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METRIC PROPERTIES OF CONVERGENCE IN MEASURE
WITH RESPECT TO A MATRIX-VALUED MEASURE

LUTZ KLOTZ AND DONG WANG

Abstract. A notion of convergence in measure with respect to a matrix-
valued measureM is discussed and a corresponding metric space denoted by
L0(M) is introduced. There are given some conditions on M under which
L0(M) is locally convex or normable. Some density results are obtained
and applied to the description of shift invariant sub-modules of L0(M) if
M is defined on the σ-algebra of Borel sets of (−π, π].

1. Introduction

For r, s, t ∈ N, let Ms,t be the linear space of s× t matrices with complex
entries, which is equipped with an arbitrary norm, Mt,t =: Mt, and M , M :=

(mjk)
k=1,...,r
j=1,...,t , be an Mt,r-valued measure. In [12] it was introduced a notion of

convergence in measure M of a sequence of Ms,t-valued functions. However,
since the main goal of [12] was a discussion of a problem of linear algebra,
which arose in connection with this notion, measure-theoretic or functional-
analytic aspects of convergence in measure M were not studied thoroughly
there. The present paper is devoted to such questions.

We mention that notions of convergence in measure with respect to rather
general vector measures were defined in several papers, see e.g. [4]. Applying
these definitions to our situation, we obtain that a sequence of Ms,t-valued
functions converges in measure M if and only if it converges in measure mj,k

for j = 1, . . . , t, k = 1, . . . , r. Thus, the fact that the measures mj,k form a
matrix is ignored by these definitions. In [12] we proposed a different way
of introducing convergence in measure M , which, to some extent, takes into
account the matrix structure of M . Its main idea, which goes back to I. S. Kac
[8] and was applied by M. Rosenberg [16] independently and in a slightly more
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general way, is to deal withM in the form dM = dM
dµ

dµ, where µ is a finite non-

negative (scalar) measure, with respect to which M is absolutely continuous,
and dM

dµ
denotes the corresponding Radon-Nikodym derivative.

In Section 2 of the present paper we define convergence in measure M (see
Definition 2.8) and give an equivalent formulation (see Proposition 2.14), which
is sometimes more convenient. To do this we have to describe the set of those
Ms,t-valued functions, for which convergence in measure M can be defined and
to introduce a certain equivalence relation on this set. We supplement results
of [12] discussing some questions arising if M is defined on a non-complete
σ-algebra.

Analogously to convergence in measure with respect to a non-negative mea-
sure, convergence in measureM can be defined by a metric. The corresponding
metric space is denoted by L0(M) and is studied in Sections 3 and 4. We give
necessary and sufficient conditions on M such that L0(M) is locally convex
or can be normed. Similar results for non-negative measures were obtained in
[17].

In Section 4 we derive some density results and apply them to the description
of shift invariant sub-modules of L0(M) if M is defined on the Borel σ-algebra
of (−π, π].

As usual, by N and C we denote the set of positive integers and complex
numbers, resp. For X ∈ Mt,r, denote by R(X) and X∗ its range and adjoint
matrix, resp. The unit matrix of Mt is denoted by It and any zero matrix by
0.

2. Definition and basic properties

Let (Ω,A) be a measurable space. A function F : Ω → Ms,t is called mea-
surable if it is (A,Bs,t)-measurable, where Bs,t denotes the σ-algebra of Borel
subsets of the Banach space Ms,t.

For an Mt,r-valued measure M , M := (mjk)
k=1,...,r
j=1,...,t , let ∆M be the set of

all non-negative finite measures on A, with respect to which M is absolutely
continuous. Note that ∆M is not empty since the measure

(2.1) µM :=
t∑

j=1

r∑
k=1

|mjk|

where |mjk| denotes the variation of the C-valued measure mjk, is an element
of ∆M . Note further that µM is absolutely continuous with respect to µ if
µ ∈ ∆M .

