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Abstract. In this paper, the notion of an almost contact Kählerian struc-
ture is introduced. The intrinsic geometry of almost contact Kählerian
spaces is investigated. On the zero-curvature distribution of an almost con-
tact metric structure, as on the total space of a vector bundle, an almost
contact Kählerian structure is obtained.

1. Introduction

Almost contact metric structures (ϕ, ~ξ, η, g) are odd-dimensional analogs of
almost Hermitian structures. There are a lot of important interplays between
these structures. The most of the works devoted to the investigation of the
geometry of manifolds with almost contact metric structures, explicitly or not
explicitly, either use these interplays or find their specifications. On the other
hand, the presence of a smooth distribution D in the geometry of almost con-
tact metric space gives the possibility to use the methods of the geometry of
non-holonomic manifolds in the investigations of almost contact metric struc-
tures. Probably the possibility of the effective use of such approach to the
investigation of almost contact metric spaces was stated for the first time in
[5]. In the same time, the works, where per se an attempt to the attainment of
the compromise on the way of the rapprochement of ”holonomic” and ”non-
holonomic” points of view is done, appeared. An example of such works is [1].
The main result of [1] is the construction of a new linear connection ∇ on a
contact metric space by using the Levi-Civita connection. The author of [1]
called this connection a D-connection. This connection, in particular, satisfies
the following property: a contact metric space is Sasakian if and only if∇ϕ = 0
[1, p. 1963]. The author of [1] writes: ”As a conclusion we may say that the
study of the contact distribution (D,ϕ, g) by using the D-connection ∇ is an
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alternative to the study of the contact metric manifold M via the Levi-Civita
connection” [1, p. 1967]. The appearance of the contact distribution (D,ϕ, g)
indicates the attempt to use the methods of the non-holonomic geometry for
the investigation of almost contact metric structures. In the present paper we
use the intrinsic connection introduced by Wagner [9] in order to investigate
the almost contact metric structures. We develop the notion of the intrinsic
connection (we call it a connection over a distribution), we introduce the no-
tion of the extended connection and generalize these notions to the connections
of the Finslerian type [4]. We show that if ∇ is an intrinsic metric connection
and∇1 is the corresponding extended connection, then the following statement
holds: an almost contact metric space is an almost contact Kählerian space
if and only if L~ξg = 0 and ∇1ϕ = 0. The last statement is a theorem of the
proper non-holonomic geometry.

Let (ϕ, ~ξ, η, g) be an almost contact metric structure (the main theses of the
theory of almost contact metric structures can be found in the excellent books
[7, 2]). By definition, an almost contact metric structure is Sasakian if it is
normal, i.e.

Nϕ + 2dη ⊗ ~ξ = 0,

where Nϕ is the Nijenhuis torsion defined for the tensor ϕ and it holds Ω = dη,
where Ω(~x, ~y) = g(~x, ϕ~y) is the fundamental form of the structure. Thus
with an almost contact metric space we associate two 2-forms, ω = dη and
Ω. If these forms are equal, we get a contact metric space, which are more
simple as the more general contact metric spaces. We will get a space with an
almost contact Hermitian structure if we refuse the condition Ω = dη, and the

condition Nϕ + 2dη ⊗ ~ξ = 0 change to the weaker one

Nϕ + 2(dη ◦ ϕ)⊗ ~ξ = 0.

We also do not assume that the equality ω(ϕ~x, ϕ~y) = ω(~x, ~y) holds. Al-
most contact Hermitian spaces preserve many important properties of Sasakian
spaces and they remain to be analogs of Hermitian spaces. If we make some
natural assumption about an almost contact Hermitian space, then we get an
almost contact Káhlerian space, these spaces are analogs of Kählerian spaces.

