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SOME APPLICATIONS OF DIFFERENTIAL
SUBORDINATION OF MULTIVALENT FUNCTIONS
ASSOCIATED WITH THE WRIGHT GENERALIZED

HYPERGEOMETRIC FUNCTION

M. K. AOUF, A. SHAMANDY, R. M. EL-ASHWAH, AND E. E. ALI

ABSTRACT. Making use of the principle of differential subordination, we
investigate some inclusion relationships of certain subclasses of multivalent
analytic functions associated with the Wright generalized hypergeometric
function.

1. INTRODUCTION

Let A, (p) denote the class of functions of the form:
(11) F) =7+ ™ (pneN={1,2,...))
k=n

which are analytic and p-valent in the open unit disc
U={z:2€Cand |2| < 1}.

For convenience, we write A;(p) = A(p). If f and g are analytic in U,
we say that f is subordinate to g, written symbolically as follows: f < g, if
there exists a Schwarz function w(z), which (by definition) is analytic in U
with w(0) = 0 and |w(z)| < 1 (2 € U) such that f(z) = g(w(2)) (2 € U).
In particular, if the function ¢ is univalent in U, then we have the following
equivalence (cf. [2, 14], see also [15, p. 4]):

f(z) < 9(2) & f(0) = g(0) and f(U) C g(U).
For functions f € A,(p), given by (1.1), and g € A,(p) given by

(1.2) g(z) =2 + Zbkﬂozk“’ (p,n € N),
k=n
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then the Hadamard product (or convolution) of f and g is defined by

(L3)  (f*9)(2) =2+ ) arpbrrp?™ = (9% [)(z) (pneN; 2€U).

Let ay, Ay, ... a4, Ay and By, By,...,Bs, Bs  (¢,s € N) be positive real pa-

rameters such that
S q
1+Y Bi—) A >0
i=1 i=1

The Wright generalized hypergeometric function [31] (see also [28])

q\IjS [(a17A1)7 R (aq7 Aq); (/61, Bl): ) (687 Bs); Z]
—q \I/S [(a“ )1 q (ﬁz; )1 sy R ]
is defined by

q
o [[T'(i+n4;)
i= z
qus [(aza )1 q (Bza )1 s ] = Z 31 . F (Z - U)
n=0 [TT(Bi +nB;)
i=1
IfA,=1(i=1,...,q) and B; =1(i = 1,...,s), we have the relationship:
Qqus [( )1 qa (617 )1 s ] —q Fs(ala s 7aq; 617 s 7/88; Z) )
where (Fi(aq, ..., a4 01, .., Bs; 2) is the generalized hypergeometric function

(see [28]) and

2
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(1.4)

—a
]
2

.
Il
—_

The Wright generalized hypergeometric functions were invoked in the geo-
metric function theory (see [23, 24]).

By using the generalized hypergeometric function Dziok and Srivastava [7]
introduced a linear operator. In [8] Dziok and Raina and in [1] Aouf and Dziok
extended the linear operator by using the Wright generalized hypergeometric
function.

First we define a function @ (o, Ai)1,4; (Bi, Bi)1s: 2] by

qqﬂs7 [(ai7 Ai)lvq; (/817 Bi)l,s; Z} = ng\ljs [(an )1 a0 (ﬁz; )1 s3 ]

and consider the following linear operator

Op [(cs, Ai)1,q; (Bis Bi)is] - An(p) = An(p),
defined by the convolution

Op [, Ai)rgs (Bis Bi)us] (2) =g ¢ [(i, Ai)rg; (B3, Bi)s 2] % f(2) -
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We observe that, for a function f of the form (1.1), we have

(1.5) Op [(ci, Ai)1,q; (Biy Bi)1s) f(z) = 2P + Z Qan(al)ak+pzk+pv

k=n
where 2 is given by (1.4) and 0,,(ay) is defined by

_ [P(ar + Ain) ... D(ag + Agn))]
(1.6) %wﬁ_mﬁ+&mmmﬂ+&mm

If, for convenience, we write

ep,q,s [ala Ala Bl] = ep [(ala A1)7 R (aq7 Aq)7 (617 Bl): LRI (587 Bs)] f(Z)a
then one can easily verify from the definition (1.5) that

ZA1(0p7q75 [041, Al, Bl] f(Z))I = alep,q,s [Ozl + ]_, Al, Bl] f(Z)
(17) —(O[l — pAl)Hp,q,s [Ozl, Al, Bl] f(Z) (Al > 0)

The linear operator 6, 45 [a1, A1, Bi] = 0 [o] was introduced by Dziok and
Raina [8] and studied by Aouf and Dziok [1].