For a certain set of Ms,t-valued functions on Ω we shall define a notion of
M -equivalence and then for these M -equivalence classes a notion of conver-
gence in measure M . As Remark 2.7 below shows it would be enough to deal
with measurable Ms,t-valued functions. However, since sometimes it is conve-
nient to enlarge the M -equivalence classes, cf. [12], our first task will be to
describe the set of functions we shall study.
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If µ ∈ ∆M and dM
dµ

is a corresponding Radon-Nikodym derivative, denote by

Pµ(ω) the orthogonal projection in Ct ontoR(dM
dµ

(ω)), ω ∈ Ω. Recall that from

the measurability of dM
dµ

it follows the measurability of the function Pµ, cf. [1].

Let Pµ be the set of all orthoprojection-valued functions differing from Pµ on
some set of µ-measure 0 and Φs(M,µ) be the set of all functions F : Ω → Ms,t

such that FPµ is measurable for some Pµ ∈ Pµ.

Lemma 2.1. If µ, ν ∈ ∆M , then Φs(M,µ) = Φs(M, ν).

Proof. For µ, ν ∈ ∆M , choose a Radon-Nikodym derivative dµ
d(µ+ν)

and set

A := {ω ∈ Ω: dµ
d(µ+ν)

(ω) 6= 0}. Let F ∈ Φs(M,µ) and Pµ ∈ Pµ be such that

FPµ is measurable. The chain rule leads to dM
d(µ+ν)

= dM
dµ

dµ
d(µ+ν)

(µ + ν)-a.e.,

cf. [6, §32, Theorem A]. It follows that there exists Pµ+ν ∈ Pµ+ν satisfying
Pµ+ν = Pµ on A and Pµ+ν = 0 on Ω \ A. Denoting by 1A the indicator
function of A, we get FPµ+ν = 1AFPµ, which yields the measurability of
FPµ+ν . Conversely, if F ∈ Φs(M,µ + ν) and Pµ+ν ∈ Pµ+ν are such that
FPµ+ν is measurable, we set Pµ := Pµ+ν on A and Pµ = 0 on Ω \ A. Since
µ(Ω \ A) = 0, we obtain that Pµ ∈ Pµ and the function FPµ = 1AFPµ+ν is
measurable. Thus, the equality Φs(M,µ) = Φs(M,µ + ν) is proved and the
result follows by symmetry. �

According to the preceding lemma it is correct to set Φs(M) := Φs(M,µ),
µ ∈ ∆M , and to call the elements of Φs(M) M -measurable functions. The set
Φs(M) can be described with the aid of the completion of A under M , which is
denoted by AM and is, by definition, the completion of A under µM . Recall that
AM := {A ∪ A0 : A ∈ A, A0 ∈ A0}, where A0 is the σ-algebra of µM -negligible
sets, i. e., A0 := {A0 : There exists A ∈ A satisfying µM(A) = 0 and A0 ⊆ A},
cf. [2, Section 1.5]. A measure M is called complete if AM = A.

Proposition 2.2. Let µ ∈ ∆M and F be an Ms,t-valued function on Ω. If
F ∈ Φs(M), then FQµ is (AM ,Bs,t)-measurable for every Qµ ∈ Pµ. If FQµ

is (AM ,Bs,t)-measurable for some Qµ ∈ Pµ, then F ∈ Φs(M).

Proof. Let F ∈ Φs(M) and Pµ ∈ Pµ be such that FPµ is measurable. For
Qµ ∈ Pµ, set A := {ω ∈ Ω: Pµ(ω) 6= Qµ(ω)} and write FQµ = 1Ω\AFQµ +
1AFQµ = 1Ω\AFPµ+1AFQµ. Since Ω\A ∈ A and µ(A) = 0, the first assertion
is proved. Now assume that FQµ is (AM ,Bs,t)-measurable for some Qµ ∈ Pµ.
There exists a set B ∈ A such that µ(B) = 0 and 1Ω\BFQµ is measurable, cf.
[2, Proposition 2.2.3]. Let Pµ = Qµ on Ω \B and Pµ = 0 on B. Then Pµ ∈ Pµ

and FPµ is measurable, hence, F ∈ Φs(M). �
Proposition 2.3. A measure M is complete if and only if FPµM

is measurable
for all F ∈ Φs(M) and PµM

∈ PµM
.

