
Acta Mathematica Academiae Paedagogicae Nýıregyháziensis
28 (2012), 217–226
www.emis.de/journals

ISSN 1786-0091

THE DEBTS’ CLEARING PROBLEM’S RELATION WITH
COMPLEXITY CLASSES

CSABA PĂTCAŞ

Abstract. The debts’ clearing problem is about clearing all the debts
in a group of n entities (eg. persons, companies) using a minimal number
of money transaction operations. In a previous paper we conjectured the
problem to be NP-complete. In this paper we prove that it is NP-hard in
the strong sense and also NP-easy. We also show the same results for a
restricted version of the problem.

1. Introduction

In [4] we introduced the debts’ clearing problem, and conjectured that it is
NP-complete. In this paper we further investigate which complexity classes it
belongs to based on the ideas of Benoist and Chauvet in proving similar results
for Minimum Edge-Cost Flow in bipartite graphs ([1]).

The problem statement is the following:

Problem. Let us consider a number of n entities (eg. persons, companies),
and a list of m borrowings among these entities. A borrowing can be described
by three parameters: the index of the borrower entity, the index of the lender
entity and the amount of money that was lent. The task is to find a minimal
list of money transactions that clears the debts formed among these n entities
as a result of the m borrowings made.

Example.

Borrower Lender Amount of money

1 2 3
2 3 2
3 4 5
4 5 6

2010 Mathematics Subject Classification. 68Q17, 05C21.
Key words and phrases. debt clearing, NP-hard, NP-easy, minimum edge-cost flow.

217

218 CSABA PĂTCAŞ

Solution.

Sender Receiver Amount of money

1 5 3
3 5 3
4 2 1

�
In [4] we modeled this problem using graph theory:

Definition 1. Let G(V,A,W) be a directed, weighted multigraph without
loops, |V | = n, |A| = m, W : A → Z, where V is the set of vertices, A is the
set of arcs and W is the weight function. G represents the borrowings made,
so we will call it the borrowing graph.

The borrowing graph corresponding to the example is shown in Figure 1.

Figure 1. The borrowing graph associated with the given ex-
ample. An arc from node i to node j with weight w means, that
entity i must pay w amount of money to entity j.

Definition 2. Let us define for each vertex v ∈ V the absolute amount of debt
over the graph G:

DG(v) =
∑
v′ ∈ V

(v, v′) ∈ A

W (v, v′)−
∑

v′′ ∈ V

(v′′, v) ∈ A

W (v′′, v).

Definition 3. Let G′(V,A′,W ′) be a directed, weighted multigraph with-
out loops, with each arc (i, j) representing a transaction of W ′(i, j) amount
of money from entity i to entity j. We will call this graph a transaction
graph. These transactions clear the debts formed by the borrowings mod-
eled by graph G(V,A,W) if and only if: DG(vi) = DG′(vi),∀i = 1, n, where
V = {v1, v2, . . . , vn}

We will note this by: G ∼ G′.

See Figure 2 for a transaction graph with minimal number of arcs corre-
sponding to the example.

Using the terms defined above, the debt’s clearing problem can be reformu-
lated as follows:

Problem. Given a borrowing graph G(V,A,W) we are looking for a minimal
transaction graph Gmin(V,Amin,Wmin), so that G ∼ Gmin and ∀G′(V,A′,W ′) :
G ∼ G′, |Amin| ≤ |A′| holds.

THE DEBTS’ CLEARING PROBLEM’S RELATION WITH COMPLEXITY CLASSES219

Figure 2. The respective minimum transaction graph. An arc
from node i to node j with weight w means, that entity i pays
w amount of money to entity j.

2. Related work

The problem was first discussed by Verhoeff in [5]. We were unaware of his
paper while working on [4], so we use a slightly different terminology: what
we defined above as the absolute amount of debt (DG(vi)) is called balance
(bi) in [5] and the transaction graph defined above is called transfer graph.
Its definition is given by the balancing relation, which is similar to our ”∼”
relation.

Verhoeff’s paper concludes by noting the relationship with the Subset Sum
and 3-Partition problems, saying that minimizing the number of transfers is
at least as difficult as solving those problems. No full proofs are given regarding
the complexity class of the problem.

In this work we give mathematically rigorous proofs for theorems stating,
that the problem belongs to the NP-hard, strongly NP-hard, NP-easy and
NP-equivalent classes. We also discuss a strongly restricted version, where the
borrowing graph is only allowed to be a path.

3. The debts’ clearing problem’s relation with complexity
classes

Let us note the optimization problem described in the introduction Debt.
We will call the corresponding decision problem Debt-decision, defined as
follows:

Problem. Given a borrowing graph G(V,A,W) and a natural number M ≤
|A|, is there a transaction graph G′(V,A′,W ′), G ∼ G′, so that |A′| ≤ M?

