξ, not having to belong to H1

0 ([0, 1], Rn), are defined
as η(s) = v

∫ s

0
χǫ(t)dt and ξ(s) = w

∫ s

0
χǫ(t)dt).

We point out that the non existence of the derivatives ∂vvF 2(q, v) for v = 0
does not affect that part of the proof since only the smoothness of ∂vF

2(q, v)
with respect to q is used.

Thus, as in [1], we can deduce

(6)

∫ 1

0

(

∂vF
2(γ, γ̇ + η̇ǫ) − ∂vF 2(γ, γ̇) − ∂vvF 2(γ, γ̇)[η̇ǫ]

)

· ξ̇ǫds = o(ǫ),

as ǫ → 0. The left-hand side of (6) is equal to
∫ 1

0

(

∂vF 2(γ, γ̇ + η̇ǫ) − ∂vF
2(γ, γ̇) − ∂vvF

2(γ, γ̇)[η̇ǫ]
)

· (χǫw − ǫw)ds

=

∫

Jǫ

(

∂vF 2(γ, γ̇ + (1 − ǫ)v) − ∂vF
2(γ, γ̇) − ∂vvF 2(γ, γ̇)[(1 − ǫ)v]

)

· wds

+

∫ 1

0

(

∂vF 2(γ, γ̇ + η̇ǫ) − ∂vF
2(γ, γ̇) − ∂vvF 2(γ, γ̇)[η̇ǫ]

)

· (ǫw)ds

(7)

Since η̇ǫ → 0 a. e. as ǫ → 0, by the Lebesgue’s dominated convergence theorem,
the absolute value of the second integral in the right-hand side of (7) is less than
ǫ|w|o(1).

Therefore, putting together (6) and (7), we have

(8)

∫

Jǫ

(

∂vF 2(γ, γ̇ +(1− ǫ)v)− ∂vF
2(γ, γ̇)− ∂vvF

2(γ, γ̇)[(1− ǫ)v]
)

·wds = o(ǫ),

as ǫ → 0. By (5) and the continuity of the map

v ∈ R
n 7→

(

∂vF 2(γ(s), γ̇(s) + v) − ∂vF
2(γ(s), γ̇(s)) − ∂vvF 2(γ(s), γ̇(s))[v]

)

· w

the integral in (8) is larger than cǫ, for ǫ small enough, giving a contradiction. �
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