Proof. If AM = A and µ ∈ ∆M , then by the first assertion of Proposition 2.2,
FPµ is measurable for F ∈ Φs(M) and Pµ ∈ Pµ. If AM 6= A, there exist
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A0 ∈ (A0 \A) and A ∈ (A0 ∩A) satisfying A0 ⊆ A. Let X ∈ Ms,t, X 6= 0, and
F := 1A0X. Then F belongs to Φs(M), however, FQµM

is not measurable if
QµM

= It on A, QµM
∈ PµM

. �
In what follows for µ ∈ ∆M and F ∈ Φs(M), we denote by Pµ such an

element of Pµ that FPµ is measurable. A simple result will be useful.

Lemma 2.4. Let µ ∈ ∆M and {Fn}n∈N be a sequence of functions of Φs(M).
There exists Pµ ∈ Pµ such that FnPµ is measurable for all n ∈ N.

Proof. If Pµ,j ∈ Pµ and FjPµ,j is measurable, set Aj,k := {ω ∈ Ω: Pµ,j(ω) 6=
Pµ,k(ω)}, j, k ∈ N, A :=

⋃
j,k∈N Aj,k, Pµ := Pµ,1 on Ω \ A and Pµ = 0 on A.

Then Pµ ∈ Pµ and FnPµ is measurable for n ∈ N. �
Lemma 2.5. Let µ, ν ∈ ∆M and F,G ∈ Φs(M). Then FPµ = GPµ µ-a.e. if
and only if FPν = GPν ν-a.e.

Proof. Applying the chain rule similarly to the proof of Lemma 2.11, one can
show that FPµ = GPµ µ-a.e. if and only if FPµ+ν = GPµ+ν (µ+ν)-a.e., which
yields the result. �

The preceding lemma justifies the following definition.

Definition 2.6. Two functions F,G ∈ Φs(M) are called M-equivalent if for
some and, hence, for all µ ∈ ∆M , FPµ = GPµ µ-a.e.

The set ofM -equivalence classes of functions of Φs(M) is denoted by Φ̃s(M).
It is obvious that if F1, F2, G1, G2 ∈ Φs(M), X ∈ Ms, and F1 and F2 as well
as G1 and G2 are M -equivalent, then F1 + G1 and F2 + G2 as well as XF1

and XF2 are M -equivalent. Therefore, Φ̃s(M) forms a left Ms-module. As
is common practice, studying M -equivalence classes we shall work with their
representatives, i.e. with functions from Φs(M).

Remark 2.7. If F ∈ Φs(M), then F and FPµ, µ ∈ ∆M , belong to the same
M -equivalence class. Therefore, any M -equivalence class contains a measur-
able function and we could confine ourselves to measurable functions F from
the very beginning.

Definition 2.8. Let M be an Mt,r-valued measure on A, µ ∈ ∆M , and let ‖·‖
be an arbitrary norm on Ms,t. A sequence {Fn}n∈N of elements of Φ̃s(M) is
called fundamental in measure M if the sequence {FnPµ}n∈N is fundamental
in measure µ, i.e., if limm,n→∞ µ(‖(Fn − Fm)Pµ‖ > ε) = 0 for all ε > 0. It

converges in measure M to F ∈ Φ̃s(M) if {FnPµ}n∈N converges in measure µ
to FPµ, i.e., if limn→∞ µ(‖(Fn − F )Pµ‖ > ε) = 0 for all ε > 0. It converges to

F ∈ Φ̃s(M) M-a.e. if {FnPµ}n∈N converges to FPµ µ-a.e.

Since all norms on the finite-dimensional space Ms,t are equivalent, Defini-
tion 2.8 does not depend on the choice of the norm ‖·‖. The independence
on the choice of µ ∈ ∆M is established by the following lemma, which can be
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obtained with the aid of the chain rule similarly to the proofs of Lemmas 2.1
or 2.5.