Lemma 4. Debt-decision is NP.

Proof. It is easy to see, that the debts’ clearing problem is NP: given a list
of m transactions among n entities guessed by a nondeterministic algorithm,
the D values (absolute amounts of debt) of the transaction graph can be eas-
ily computed in Θ(m) time, then compared to the original D values of the
borrowing graph in Θ(n) time. �

Lemma 5. Subset sum is reducible to Debt-decision.

220 CSABA PĂTCAŞ

Proof. We will give a transformation from Karp’s Knapsack problem ([3]),
also called as Subset Sum([2])1, showing that it is reducible toDebt-decision.

The Subset Sum problem is defined as follows:

Problem. Given a finite set S of positive integer numbers and a positive in-
teger B, is there a subset S ′ ⊆ S, such that the sum of the elements in S ′ is
exactly B?

Let S = {s1, s2, . . . , sn}. Let us construct a borrowing graph G(V,A,W) in
the following manner:

• V = {v1, v2, . . . , vn+2}

• A =
k⋃

i=1

{(vi, vn+1)}∪
n⋃

i=k

{(vi, vn+2)}, where k is chosen such that
k−1∑
i=1

si <

B and
k∑

i=1

si ≥ B

• W (vi, vn+1) = si, ∀i = 1, k − 1

• W (vk, vn+1) = B −
k−1∑
i=1

si

• W (vk, vn+2) =
k∑

i=1

si −B

• W (vi, vn+2) = si, ∀i = k + 1, n

We note that the above graph can be constructed in Θ(n) time. The resulting
absolute amounts of debt will be:

• D(vi) = si, ∀i = 1, n
• D(vn+1) = −B

• D(vn+2) = B −
n∑

i=1

si

For example if we have S = {1, 2, 3, 6}, B = 5, the associated borrowing
graph will be the one shown in Figure 3.

There is a transaction graph G′ ∼ G with at most n arcs (M = n), if and
only if there is a subset S ′ ⊆ S, such that the sum of the elements in S ′ is
exactly B.

⇒: Let us suppose we have G′(V,A′,W ′) ∼ G with |A′| ≤ n. We must
prove, that there is a subset S ′ satisfying the needed condition. From the
signs of the D values it can be seen, that all arcs in A′ should have one of
the structures (vi, vn+1) or (vi, vn+2) with i = 1, n. This is because, if there
would be at least one arc with a different structure, then there would be at
least one k ≤ n, so that vk has no outgoing arc, thus DG′(vk) 6= DG(vk), which
contradicts G ∼ G′.

But because |A′| ≤ n, it means that each vi, i = 1, n is connected exclusively
to vn+1 or vn+2, but not both. Additionally |A′| must be exactly n. Thus,

1The only difference between the two problems is, that Knapsack also allows negative
integers

THE DEBTS’ CLEARING PROBLEM’S RELATION WITH COMPLEXITY CLASSES221

Figure 3. The borrowing graph associated with S =
{1, 2, 3, 6}, B = 5 in the transformation from Subset Sum

the subset S ′ can be formed from the elements corresponding to the nodes
connected to vn+1.

⇐: Let us suppose that there is S ′ ⊆ S with the sum of its elements being
exactly B. We must prove, that there is a transaction graph G′(V,A′,W ′) ∼ G
with |A′| ≤ n. From the DG values it can be seen, that |A′| ≥ n (see Section
5.4. of [4] for a more detailed explanation). By constructing the transaction
graph as below, we get exactly n arcs, the best solution possible:

• Let V ′ be the subset of nodes corresponding to S ′.
• A′ =

⋃
vi∈V ′

{(vi, vn+1)} ∪
⋃

vi∈V \V ′
{(vi, vn+2)}

• W ′(vi, vn+1) = si
• W ′(vi, vn+2) = si �

Theorem 6. Debt-decision is NP-complete.

Proof. It follows directly from Lemma 4 and Lemma 5. �

Corollary 7. Debt is NP-hard.

Proof. It follows directly from Theorem 6 (see also [2, page 114]). �

Lemma 8. 3-Partition is pseudo-polynomially transformable in
Debt-decision.

Proof. 3-Partition is defined as follows:
Given a finite set S of 3m positive integer elements, a positive integer bound

B, such that each element from S is in the interval (B/4, B/2) and the sum
of the elements in S equals to m · B, can S be partitioned in m disjoint sets,
such that the sum of elements from each of them equals to B?