We note that, for f € A,(p), A, =1(i=1,...,¢9),B;=1(i=1,...,s) and
by specializing the parameters «; (1 =1,...,q), B; (i =1,...,s), ¢ and s we
obtain the following operators studied by various authors:

(1) Opqs[a1] f(2) = Hpqs(ar) f(2) (see Patel et al.[22]);

(ii) Op21a,1;¢] f(2) = Ly(a,c)f(z)(a > 0,¢ > 0) (see Carlson and Shaffer
[3] and Saitoh [25]);

(iii) Opo1 [+ p, 151 f(2) = D*P7Lf(2)(n > —p), where D*FP~1f(2) is the
(u+p—1) —th order Ruscheweyh derivative of a function f € A, (p) (see
Kumar and Shukla [10]);

(iv) Opon [L+p, L1 +p—p] f(2) = QU f(z), where the operator Q%" f(2)
is defined by (see Srivastava and Aouf [27])

F(1+p—p)

O wp) — 1Dk < 1:

09 1(2) = St D0 < < Lp e,

where Q¥ f(z) is the fractional derivative operator (see, for details, [6] and
[18] and [19]);

(V) Op21[0+p,1;0 +p+1] f(2) = F5,(f)(2), where Fs,(f) is the general-
ized Bernardi-Libera-Livingston operator (see [5]), defined by

Fiyl 1)) = 52 [ 67 0o > —pp € N

0
(vi) Opo1[p+ 1, L;m+p| f(2) = Lnpf(2)(m € Z;m > —p), where the oper-
ator I,,, is the (m + p — 1) — th Noor operator, considered by Liu and
Noor [12];
(vii) Opo1 [A+p,c;a] f(2) = La,¢)f(2)(a,c € R\Ng;A > —p), where
I)(a,c) f(z) is the Cho-Kwon-Srivastava operator (see [4]).
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For fixed parameters A and B(—1 < B < A < 1), we say that a function
f € A,(p) is in the class @ ag, Ay, By A, B), if it satisfies the following
subordination condition:
(0p.g,s [a1, Av, Bi] f(Z>>/ 1+ Az
=
pzp~l 1+ Bz

Z,q,s(

(1.8) (p e N).

In view of the definition of subordination, (1.8) is equivalent to the following
condition:
(0p,q,s[a1z,f_1,1311f<z>>’ .

- <1 (zeU).
B(GP’Q’S[aléfiiBl]f(z)) _ pA ( )

(1.9)

For convenience, we write Q0 , (a1, Ay, B;1— 2?9, —1) = Q} (a1, Ay, By 0),
where Q) (a1, A1, By;0) denote the class of functions in A, (p) satisfying the
following inequality:

(0.0 [01, A1, By f(2))

zp—1

(1.10) Re

>0 (0<O<ppeN; ze€U).

2. PRELIMINARIES

To establish our main results, we shall need the following lemmas.

Lemma 1 ([9]). Let the function h be analytic and conver (univalent) in U
with h(0) = 1 Suppose also the function ¢ given by

(2.1) 0(2) =14 ap2" + apy 2"+
is analytic in U. If

!

(2.2) o(2) + %w (2) < h(2),

where v # 0 and Rey > 0. Then

z

(2.3) plz) < U(z) = 173 /tllh(t)dt < (=),

and U is the best dominant of (2.2).

With a view to stating a well-known result (Lemma 2 below ), we denote
by P(9) the class of functions ¢ given by

(2.4) P(z)=1+ciz+c®+...,
which are analytic in U and satisfy the following inequality:

Re®(z) >0(0<0 < 1;2€U).
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Lemma 2 ([20]). Let the function ®, given by (2.4), be in the class P(6).
Then

2(1 —
Re®(z) >26 — 1+ (1-9) (0<0<1;2z€U).
1+ |2

Lemma 3 ([29]). For 0 < vy,v, <1,

P(n) * P(72) C P(ys) (13 =1—=2(1 = m)(1 = 72)).
The result is the best possible.