Lemma 2.9. If µ, ν ∈ ∆M , {Fn}n∈N is a sequence of elements of Φ̃s(M), and

F ∈ Φ̃s(M), then the following assertions hold:

(a) The sequence {FnPµ}n∈N is fundamental in measure µ if and only if
{FnPν} is fundamental in measure ν.

(b) The sequence {FnPµ}n∈N converges in measure µ or µ-a.e. to FPµ if
and only if {FnPν}n∈N converges in measure ν or ν-a.e., resp., to FPν.

Remark 2.10. Let t, r, u ∈ N. Note that for an Mt,r-valued measure M and an
Mt,u-valued measure N on A, the notions of convergence in measure coincide
if and only if R(dM

dµ
) = R(dN

dµ
) µ-a.e., µ ∈ ∆M ∩∆N . This is a generalization of

the fact that for arbitrary finite non-negative measures σ and τ , convergence
in measure σ is equivalent to convergence in measure τ if and only if σ and τ
are equivalent, i.e., if and only if σ and τ have the same sets of measure 0. An
analogous remark on M -a.e. convergence could be made.

Since a sequence {Fn}n∈N of elements of Φ̃s(M) converges in measure M
or M -a.e. if and only if {FnPµ}n∈N converges in measure µ or µ-a.e., resp.,
µ ∈ ∆M , basic properties of convergence in measure M or convergence M -a.e.
can be derived from corresponding properties of convergence in measure µ or
convergence µ-a.e., resp. For future use we only mention the following facts.

Theorem 2.11. A sequence converges in measure M if and only if it is fun-
damental in measure M . The limit of a sequence converging in M is unique
(within to M-equivalence) and there exists a subsequence converging M-a.e. to
the same limit. If a sequence converges M -a.e., it converges in measure M .

We conclude the present section by giving equivalent conditions for conver-
gence in measure M , which sometimes are simpler to apply.

Lemma 2.12. Let µ ∈ ∆M and let H be a measurable Mt-valued function
such that R(H) ⊆ R(Pµ) µ-a.e. If F and G are M -equivalent functions of
Φs(M), then FH and GH are measurable M -equivalent functions.

Proof. Since from the conditions of the lemma it follows FPµH = FH = GH
µ-a.e., the result is obvious. �
Lemma 2.13. Let µ ∈ ∆M and H be a measurable Mt-valued function satis-
fying

(2.2) R(H) = R(H∗) = R(Pµ) µ-a.e.

Let {Fn}n∈N be a sequence of functions of Φs(M). Then the following asser-
tions are equivalent:

(i) limn→∞ µ(‖FnPµ‖ > ε) = 0 for all ε > 0,
(ii) limn→∞ µ(‖FnH‖ > ε) = 0 for all ε > 0.
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Proof. We can assume that ‖·‖ is the spectral norm.
(i)⇒(ii): Note first that FnH, n ∈ N, is measurable according to Lemma 2.12.

For δ > 0, choose c > 0 satisfying µ(‖H‖ > c) < δ. From (i) it follows that
for ε > 0, there exists n0 ∈ N such that µ(‖FnPµ‖ > ε/c) < δ if n ≥ n0. The
inequality ‖(FnH)(ω)‖ = ‖(FnPµH)(ω)‖ ≤ ‖(FnPµ)(ω)‖‖H(ω)‖ implies that
‖(FnH)(ω)‖ ≤ ε if ‖(FnPµ)(ω)‖ ≤ ε/c and ‖H(ω)‖ ≤ c, ω ∈ Ω. Therefore, if
n ≥ n0, we have µ(‖FnH‖ > ε) ≤ µ(‖FnPµ‖ > ε/c)+µ(‖H‖ > c) < 2δ, which
yields (ii).

