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COMPLETE INTERPOLATION VS. RIESZ BASES OF
REPRODUCING KERNELS

SIMON COWELL AND PHILIPPE POULIN

Abstract. In the study of Hilbert spaces of analytic functions, it is no-
ticed that complete interpolating sequences and Riesz bases of reproducing
kernels are dual notions. In this work we make this duality explicit by
identifying sequences of complex numbers with linear operators.

1. Introduction

Let H be a Hilbert space of entire functions such that the evaluation at w,
H → C, f 7→ f(w), is a continuous linear functional for every w ∈ C. By
Riesz’ lemma, H then admits reproducing kernels, that is, functions kw ∈ H
satisfying1

〈kw, f〉 = f(w).

Let σ = {σn} be a sequence of complex numbers and let

Dσ =
{
{dn} ;

∑
|dn|2/‖kσn‖2 < ∞

}
.

We say that σ is complete interpolating [7] if for all {dn} ∈ Dσ there exists a
unique f ∈ H such that

f(σn) = dn.

In the seminal case where H is the Paley–Wiener space L2
π (see Section 2

for the definition), it is noticed [7, 3, 5] that σ is complete interpolating if
and only if {kσn/‖kσn‖} is a Riesz basis; in other words, iff {kσn/‖kσn‖} is the
image of an orthonormal basis under a bounded invertible linear operator with
bounded inverse.

The aim of this paper is to make the duality between these two notions
explicit. It starts from the observation that, assuming the existence of a com-
plete interpolating sequence for H, each sequence of complex numbers may be
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identified with a linear operator. The aforementioned duality is then seen in
invertibility conditions on this operator and its adjoint. Special attention is
given to de Branges’ spaces.

2. Historical account

In Fourier analysis, it is well known that the system of exponentials

{einx/
√
2π}n∈Z

is an orthonormal basis of L2[−π, π]. Paley and Wiener [6] investigated the
following stability problem: how much may the nodes n ∈ Z be perturbed so
the resulting exponential system remains a Riesz basis?

An equivalent formulation may be obtained by applying an inverse Fourier
transform. By the Paley–Wiener theorem and Plancherel’s formula, F−1, de-
fined by

F−1[ϕ](z) =
1√
2π

∫ π

−π

eiztϕ(t) dt,

is an isometry from L2[−π, π] to L2
π, where

L2
π = {f entire ; ‖f‖2 < ∞, f of exponential type ≤ π}

(equipped with the usual L2 norm on R).
Observe that L2

π admits reproducing kernels. Indeed, for arbitrary F−1[ϕ] ∈
L2

π and w ∈ C, and for x varying in [−π, π],

1√
2π

〈F−1[e−iw̄x],F−1[ϕ]〉2 =
1√
2π

〈e−iw̄x, ϕ〉L2[−π,π]

=
1√
2π

∫ π

−π

eiwxϕ(x) dx

= F−1[ϕ](w),

yielding

(1) kw(z) =
1√
2π

F−1[e−iw̄x] =
sin(π(z − w̄))

π(z − w̄)
.

Since F−1 is an isometry, stability of the Riesz basis property of the expo-
nential system {einx}n∈Z in L2[−π, π] for small, complex perturbations of n is
equivalent to stability of the Riesz basis property of the reproducing kernels
{kn}n∈Z in L2

π.
As already mentioned, {einx/

√
2π}n∈Z is an orthonormal basis of L2[−π, π],

and hence {kn}n∈Z is an orthonormal basis of L2
π. In particular, Z is complete

interpolating for L2
π:

(2) f(n) = dn ⇔ f(z) =
∑
n∈Z

dn
sin(π(z − n))

π(z − n)
.

The stability problem for {kn}n∈Z may thus be translated to a stability problem
for complete interpolating sequences (see Section 3).
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Here are some highlights [4] in the study of the stability problem from its
origin to its complete solution. Paley and Wiener first proved that {eiσnx}n∈Z
is a Riesz basis if |σn − n| < d for certain d > 0, namely for all d < 1/π2.
Then, Ingham showed that d = 1/4 is not admissible. In 1964, Kadets showed
that 1/4 is indeed the lowest upper bound of the valid d.

Later, Pavlov et al. [3] obtained a geometric characterization of all complex
sequences {σn} such that {kσn} is a Riesz basis. The result was then revisited
by Seip and Lyubarskii [5].

3. Duality

In the sequel we consider a Hilbert space H of entire functions with non-
vanishing reproducing kernels at every point. We denote by k̃w = kw/‖kw‖
the normalized reproducing kernel at w ∈ C. We assume that H admits Riesz
bases of normalized reproducing kernels, among which we distinguish an ar-
bitrary one, {k̃λn}. We let T be the linear operator, invertible in B(H), such

that T k̃λn = en, where {en} is a certain orthonormal basis in H.
Doing so, the sequence λ = {λn} is complete interpolating: for any {dn} ∈

Dλ, letting g =
∑

(dn/‖kλn‖)en, T ∗g solves the interpolation problem f(λn) =
dn, since

T ∗g(λn) = 〈kλn , T
∗g〉 = 〈Tkλn , g〉 = 〈‖kλn‖en, g〉 = dn.