Lemma 4 ([26]). Let ® be analytic in U with

®(0) =1 and Re®(z) > % (z € U).

Then, for any function F' analytic in U, (®x F)(U) is contained in the convex
hull of F(U).

Lemma 5 ([17]). Let ¢ be analytic in U with ¢(0) = 1 and ¢(z) # 0 for
0<|z] <1, andlet A,B € C with A# B and |B| < 1.
(i) Let B # 0 and v € C* = C\{0} satisfy either

V(A= B) (A= B)
B B

—1‘ <lor

+1‘§1.

If ¢ satisfies
20 (2) 1+ Az

1+ < :
yo(2) 1+ Bz

then
A—-B

o(z) < (1+ Bz)v( B

and this is the best dominant.
(i1) Let B =0 and v € C* be such that |yA| < . If ¢ satisfies
2¢ (2)
vo(2)

)

1+

<1+ Az |,

then
o(z) <
and this 1s the best dominant.

For real or complex numbers a, b and ¢(c ¢ Z; ), the Gaussian hypergeomet-
ric function is defined by
ab z ala+1)b(b+1) 2?
r bic:z)=14+ — .= R
2Fifa,biei2) * c 1 * c(e+1) 2! *
We note that the above series converges absolutely for z € U and hence rep-
resents an analytic function in U (see, for details, [30, Chapter 14]).
Each of the identities (asserted by Lemma 6 below) is well-known (cf., e.g.,
[30, Chapter 14].
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Lemma 6 ([30]). For real or complex parameters a,b and c(c ¢ Zy ),

(2.5) / P11 — L1 — 2)odt

= Wzﬂ(a,b; c;z) (Re(c) > Re(b) > 0);
(2.6) oF(a,b;¢; 2) =9 Fi(b,a;c; 2);
and
(2.7) oFi(a,b;c;2) = (1 — 2)5%Fi(a,c — b; c;ﬁ).

3. MAIN RESULTS

Unless otherwise mentioned we shall assume through this paper that —1 <
B<A<I1, A\, A; >0and p,neN.

Theorem 1. Let the function f defined by (1.1) satisfy the following subordi-
nation condition

(Opgs [01, A1, B1] f(2)) | | (Bpgs [on + 1, Ay, By f(2))

(3.1) (1- ) + A

pzP1 pzP1
- 1+ Az
1+ Bz’
Then
(Qp,q7s [ah A17 Bl] f(z))l 1+ Az
(3.2) o < Q(z) < T B
where the function Q) given by
(3.3)
A A _ o Bz
S - DB R0 P o),
Q(z) = X Aoy ! P
* A n + oy (B =0),
is the best dominant of (3.2). Furthermore
(Op,q,s [, A1, By f(z>>/
(3.4) Re p >p (z€U),
where
A A -~ o B
1= Z)A =B AL =+ L) (B£0),
35) A =17 A o
A+ ay (B =0).

the estimate in (3.4) is the best possible.
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Proof. Consider the function ¢ defined by
(Op,g,s a1, A1, B f(z))l

paP~1

(3.6) o(z) = (z€U).

Then ¢ is of the form (2.1) and is analytic in U. Applying the identity (1.7)

in (3.6) and differentiating the resulting equation with respect to z, we get

/

(Opg.s lon, A1, B1] £(2)) | (Bpgslon + 1, A1, By] f(2))

(1—=X) P +A P
Al)\ / 1+ Az
= (2 )+—1w(2)< T 5.
Now, by using Lemma 1 for v = /\ we obtain
(Op.g.s [01, A1, B] f(2))' s
= 1An dt
pzp~1 < Q) < Al)\nz t)
0
A A (051 Bz
4+ (1-2)1 - B2, A1 1; B
_[Bro-poomaes g T 340
aq
14— B—
+ Al)\n + oy i ( 0)7

by change of variables followed by use of the identities (2.5), (2.6) and (2.7)
(witha=1,c=b+1,b=
1.