(ii)⇒(i): Since ‖FnHPµ‖ ≤ ‖FnH‖ µ-a.e., from (ii) we get

(2.3) lim
n→∞

µ (‖FnHPµ‖ > ε) = 0

for any ε > 0. Denote by H(ω)+ the Moore-Penrose inverse of H(ω), ω ∈ Ω,
and recall that R(H(ω)+) = R(H(ω)∗) and that H+ is measurable if H is
measurable. Therefore (2.2) and (2.3) show that we can apply the conclusion
(i)⇒(ii) to the sequence {FnH}n∈N and the function H+. Taking into account
that H(ω)H(ω)+ is the orthoprojection onto R(H(ω)), ω ∈ Ω, we obtain
limn→∞ µ(‖FnPµ‖ > ε) = limn→∞ µ(‖FnHH+‖ > ε) = 0 for all ε > 0. �

Applying Lemmas 2.12 and 2.13 to the function H := dM
dµ

we can formulate

the following equivalent condition for convergence in measure M .

Proposition 2.14. Let µ ∈ ∆M . A sequence {Fn}n∈N of elements of Φ̃s(M)

converges in measure M to F ∈ Φ̃s(M) if and only if for all ε > 0 one has
limn→∞ µ(‖(Fn − F )dM

dµ
‖ > ε) = 0.

3. The metric space L0(M)

Let M be an Mt,r-valued measure on A. We denote by L0,s(M) the left

Ms-module Φ̃s(M), equipped with the topology of convergence in measure M .
To simplify the notation we shall omit the dependence on s in the notation of
L0,s(M) and set L0,s(M) =: L0(M). For µ ∈ ∆M and a norm ‖·‖ on Ms,t, one
can define a metric d:

(3.1) d(F,G) :=

∫
Ω

‖(F −G)Pµ‖
1 + ‖(F −G)Pµ‖

dµ, F,G ∈ Φ̃s(M),

on Φ̃s(M), which is invariant, i.e. d(F,G) := d(F − H,G − H), F,G,H ∈
Φ̃s(M). It is not hard to see (or follows from a well known result on convergence
in measure µ) that a sequence converges with respect to the metric d if and
only if it converges in measure M . Taking into account the first assertion of
Theorem 2.11, we obtain the following result.

Theorem 3.1. The space L0(M) is an F -space, i.e. a complete topological
vector space, whose topology is generated by an invariant metric.
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Thomasian [17] characterized those finite non-negative measures σ, for which
convergence in measure σ and σ-a.e. convergence coincide as well as those,
for which the space L0(σ) can be normed, see also [14, 5]. To generalize
Thomasian’s results to matrix-valued measures recall that a set A ∈ A is called
an atom of a finite non-negative measure µ on A if µ(A) > 0 and µ(B) = 0 or
µ(B) = µ(A) for every subset B of A, B ∈ A.

Theorem 3.2. Let µM be a measure defined by (2.1). The following assertions
are equivalent:

(i) The set Ω is a union of atoms and a set of measure 0 of the measure
µM .

(ii) A sequence {Fn}n∈N of elements of L0(M) converges M -a.e. if and only
if it converges in measure M .

(iii) The space L0(M) is locally convex.

Proof. (i)⇒(ii): Note that if F ∈ L0(M), then the function FPµM
is µM -a.e.

constant on any atom of µM . However, the set of atoms of µM is an at most
countable set. Therefore, assertion (i) implies that from convergence in mea-
sure M it follows convergence M -a.e. To complete the proof use Theorem 2.11.

(ii)⇒(i): Assume that (i) is not satisfied. Then there exists a set A ∈ A of
positive measure µM , which does not contain any atom of µM . It follows that
for every n ∈ N there exists a finite sequence {An,j}j=1,...,n of pairwise disjoint
sets of A such that

⋃n
j=1 An,j = A and µ(An,j) = 1

n
µ(A), j = 1, . . . , n. Set

Fn,j = 1An,j
PµM

for some PµM
∈ PµM

and note that Fn,j 6= 0 µ-a.e. on An,j,
j = 1, . . . , n, n ∈ N. Obviously, the sequence {Fn,j}j=1,...,n,n∈N converges in
measure M but does not converge M -a.e.