Moreover the solution is unique: f(λn) = 0 for all n is equivalent to

〈T−1Tkλn , f〉 = ‖kλn‖〈en, (T−1)∗f〉 = 0 for all n,

and hence implies that f = 0.
Observe in addition that for all f ∈ H, {f(λn)} ∈ Dλ, since∑

|f(λn)|2/‖kλn‖2 =
∑∣∣∣〈T−1T k̃λn , f〉

∣∣∣2 = ∑
|〈en, (T−1)∗f〉|2 < ∞.

The presence of the complete interpolating sequence λ = {λn} allows us to
associate with any sequence σ = {σn} a linear operator Λσ: The domain of Λσ

consists of the functions whose restriction to σ is in Dσ, namely,

domΛσ = {f ∈ H ;
∑

|f(σn)|2/‖kσn‖2 < ∞}.

Λσf is defined as the unique solution to the interpolation problem

Λσf(λn) = (‖kλn‖/‖kσn‖)f(σn).

Observe that

(3) Λσf = T ∗T
∑

(f(σj)/‖kσj
‖) k̃λj

,

since the scalar product of kλn times this last expression gives∑
j

(f(σj)/‖kσj
‖)〈Tkλn , T k̃λj

〉 =
∑
j

(f(σj)‖kλn‖/‖kσj
‖)〈en, ej〉

= (‖kλn‖/‖kσn‖)f(σn).
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In particular, Λσ ∈ B(H) if and only if

sup
‖f‖=1

∑ |f(σn)|2

‖kσn‖2
< ∞.

Complete interpolating sequences are then easily characterized:

Proposition 1. The sequence σ is complete interpolating iff Λσ : domΛσ → H
is bijective.

Proof. Suppose that σ is complete interpolating. Let us denote by Σλf the
unique solution to the interpolation problem Σλf(σn) = (‖kσn‖/‖kλn‖)f(λn).
Since
{f(λn)} ∈ Dλ, Σλ maps the whole H to domΛσ. Moreover, for all f ∈ domΛσ,
ΣλΛσf(σn) = f(σn), while for all f ∈ H, ΛσΣλf(λn) = f(λn). It follows that
Λσ : domΛσ → H is a bijection.

Conversely, suppose that Λσ has an inverse Λ−1
σ : H → domΛσ and let

{dn} ∈ Dσ. Since λ is complete interpolating, there exists a unique g ∈ H
such that g(λn) = (‖kλn‖/‖kσn‖)dn. Therefore, Λ−1

σ g is the unique solution to
the interpolation problem f(σn) = dn, because

dn = (‖kσn‖/‖kλn‖)ΛσΛ
−1
σ g(λn) = (Λ−1

σ g)(σn).

Consequently, σ is complete interpolating. �
Using duality, Riesz bases of normalized reproducing kernels are also char-

acterized by an invertibility condition, as shown below.

Lemma 1. If domΛσ = H, then Λσ is bounded.

Proof. Let SN : H → `2 be the linear operator defined by SNf = {〈k̃σn , f〉}Nn=1.

Observe that ‖SNf‖`2 ≤
√
N‖f‖, so each SN is bounded. By the hypothesis,∑

|f(σn)|2/‖kσn‖2 < ∞ for all f ∈ H. In particular, the operator S : H → `2,

Sf = {〈k̃σn , f〉}∞n=1 exists. By the Banach–Steinhaus theorem [1] it must be
continuous, so the relation (3) implies

‖Λσ‖ ≤ ‖T ∗‖ sup
‖f‖=1

√∑ |f(σn)|2
‖kσn‖2

< ∞. �

Proposition 2. The system of normalized reproducing kernels {k̃σn} is a Riesz
basis if and only if domΛσ = H and Λσ : H → H is bijective.