" )1\ ). This proves the assertion (3.2) of Theorem
1AT

Next, in order to prove the assertion (3.4) of Theorem 1, it suffices to show
that

(3.7) inf {ReQ(2)} = Q(-1).

|2|<1

Indeed we have, for |z| <r <1,

1+Az> 1— Ar

R )
el—i—Bz_l—Br

Upon setting

1+ A
g(g,z)zliBZ

T (0 < <),

which is a positive measure on the closed interval [0, 1], we get

and dv(() =

1

@@w:/gwwmwo,

0
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so that

ReQ(2) > / (150 ) @ =Q(-n) (el <7 <),

Letting 7 — 1~ in the above inequalities, we obtain the assertion (3.4) of
Theorem 1. Finally, the estimate in (3.4) is the best possible as the function
() is the best dominant of (3.2). O

Taking A\ =1,A=1— 2?"(0 <o < p)and B = —1 in Theorem 1, we obtain
the following corollary.
Corollary 1. The following inclusion property holds true for the class
" (Oél,Al,Bl;e) :

p7q75
Z,q,s(al + 17A17 Blve) - Q;L,q,s(alaAla Bl;ﬁ(pﬂ% alaAlae))
C Qz7q7s(al7Al7Bl;9)7

where

1
Bp;n, o, Ay, 0) = 0+ (p = 6) {zFl(l, L % +h3) - 1} '

The result is the best possible.
Taking A = 1 in Theorem 1, we obtain the following corollary.

Corollary 2. The following inclusion property holds true for the function class
" (alaAlaBl;AaB) 3

D.a,s
p n 20
vaslan + 1,41, B A, B) CQp, (a1, Ay, By 1 — ?, —1)
C Qg,q,s(@1,A1,31;A, 3)70 < 0 < P,
where
A A o1 B
n — )1 - B);'F (1, 1; 1: B+£0
0 — B+( AB)( )2 1(’7A1n+’3_1)( £0),
aq
1 — B0
Ain+aq ( )

The result is the best possible.
Theorem 2. If f € Q ay, Ay, B1;0)(0 < 0 < 1), then

Z,q,s(

’

— )\)(QP#LS [Oél, A17 Bﬂ f(Z))l + /\(‘gp,q,s [041 + 1, A17 Bﬂ f(Z)) >

pzP~l

(3.8) Re C

0(|z] < R),

where

[

R Va2 £ NATRZ — AAm | "
aq '
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The result is the best possible.
Proof. Since f € Q}, (

(Qp,q,s la1, Aq, By 6 f(z))/
pzr~!

aq, Ay, By; 0), we write

(3.9) =0+ (1—-0)u(z) (z €U,).

Then, clearly, u is of the form (2.1), is analytic in U, and has a positive
real part in U. Making use of the identity (1.7) in (3.9) and differentiating the
resulting equation with respect to z, we obtain

(3.10)
1 (1 — A)(ep,q,s [Oél, Al, Bl] f(Z))/ + )\(Qp,q,s [Oél + 1, Al, Bl] f(Z))/ _ 9
(1-9) pzpL
AN
=u(z) + . (2).
Now, by applying the well-known estimate [13]
|20 (2)] 2nr™ B
Reu(z) = 1—r?n (e =r <1)
in (3.10), we get
(3.11)
1 Re (1= N (Opg,s [1, Ar, Bi] f(2)) + Mpg,s [ar + 1, Ay, Bi] f(2)) _ 9
(1—6) pzrt
24, nr™
> e L
> Reu(z) < (1= r2”)>

It is easily seen that the right-hand side of (3.11) is positive provided that
r < R, where R is given as in Theorem 2. This proves the assertion (3.8) of
Theorem 2.

In order to show that the bound R is the best possible, we consider the
function f € A,(p) defined by

(p.g,s [a1, Ar, Bi] f(2))
pzr~!

14+ 2"

=6+ (1-0)——

(0<0<1;z€U).

Noting that
1 { (L= N (Opg,s [o1, A1, By f(z))/ + ABpg,s [1 +1, Ay, By f(z))/ _ 9}

(1-0) pzr~!
oy — 122 — 24 nz"
ap(l —zn)?
for z = Rexp(*F). This completes the proof of Theorem 2. O

Putting A = 1 in Theorem 2 | we obtain the following result.
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Corollary 3. If f € Qp, (a1, A1, B1;0)(0 < 0 < 1), then f € Q, (a1 +
1, Ay, By;0) for |z| < R, where

ﬁ: a%—i—A%n?—Aln "
(05} .

The result is the best possible.
For a function f € A,(p), the generalized Bernardi-Libera-Livingston inte-
gral operator Fy, is defined by

By = 22 [ ar

(3.12) = 4
z +;mz * f(2) (0 > —p)
=2 (1,0 +p, 0 +p+1;2) * f(2).