(i)⇒(iii): Let Ω = B ∪ (
⋃

j∈J Aj), where µM(B) = 0, Aj are atoms of µM ,

and J is at most countable. For F ∈ L0(M), choose Xj ∈ Ms,t satisfying
FPµM

= Xj µM -a.e. on Aj and set ‖F‖j := ‖Xj‖, j ∈ J . Therefore, the
topology of L0(M) can be defined by an at most countable set of semi-norms
‖·‖j, j ∈ J , which implies that L0(M) is locally convex.

(iii)⇒(i): Assume that (i) is not satisfied and define A and An,j, j = 1, . . . , n,
n ∈ N, as in the proof of the conclusion (ii)⇒(i). Let V be a convex neighbour-
hood of 0. Let F ∈ L0(M) and define Fn,j := n1An,j

F , j = 1, . . . , n, n ∈ N.
Setting µ := µM in (3.1), we obtain d(Fn,j, 0) <

1
n
µM(A), j = 1, . . . , n, n ∈ N.

Since there exists c > 0 such that {G ∈ L0(M) : d(G, 0) < c} is a subset of
V , we can conclude that for n large enough, Fn,j ∈ V , j = 1, . . . , n, hence
F := 1

n

∑n
j=1 Fn,j ∈ V by convexity of V . Since F ∈ L0(M) was arbitrary, it

follows V = L0(M), which shows that L0(M) does not have non-trivial convex
neighbourhoods of 0. In particular, L0(M) is not locally convex �
Theorem 3.3. Let µM be a measure defined by (2.1). The following assertions
are equivalent:

(i) The set Ω is a finite union of atoms and a set of measure 0 of µM .
(ii) The space L0(M) can be normed.
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Proof. (i)⇒(ii): For F ∈ L0(M), define Aj and Xj ∈ Ms,t, j ∈ J , as in the
proof of the conclusion (i)⇒(iii) of Theorem 3.2, where the set J is finite now.
By ‖F‖L0(M) :=

∑
j∈J‖Xj‖µM(Aj), F ∈ L0(M), a norm on L0(M) is defined,

and ‖·‖L0(M) and the metric d generate equivalent topologies.
(ii)⇒(i): Assume that (i) is not satisfied. Then there exist an infinite set of

atoms of µM or a set A ∈ A of positive measure µM , which does not contain
any atom. In either case we can find a sequence {An}n∈N of sets of A such
that µM(An) > 0, n ∈ N, and limn→∞ µM(An) = 0. If ‖·‖M denotes an

arbitrary norm on Φ̃s(M), we have ‖1AnPµM
‖M 6= 0 and can define Fn :=

‖1AnPµM
‖−1
M 1AnPµM

, n ∈ N. Obviously, {Fn}n∈N converges in measure M to
0, however ‖Fn‖M = 1, n ∈ N. Therefore, the norm ‖·‖M and the metric d do
not generate equivalent topologies. �

4. Density results

From Definition 2.8 it follows that a sequence of elements of Φ̃s(M) converges
in measure M if and only if it converges in measure Pµdµ, µ ∈ ∆M . Therefore,

it is enough to study M≥
t -valued measures, where M≥

t denotes the cone of
non-negative hermitian t× t matrices. From now on we shall assume that
M is an M≥

t -valued measure on A. In this case dM
dµ

can assumed to be an

M≥
t -valued function and we can define (dM

dµ
(ω))1/p, ω ∈ Ω, p > 0, according to

the functional calculus of normal matrices. Recall that the function (dM
dµ

)1/p

is measurable, cf. [1]. Moreover, for simplification of the notation and in
accordance with the papers [3, 10] we shall assume that the norm ‖·‖ is the
Frobenius norm.

Let p ∈ (0,∞). By Lp(M) we denote the space of all F ∈ Φ̃s(M) such that

‖F‖M,p :=

(∫
Ω

∥∥∥∥∥F
(
dM

dµ

)1/p
∥∥∥∥∥
p

dµ

)1/p

< ∞,

where µ ∈ ∆M , cf. [3, 10], see also [9, 11] for infinite-dimensional generaliza-
tions. Again one can derive from the chain rule that the definition of Lp(M)
does not depend on the choice of the measure µ ∈ ∆M . The space Lp(M) is a
left Ms-module. For every p ≥ 1, it is a Banach space under the norm ‖·‖M,p.
For every p ∈ (0, 1), it is an F -space under the invariant metric ‖F − G‖pM,p,
F,G ∈ Lp(M). If 0 ≤ p1 ≤ p2 < ∞, then Lp2(M) ⊆ Lp1(M).