Let S = {s1, s2, . . . , s3m}. Let us construct the following G(V,A,W) bor-
rowing graph:

• V = {v1, v2, . . . , v4m}

222 CSABA PĂTCAŞ

• A =
m⋃
i=1

ki+1⋃
j=ki

{(vj, v3m+i)}, where

• k1 = 1, km+1 = 3m and k2 . . . km are chosen such that none of the arc
weights defined below results in a negative number, that is:

kj−1∑
i=kj−1

W (vi, v3m+j−1) < B, ∀j = 2,m

and
kj∑

i=kj−1

W (vi, v3m+j−1) ≥ B, ∀j = 2,m

• W (v1, v3m+1) = s1
• W (vi, v3m+j) = si,∀i = kj + 1, kj+1 − 1,∀j = 1,m

• W (vkj , v3m+j−1) = B −
kj−1∑

i=kj−1

W (vi, v3m+j−1),∀j = 2,m

• W (vkj , v3m+j) =
kj∑

i=kj−1

W (vi, v3m+j−1)−B, ∀j = 2,m

• W (v3m, v4m) = s3m.

This yields to D(vi) = si,∀i = 1, 3m and D(vi) = −B, ∀i = 3m+ 1, 4m. A
transaction graph G′ ∼ G will have at most 3m arcs (M = 3m) if and only if
a partition of S into m disjoint subsets, all having the sum of elements equal
to B exists.

⇒: Let G′(V,A′,W ′) be a transaction graph, with |A′| ≤ 3m. From the D
values it results by a similar argument to that from the proof of Lemma 5,
that each arc starts at some vi, i = 1, 3m and goes to some vj, j = 3m+ 1, 4m.
Also |A′| = 3m by the same argument, so there is exactly one such arc for each
vi. Thus, for each such vj a corresponding subset can be constructed, that
satisfies the needed condition.

⇐: Let S1, . . . , Sm be a partition of S, that is
m⋃
i=1

Si = S, Sk ∩ Sl = ∅, ∀k, l = 1,m, k 6= l,

and the sum of elements of Si is exactly B for each i = 1,m. By associating
each si,∀i = 1, 3m with vi and Sj,∀j = 1,m with v3m+j, then adding arcs
from each element’s associated node to the node associated with the subset
that contains the element, we get a transaction graph with exactly 3m arcs. �
Theorem 9. Debt-decision is NP-complete in the strong sense.

Proof. By Lemma 4.1 from [2, page 101], Lemma 4 and Lemma 8 provide
sufficient conditions for the proof of strongly NP-completeness. �
Corollary 10. Debt is NP-hard in the strong sense.

THE DEBTS’ CLEARING PROBLEM’S RELATION WITH COMPLEXITY CLASSES223

Proof. Follows directly from Theorem 9 (see also [2, page 115]). �

Let us define the problem Debt-decision-partial as follows:

Problem. Given a borrowing graph G(V,A,W), a ”partial graph” Gp(V,Ap,W p)
and a natural number M ≤ |A|, can Gp ”completed” to a transaction graph with
at most M arcs? More formally is there a transaction graph G′(V,A′,W ′), G ∼
G′, so that |A′| ≤ M and Ap ⊂ A,W p(a) = W ′(a), ∀a ∈ Ap?

Lemma 11. Debt-decision-partial is NP.

Proof. The proof comes from the same logic as the proof of Lemma 4. �
Lemma 12. Debt is Turing reducible to Debt-decision-partial.

Proof. Let us note by G0(V,A0,W 0), the graph having no arcs, that is A0 = ∅.
Assuming the existence of an algorithm DDP (G,Gp,M), that solves Debt-
decision-partial, Debt can be solved by the following algorithm:

Algorithm 3.1: Turing reduction of Debt to Debt-decision-partial

// Find the number of arcs in the optimal solution

1 down := 0;up := |A|;
2 while down < up do
3 mid := b(down+ up)/2c;
4 if DDP (G,G0,mid) then up := mid;
5 ;
6 else down := mid+ 1;
7 ;

8 MIN := down;
9 G′ := G0;
// Find the arcs one by one

10 foreach (u, v) 6∈ A′ : DG(u) > 0, DG(v) < 0 do
11 Gaux := G′;
12 Aaux := Aaux ∪ {(u, v)};
13 W aux((u, v)) := min{|DG(u)−DG′(u)|, |DG(v)−DG′(v)|};
14 if DDP (G,Gaux,MIN) then G′ := Gaux;
15 ;
16 if |A′| = MIN then return;
17 G’;

The above algorithm is based on the following ideas. The minimum trans-
action graph can contain no more than |A| arcs (because G ∼ G′), so the
number of arcs (denoted by the variable MIN) can be found by a binary
search. Then the solution can be built one arc at a time, trying out all the

224 CSABA PĂTCAŞ

|{u : DG(u) > 0}| · |{v : DG(v) < 0}| possibilities in the worst case. By choos-
ing the weight to the value from line 11, we guarantee that at least one of the
endpoints u and v will have its absolute amount of debt changed to zero after
adding the arc. This condition is necessary to an optimal solution, because
otherwise the addition of the arc would leave the number of ”unsolved” nodes
the same.