Theorem 3. Let f € Q a1, A1, Bi; A, B) and let the operator Fs,(f) de-
fined by (3.12). Then

Z,q,s(

’

(Op.g,s [, Ar, Bi] Fsp(f)(2)) 14 Az
(3.13) ] < 0(z) < 5B
where the function 6 given by
(3.14)
A A 1 p+o - Bz
(p+0)A _
14— 2= (B =0)
p+o+n
is the best dominant of (3.13). Furthermore,
(315) Re{(ep,q,s [O{l)AhB_l} F(S,p(f)(z)) } > 5* (Z c U),
pzP
where
A A 4] B
S =)= B RO ) (B£0)
' (p+9) _
l— — (B=0)
p+o+n

The result is the best possible.
Proof. From (1.7) and (3.12) it follows that
2(Opgs [1, Ar, Bl Fsp(£)(2) = (0 + 0) (B [on, Av, Bi] f(2))—

!

(3.17) 0(p.q.s (1, Av, Ba] Fsp(f)(2)) -
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By setting

(ep,q,s [ala A17 Bl] F(S,p(f) (Z))/
p2P

(3.18) o) =

we note that ¢(z) is of the form (2.1) and is analytic in U. Using the identity
(3.17) in (3.18), and then differentiating the resulting equation with respect
to z, we obtain

(ep,q,s [ala Ala Bl] f(Z))

pzP~1

(z€U),

’

2 (2) - 1+ Az
p+d 1+ Bz

Now the remaining part of Theorem 3 follows by employing the techniques
that we used in proving Theorem 1 above. 0

= o(2) +

Remark 1. We observe that.

(Opgs [on, Ar, Bi] Fs,(f)(2))  d+p
pzP1 o paSte

z

/ (6, [ar, Ay, By f(2)) dt

(3.19)

(f € An(p);z € U).

In view of (3.19), Theorem 3 for A=1—-2u(0 < p < 1) and B = —1 yields
the following corollary.

Corollary 4. If 6 > 0 and if f € A,(p)satisfies the following inequality
(Op,q.s a1, A1, B f(Z))l

pzP~1

Re

>p(0<pu<l;zel),

then

/ Op.as | alaAlaBl]f(t)),dt>

0

pzp+5

o 1
A+ (1 —p) [QFI <1,1;]%+1;§) —1] (z€U).
The result is the best possible.

Theorem 4. Let f € A,(p). Suppose also that g € A, (p) satisfies the following
mequality:
Opq.s (o1, A1, Bi] g(2)

Re >0 (z e U).
zP
If
Op.q.s [, A1, Bi] f(2)
Op.q.s [, A1, Bi] g(2) ( )
then

Z(ep,q,s [@1, Ala Bl] f(Z))/

Re
ep,q7s [alv A17 Bl] g(Z)

0 (lz] < Ro),
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where

/92 +4p(p+n) —3n

R
0 2(p+n)

Proof. Letting

Op.q.s [0417 Ay, Bl] f(z)
Op.q.s [ah Ay, Bl] 9(Z>

we note that w is analytic in U, with
w(0) = 0and |w(2)] < |2|" (2 € U).
Then, by applying the familiar Schwarz lemma [16], we obtain
w(z) = 2"¥(2),

where the function VU is analytic in U and |¥(z)| < 1(z € U). Therefore, (3.20)
leads us to

(3.21) 0,451, A1, B1] f(2) = Opqs (o1, A1, B1] g(2)(1 + 2"V (2)) (2 € U).
Differentiating (3.21) logarithmically with respect to z, we obtain

Z(ep,q,s [ala Ala Bl] f(Z))/ _ Z(QP»%S [ab A1> Bl] g(ZD/

(3.20) w(z) = — 1 =kp2" + k2"

3.22 =
( ) Opq.s [o1, Ar, B f(2) Op,q.s [a1, A1, Bl g(2)
2V (2) + 20 (2)}
1+ 2n0(2) '
0 AL, B
Putting o(z) = 222 o1, A1, B 9(2) ,we see that the function ¢(z) is of the

zp
form (2.1), is analytic in U, Re¢(z) > 0(z € U) and

2(0p.qs [a1, A1, Bi] g(2)) _ 29 (2)
91071175 [ala Ay, Bl] g(Z) 90(2)
so that we find from (3.22) that