Lemma 4.1. Let p ∈ (0,∞) and {Fn}n∈N be a sequence of elements of Lp(M)
tending to 0 in Lp(M). Then limn→∞ Fn = 0 with respect to the metric of
L0(M).

Proof. Let µ ∈ ∆µ. For ε > 0, set An = {ω ∈ Ω: ‖Fn(ω)(
dM
dµ

(ω))1/p‖ > ε}.
Since limn→∞ µ(An) ≤ limn→∞

1
εp

∫
An
‖Fn(

dM
dµ

)1/p‖pdµ ≤ limn→∞
1
εp
‖Fn‖pM,p =

0, the sequence {Fn(
dM
dµ

)1/p}n∈N tends to 0 in measure µ. From Lemma 2.13 it

follows that limn→∞ Fn = 0 in L0(M). �
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A function S of the form S =
∑k

j=1 1Aj
Xj, Aj ∈ A, Xj ∈ Ms,t, j = 1, . . . , k,

k ∈ N, is called a simple function. The left Ms-module of simple functions is
denoted by S.

Proposition 4.2. The set S is dense in L0(M).

Proof. If F ∈ L0(M) and µ ∈ ∆M , we can assume that FPµ is measurable.
Thus, there exists a sequence {Sn}n∈N of simple functions tending to FPµ

µ-a.e. Since ‖FPµ − SnPµ‖ ≤
√
t‖FPµ − Sn‖ µ-a.e., Theorem 2.11 yields the

result. �

Proposition 4.3. Let p ∈ (0,∞) and let D be a dense subset of Lp(M). Then
D is a dense subset of L0(M).

Proof. Since S ⊆ Lp(M), the closure of D with respect to the metric of Lp(M)
includes S. From Lemma 4.1 it follows that S is also contained in the closure
of D with respect to the metric of L0(M). An application of Proposition 4.2
gives the result. �

We recall the following definition of strong absolute continuity of M≥
t -valued

measures, which generalizes the notion of absolute continuity for non-negative
measures, see [15, Section 5].

Definition 4.4. Let M and N be M≥
t -valued measures on A. If R(dN

dµ
) ⊆

R(dM
dµ

) µ-a.e. for some µ ∈ (∆M ∩ ∆N), we shall call N strongly absolutely

continuous with respect to M and write N ≪ M .

Note that Definition 4.4 does not depend on the choice of µ ∈ (∆M ∩∆N),
see [15, Section 5].

Let N ≪ M . From the preceding definition it follows that M(A) = 0 yields
N(A) = 0, A ∈ A. One obtains ∆M ⊆ ∆N , hence, ∆M ∩∆N = ∆M . Moreover,
if µ ∈ ∆M and Qµ(ω) denotes the orthoprojector in Ct onto R(dN

dµ
(ω)), ω ∈ Ω,

we have

(4.1) Qµ ≤ Pµ µ-a.e.,

which implies that

(4.2) FQµ = FQµPµ = FPµQµ µ-a.e., F ∈ Φs(M).

Relation (4.2) yields Φs(M) ⊆ Φs(N) and ‖FQµ‖ ≤
√
t‖FPµ‖ µ-a.e., F ∈

Φs(M). From (4.1) one can conclude that if two functions F and G of Φs(M)
areM -equivalent, they are N -equivalent. Summarizing we obtain the following
result.

Proposition 4.5. Let M and N be M≥
t -valued measures on A and N ≪ M .