Since it is clear that DDP is called a polynomial number of times in the
algorithm above, it means that we have a correct Turing reduction. �
Theorem 13. Debt is NP-easy.

Proof. By Theorem 6 Debt-decision is NP-complete, so any NP problem is
(Turing-)reducible to it. By Lemma 11 Debt-decision-partial is NP, so it
is reducible to Debt-decision. By Lemma 12 Debt is Turing-reducible to
Debt-decision-partial, so by the transitivity of Turing-reducibility Debt
is Turing-reducible to Debt-decision. From this and Lemma 4 the proof
follows. �
Corollary 14. Debt is NP-equivalent.

Proof. Follows immediately from Corollary 7 and Theorem 13. �

4. A restricted version

Let us define the problem Debt-path as follows:

Problem. Given a borrowing graph G(V,A,W), whose arcs form a path, find
the minimum transaction graph G′(V,A′,W ′), G ∼ G′. More formally

A =
n−1⋃
i=1

{(vpi , vpi+1
)}, vpi = vpj ⇒ i = j,∀i, j = 1, n.

Theorem 15. Debt-path is NP-hard.

Proof. We can formulate Debt-path-decision in a similar way to Debt-
decision, and prove that it’s NP-complete by a reduction from Subset Sum.
We build a path containing n+ 2 nodes, and set:

W (vi, vi+1) =
i∑

j=1

sj,∀i = 1, n; W (vn+1, vn+2) = B.

It is easy to see that the D values for this path will be similar to those from
the proof of Lemma 5, the only difference being the swap between D(vn+1)
and D(vn+2). �

For instance the path shown in Figure 4 can be also associated to S =
{1, 2, 3, 6}, B = 5.

Theorem 16. Debt-path is NP hard in the strong sense.

Proof. We can reduce 3-Partition to Debt-path-decision as follows:

THE DEBTS’ CLEARING PROBLEM’S RELATION WITH COMPLEXITY CLASSES225

Figure 4. The path associated with S = {1, 2, 3, 6}, B = 5 in
the transformation from Subset Sum

• V = {v1, . . . v4m}

• A =
4m−1⋃
i=1

{(vi, vi+1)}

• W (vi, vi+1) =
i∑

j=1

sj, ∀i = 1, 3m

• W (vi, vi+1) = (4m− i) ·B, ∀i = 3m+ 1, 4m− 1.

This yields to exactly the same D values as in the proof of Lemma 8, thus the
rest of the reasoning applies in this case too. �
Theorem 17. Debt-path is NP-easy.

Proof. A constructive method similar to the one used in the proof of Theo-
rem 13 is applicable. The details are left to the reader. �
Corollary 18. Debt-path is NP-equivalent.

Proof. Readily follows from Theorem 15 and Theorem 17. �

5. Conclusions

We proved that the general optimization problem is NP-hard and also NP-
hard in the strong sense. The latter result is important, because it follows that
no pseudo-polynomial algorithm exists, that solves the problem (unless P =
NP). Then we have shown, that the problem is also NP-easy, thus if P = NP
it can be solved in polynomial time. From these results the NP-equivalency
of the debts’ clearing problem followed, which means that it can be solved in
polynomial time if and only if P = NP.

In Section 4 we introduced a strongly restricted version, where the borrowing
graph is allowed to be only a path and proved the same results for this version.

References

[1] Thierry Benoist and Fabrice Chauvet. Complexity of some fpp related problems. Tech-
nical report, e-lab Research Report, 2001.

[2] Michael R. Garey and David S. Johnson. Computers and intractability. W. H. Freeman
and Co., San Francisco, Calif., 1979. A guide to the theory of NP-completeness, A Series
of Books in the Mathematical Sciences.

[3] Richard M. Karp. Reducibility among combinatorial problems. In Complexity of com-
puter computations (Proc. Sympos., IBM Thomas J. Watson Res. Center, Yorktown
Heights, N.Y., 1972), pages 85–103. Plenum, New York, 1972.

[4] Csaba Pătcaş. On the debts’ clearing problem. Stud. Univ. Babeş-Bolyai Inform.,
54(2):109–120, 2009.

226 CSABA PĂTCAŞ

[5] Tom Verhoeff. Settling multiple debts efficiently: An invitation to computing science.
Informatics in Education, 3(1):105–126, 2004.

Department of Computer Science,
Babeş-Bolyai University,
M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania
E-mail address: patcas.csaba@gmail.com