(Opg.s 1, Ar, B f(2))

+p

3.23) Re
( ) ep,q,s [ala Ala Bl] f(Z)
> o 2 (2) R {nV(2) +20'(z)} (el
©(2) 1+ 2nU(2)
Now, by using the following known estimates [13] (see also [21]) :
¢ (2) < 2nrnl nW(z2) + 20 (2) <" (el =r<1),
() 1—r2n 1+ 2"0(2) 1—rm
in (3.21), we obtain
Re Z(epﬂ,s [Oél, A17 Bl] f(Z))/ > p—= 3nr" — (p + n)TQTL (|Z| —r < 1)7

Opaqs o, A1, Bi] f(z) 1_ 20
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which is certainly positive, provided that r < Ry, Ry being given as in Theorem
4. O

Theorem 5. Let —1 < D; < C; < 1(j = 1,2). If each of the functions
fj € A,(p) satisfies the following subordination condition:

91’»‘175 [041 + 17A1a Bl] f](z) < 1+ C'jz

ep,q,s [ala A17 Bl] f](Z)
(3.24) (1-)) - A - D
then
(3 25) (1 _ )\) ep,q,s [0517 Ay, Bl] G('Z) + )\GIMI,S [al + 1, Ay, Bl] G(’Z)
‘ 2P V74
1 1—-2

= - <1 —z e ’

where
G(z) = Op.q.s [, Av, By (f1* f2)(2)

and

4(01 — D1)<OQ - Dg) 1 (03] 1
=1- 1—= B(L,1,—L +1;=
’7 (1= Dy)(1—Dy) 3, b LR+ 1)

The result is the best possible when Dy = Dy = —1.

Proof. Suppose that each of the functions f; € A,(p)(j = 1,2) satisfies the
condition (3.24). Then, by letting

(3.26)

B Op.q.s [01, A1, Bi] fi(2) Opgslar +1, A1, Bi] fi(2) .
£i(2) = (1)) e i = (i=12),
we have

1-C; .
pi(z) € P(v;) (%‘ =1 pii= 1,2)~
J

By making use of identity (1.7) in (3.26), we observe that
o _ o oy )
ep,q,s [061,141, Bl] fj(z) = A_l/\zp A1 /tAl/\ 1903<t)dt (] = 17 2)7
1
0
which in view of the definition of G given already with (3.25) yields

z
@

(3.27) O 0s [ar, Ay, By G(2) = %zp—% / A L (t)dt,
1
0

where, for convenience,

o(2) = (1= N)
(3.28) ap e z -
A / EA ! (o1 0) () .

Op,q.s lag, Ay, By G(2) i Op.q.s o + 1, Ay, B1) G(2)

2P 2P
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Since @1 € P(v1) and ¢y € P(7,), it follows from Lemma 3 that

(3.29) (1 *p2)(2) € P(y3) (13 =1 —2(1 —7)((1 —2)).

Now, by using (3.29) in (3.28) and then appealing to Lemma 2 and Lemma 4,
we get

1

Re {go(2)} = -2 / W5 Re {(i1 % 2)} (uz)du

A
0
/ 2(1 = %)
aq 2 — 73
> A 2 —1 L S A
_Al/\/u (2 =14+ Tt
1 2(1 —’73)
Bt 3 2 B [T Sl 1574
mA/ (2ys =1+ =37 7 )du
0
1
4(01 — Dl)(CQ — DQ) a1 1 q _1
=1- 1——— [ ud> (1+u) du
(1 —D1)(1 = Dy) A J ( )
4(01 - Dl)(CQ - ) 1 (03] 1
=1- 1—=- (1,1, — +1;=
(1= Dy)(1—Dy) 3, L LR+ 1)
=n(zeU).

When Dy = Dy = —1, we consider the functions f;(z) € A,(p)(j = 1,2),
which satisfy the hypothesis (3.24) of Theorem 5 and are defined by

z

Opgs [0, A1, By f(2) = —Lz70% / P (G

b IVt (5= 1,2).