There exists a continuous map j from L0(M) onto L0(N) such that jF = F ,
F ∈ L0(M). If D is a dense subset of L0(M), then jD is dense in L0(N).
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In what follows a certain converse of the density assertion of the preceding
proposition will be proved. Let M be an M≥

t -valued measure on A, µ ∈ ∆M ,
and {An}n∈N ⊆ A be a sequence satisfying limn→∞ µ(Ω \ An) = 0. Define a
measure Mn by Mn(A) := M(A ∩ An), A ∈ A, n ∈ N. Obviously, Mn ≪
M and we can introduce a map jn from L0(M) onto L0(Mn) according to
Proposition 4.5.

Proposition 4.6. Let D be a subset of L0(M). If for every n ∈ N, the set
jnD is dense in L0(Mn), then D is dense in L0(M).

Proof. Let µ ∈ ∆M and F ∈ L0(M). For n ∈ N choose k ∈ N such that
µ(Ω \Ak) <

1
2n
. By density of jkD in L0(Mk) there exists a function Fn ∈ jkD

satisfying µ({‖FPµ − FnPµ‖ > 1
n
} ∩ Ak) < 1

2n
. For ε > 0, let n0 ∈ N be

such that 1
n0

< ε. If n ≥ n0, we obtain that µ(‖FPµ − FnPµ‖ > ε) ≤
µ(‖FPµ − FnPµ‖ > 1

n
) ≤ µ({‖FPµ − FnPµ‖ > 1

n
} ∩ Ak) + µ(Ω \ Ak) < 1

n
.

It follows that the sequence {Fn}n∈N ∈ D converges to F with respect to the
metric of L0(M). �

Using the preceding proposition we can derive a density result for a partic-
ular L0(M)-space, which can be applied to the description of shift invariant
sub-modules.

Let Ω be the interval (−π, π], A =: B the σ-algebra of Borel subsets of
(−π, π], and M be an M≥

t -valued measure on B. Denote by T the set of all
Ms,t-valued analytic trigonometric polynomials, i.e. the set of all functions of
the form

k∑
j=0

Xje
ij·, Xj ∈ Ms,t, j = 0, . . . , k, k ∈ N,

on (−π, π].

Proposition 4.7. The set T is dense in L0(M).

Proof. For n ∈ N, let Mn be an M≥
t -valued measure, which is defined by

Mn(B) = M(B ∩ (−π, π − 1/n]), B ∈ B. From the theory of vector-valued
stationary processes it follows that T is dense in L2(Mn), n ∈ N, cf. [18,
Section 7, Main Lemma I]. Thus, the result is a consequence of Propositions 4.3
and 4.6. �

Let M be an M≥
t -valued measure on B. A closed left Ms-sub-module I

of L0(M) is called invariant, if it is invariant under the shift operator, i.e., if
ei·I ⊆ I. In accordance with a definition by Helson [7] we call an invariant
sub-module doubly invariant if e−i·I ⊆ I.

Proposition 4.8. Every invariant sub-module of L0(M) is doubly invariant.

Proof. Let I be an invariant sub-module of L0(M) and F ∈ I. Consider
an Ms,t-valued measure FdM := F dM

dµ
dµ, µ ∈ ∆M . From Proposition 4.7 it

follows that the set T ofMs-valued analytic trigonometric polynomials is dense
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in L0(FdM). Therefore, Proposition 2.14 implies that there exists a sequence
{Tn}n∈N of functions of T satisfying limn→∞ µ(‖e−i·F dM

dµ
− TnF

dM
dµ

‖ > ε) = 0

for all ε > 0. Since TnF ∈ I, n ∈ N, and I is a closed subset of L0(M),
another application of Proposition 2.14 yields e−i·F ∈ I. �

For p ∈ (0,∞), all doubly invariant sub-modules of Lp(M) were described
in [13]. It is not hard to see that the method used there can also be applied
to L0(M). We omit the details and only mention the result.

Theorem 4.9. Let I be a closed left Ms-sub-module of L0(M). The following
assertions are equivalent:

(i) I is invariant.
(ii) I is doubly invariant.
(iii) For µ ∈ ∆M , there exists a measurable orthoprojection-valued func-

tion P : (−π, π] → M≥
t such that R(P ) ⊆ R(Pµ) µ-a.e. and I =

L0(M)P := {FP : F ∈ L0(M)}.
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