Proof. Assume that {k̃σn} is a Riesz basis. Then domΛσ = H and hence, by

the lemma, Λσ ∈ B(H). Observe that 〈k̃λn ,Λσf〉 = 〈k̃σn , f〉 for all f ∈ H,

yielding Λ∗
σk̃λn = k̃σn . Since {k̃λn} and {k̃σn} are Riesz bases, it follows that

Λ∗
σ, and hence Λσ, are invertible in B(H).
Conversely, assume that Λσ is a bijection from H to H. By the lemma,

Λσ is bounded. The inverse mapping theorem implies that its inverse is also
bounded. In particular, Λ∗

σ is invertible in B(H). Since Λ∗
σk̃λn = k̃σn and {k̃λn}

is a Riesz basis, {k̃σn} is also a Riesz basis. �
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A complete interpolating sequence σ such that {f(σn)} ∈ Dσ for all f ∈ H
is said to be universal complete interpolating [7]. From the Propositions 1 and
2, we have recovered this classical result: under the assumption that H admits
a Riesz basis of normalized reproducing kernels, {σn} is a universal complete

interpolating sequence if and only if {k̃σn} is a Riesz basis. The classical proof
[7] is however a simpler alternative, based on the observation that H → `2,

f 7→ {〈k̃σn , f〉} and `2 → H, {cn} 7→
∑

cnk̃σn are adjoint.
Remark. What is the analogue for non normalized Riesz bases of reproducing
kernels? If {kλn} is a Riesz basis, then necessarily the norms ‖kλn‖ are com-
parable with 1, and hence the associated interpolation data space is always `2.
In these circumstances, the normalisation of {kλn} preserves the Riesz basis
property. Our results persist trivially. In fact, a simpler definition of Λσ may
be used, by removing the normalisation factors.

4. Scope of applications

Our results apply to every space of entire functions H containing a Riesz
basis of normalized reproducing kernels, in particular, to any de Branges space.
Recall that H is a de Branges space if it satisfies the following axioms [2]:

(1) For all w ∈ C the linear functional H → C, f 7→ f(w) is continuous;

(2) If f ∈ H, then f ∗(z) = f(z̄) is also in H with the same norm;
(3) If f ∈ H and f(w) = 0, then f(z)(z− w̄)/(z−w) is also in H with the

same norm.

By the first axiom, such a space admits reproducing kernels.
There is an intimate connection between de Branges spaces and the so-called

Hermite–Biehler functions, that is, the entire functions satisfying |E(z̄)| <
|E(z)| for =z > 0. Indeed, a celebrated theorem of de Branges establishes that
each de Branges space is isomorphically equal to a space of the form

H(E) = {f entire ; f/E, f∗/E ∈ H2(C+)}
equipped with the norm ‖f‖ = ‖f/E‖2, where E is in the Hermite–Biehler
class. Here, H2(C+) denotes the usual Hardy space,

H2(C+) = {f analytic in C+ ; sup
y>0

∫ ∞

−∞
|f(t+ iy)|2 dt < ∞}.

Without loss of generality we assume that E does not vanish on the real
axis.2 In particular, E has a polar decomposition on the real line, E(x) =
|E(x)|e−iϕ(x), where ϕ(x) is the so-called phase.

Theorem 1 (de Branges). Given an Hermite–Biehler function E of phase ϕ,
let {λn} be the solution set of sin(ϕ(x) − α) = 0, where 0 ≤ α < 2π. Except

2If it does, then all elements in H(E) inherit the real zeroes of E with multiplicity. Then,
removal of these common zeroes is an isometry from H(E) to a de Branges space with an
Hermite–Biehler function of the right kind.
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for at most one exceptional α, the system of normalized reproducing kernels
{k̃λn} is an orthonormal basis of H(E).

The existence of an orthonormal basis {k̃λn} of normalized reproducing kernels
is thus granted. The associated interpolation data space is

Dλ = {{dn} ;
∑

|dn|2/‖kλn‖2 < ∞},

so λ = {λn} is complete interpolating:

(4) f(λn) = dn ⇔ f =
∑ dn

‖kλn‖
k̃λn .

An explicit formula for the reproducing kernel is also available [2]:

kw(z) =
E∗(z)E∗(w)− E(z)E(w)

2πi(z − w̄)
.

In particular, for λn ∈ λ, using the fact that λn ∈ R,

kλn(z) =
E∗(z)E(λn)− E(z)E(λn)

2πi(z − λn)
,

‖kλn‖2 = kλn(λn) = (1/π)ϕ′(λn)|E(λn)|2,
and hence

k̃λn(z) =
e−iϕ(λn)E∗(z)− eiϕ(λn)E(z)

i
√
πϕ′(λn)(z − λn)

.

In the seminal case where H(E) = L2
π, one may let E(z) = e−iπz, so

ϕ(t) = πt. The value α = 0 in de Branges’ theorem is valid, so λ = Z
are the nodes of the Riesz basis of reproducing kernels {kn}n∈Z. Notice that
the kn are already normalized, so the corresponding space of interpolation data
is `2. Indeed, kw(z) is given by (1), so the expansion (4) corresponds to (2).
In this classical case, a theorem of Plancherel and Pólya ensures that all com-
plete interpolating sequences are universally complete interpolating. There,
the correspondence between complete interpolating sequences and Riesz bases
of normalized reproducing kernels is celebrated.

In the more general case where H is an arbitrary de Branges space, the
presence of an orthonormal basis {k̃λn} ensures that our propositions hold.
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