0

Thus it follows from (3.28) and Lemma 2 that

1
a5 14+C)(1+C
w) = o5 [ fi-arena oy + RIS g,
1 _
0
=1-(1+C)1+Co)+ 1+ C)(1+Co)(1—2);'F (1’1’A)\+1 zil

1 1
= 1—=1+C)1+Cy)+ (1 +Cr)(1 4 Co)Fy 11— 1=
2 Al 2
as z — 17, which completes the proof of Theorem 5. 0

Remark 2. Taking A; = 1(i = 1,...,¢9),B; = 1(: = 1,...,s) and j = 1 in
Theorem 5, we obtain the result obtained by Liu [11, Theorem 2.4].

)
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Puttlng Al = 1(Z = 1,...,q>,Bi = 1(2 = 1,...,S>,Cj = 1—293«) < 8]' <
1),D;=131=12),¢g=s+1,0q =1 =p,a; =1(j =2,3,...,5s+1) and
B =1(j =2,3,...,s) in Theorem 5, we obtain the following result.

Corollary 5. If the functions f; € A,(p)(j = 1,2) satisfy the following in-
equality:

(3.30)  Re {(1 —A) f]:Z(pZ) + A;Zz(;Z)l} >0; (0<0;<1;j=1,2,2€U),
then /
Re{(l _)\)(fl *f?)(z) +)\Z(f1 *f;Zl) (Z)} > 1y (Z c U),
P pr
where .
1
mo=1—4(1—0,)(1— 6s) [1 -5, AL § +1; 5)} .

The result is the best possible.

Theorem 6. Let the function f be defined by (1.1) be in the class
noar, Ay, By A, Bl and let g € A, (p) satisfy the following inequality:

p7q7s

g(z) _ 1
R67 > 5 (Z € U)
Then
(f *g)(Z) € Qz,q,s [aluAbBl;A? B] :

Proof. We have
(Opgs [0, A1 B (f ¥ 9)(2))_ (B[00, A, B f(2)) 9(2)

pzP~! pzP! t (z€0).
Since )
gz 1
Re 7 > 5 (Z € U)

and the function

1+ Az

1+ Bz
is convex (univalent) in U, it follows from (1.8) and Lemma 4 that (f x g) €

n [alyAlaBl;AuB]' U

p7q78

Theorem 7. Let a; > 0,v € C* and let A,B € C with A # B and |B| < 1.
Suppose that

vei(A — B)
i
— 1| <1
B ‘—
or ( )
vei (A — B
A
: <1
B +‘
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if B#0, and

if B=0.
If f € A,(p) with 0,401, A1, B1] f(2) # 0 for all z € U* = U\{0}, then
Op,a,s [on + 1, A1, Bi] f(2) 1+ Az
ep,q,s [alyAlaBl]f(Z) ].‘I‘BZ

implies

< q1(2),

(Qp,q,s [ar, Ay, By f(2)>y

zP

where

va A—B
wie = {13 B FCT gn 20
em if B =0,

?

is the best dominant. (All the powers are the principal ones).

Proof. Let us put

(331) o) = (2! ) Gen

where the power is the principal one, then ¢(z) is analytic in U, ¢(0) = 1 and
¢(z) # 0 for z € U. Taking the logarithmic derivatives in both sides of (3.31),
multiplying by z and using the identity (1.7), we have

ZS0,<Z) - ep,q,s [a1+17A17B1] f(Z) ]_+AZ

VAL?SO(Z) B Op.q.s [1, A1, Bi] f(2) 1+ Bz

a1, Ay, Byl f(2)

zp

Now the assertions of Theorem 7 follows by using Lemma 5 with v = %.
This completes the proof of Theorem 7.

O
Remark 3. Putting A; =1(i =1,...,¢9),B;=1(t=1,...,8),A=1-2p,0 <
p < 1 and B = —1in Theorem 7, we obtain the result obtained by Liu [11,
Theorem 5.

Putting A = 1 - 2(0 < n < p),B = —1,A4;, = 1(i = 1,...,q),B; =
1i=1,....;s),n=1qg=s+1lay =0 =p,ao; =1(7j=2,...,s+1), and
B; =1(j =2,...s) in Theorem 7, we obtain the following corollary.

Corollary 6. Assume that v € C* satisfies either
2v(n—p)—1| <1 or |2v(n—p)+1| < 1.

If the function f € A(p) with f(z) # 0 for z € U* satisfy the following
mequality:
2 (2)

R

>n(0<n<p),
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then

(M)V Ja()  (zev),

zb

where

@(2) = (1-2) (2 € U),

1s the best dominant.
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