Following the ideology developed in the works of Schouten and Wagner,
we define the intrinsic geometry of an almost contact metric space X as the
aggregate of the properties that possess the following objects: a smooth dis-
tribution D defined by a contact form η; an admissible field of endomorphisms
ϕ of D (which we call an admissible almost complex structure) satisfying
ϕ2 = −1; an admissible Riemannian metric field g that is related to ϕ by
g(ϕ~x, ϕ~y) = g(~x, ~y), where ~x and ~y are admissible vector fields. To the objects
of the intrinsic geometry of an almost contact metric space one should ascribe
also the objects derived from the just mentioned: the 2-form ω = dη; the

vector field ~ξ (which is called the Reeb vector field) defining the closing D⊥ of

D, i.e. ~ξ ∈ D⊥, and given by the equalities η(~ξ) = 1, kerω = span(~ξ) in the
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case when the 2-form ω is of maximal rank; the intrinsic connection ∇ that
defines the parallel transport of admissible vectors along admissible curves and
is defined by the metric g; the connection ∇1 that is a natural extension of the
connection ∇ which accomplishes the parallel transport of admissible vectors
along arbitrary curves of the manifold X.

Besides the introduction, the paper contains 4 sections. In Section 2 we in-
troduce the notion of an almost contact Kählerian structure. In Section 3 we
discuss connections over a distribution and the extended connections. The no-
tion of the connection over a distribution was known before (see e.g. [10]). The
connection over a distribution was used in the geometry of contact structures
in [4, 3]. In these works also the notion of the extended connection was used.
Per se, the extended connection was defined for the first time by Wagner in a
little bit another context and in another terms in [9] in order to construct the
curvature tensor of a non-holonomic manifold. In Section 4 we give the main
result about the intrinsic geometry of almost contact Kählerian spaces. This
section contains the main result of the paper: an almost contact Hermitian
structure is an almost contact Kählerian structure if and only if L~ξg = 0 and

∇1ϕ = 0, where ∇1 is the intrinsic metric torsion-free connection. The last
section contains an example of an almost contact Kählerian space that is not
a Sasakian space.

2. Almost contact Kählerian structure

Let X be a smooth manifold of an odd dimension n, n ≥ 3. Denote by
Ξ(X) the C∞(X)-module of smooth vector fields on X. All manifolds, tensors
and other geometric objects will be assumed to be smooth of the class C∞.

An almost contact metric structure on X is an aggregate (ϕ, ~ξ, η, g) of tensor
fields on X, where ϕ is a tensor field of type (1, 1), which is called the structure

endomorphism, ~ξ and η are a vector and a covector, which are called the struc-
ture vector and the contact form, respectively, and g is a (pseudo-)Riemannian
metric. Moreover,

η(~ξ) = 1, ϕ(~ξ) = 0, η ◦ ϕ = 0,

ϕ2~x = −~x+ η(~x)~ξ, g(ϕ~x, ϕ~y) = g(~x, ~y)− η(~x)η(~y)

for all ~x, ~y ∈ Ξ(X). The skew-symmetric tensor Ω(~x, ~y) = g(~x, ϕ~y) is called the
fundamental tensor of the structure. A manifold with a fixed almost contact
metric structure is called an almost contact metric manifold. If Ω = dη holds,
then the almost contact metric structure is called a contact metric structure.
An almost contact metric structure is called normal if

Nϕ + 2dη ⊗ ~ξ = 0,

where Nϕ is the Nijenhuis torsion defined for the tensor ϕ. A normal con-
tact metric structure is called a Sasakian structure. A manifold with a given
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Sasakian structure is called a Sasakian manifold. Let D be the smooth dis-
tribution of codimension 1 defined by the form η, and D⊥ = span(~ξ) be the
closing of D. If the restriction of the 2-form ω = dη to the distribution D is

non-degenerate, then the vector ~ξ is uniquely defined by the condition

η(~ξ) = 1, kerω = span(~ξ),

and it is called the Reeb vector field.
We say that an almost contact metric structure is almost normal, if it holds

(1) Nϕ + 2(dη ◦ ϕ)⊗ ~ξ = 0.

In what follows, an almost normal almost contact metric space will be called
an almost contact Hermitian space. An almost contact Hermitian space is
called an almost contact Kählerian space, if its fundamental form is closed.
The following obvious theorem shows the difference between a normal almost
contact metric structure and an almost contact Hermitian structure.

Theorem 1. An almost contact Hermitian structure is normal if and only if
it holds

ω(ϕ~u, ϕ~v) = ω(~u,~v), ~u,~v ∈ ΓD.

It is obvious that an almost normal contact metric structure is a Sasakian
structure. Sasakian manifolds are popular among the researchers of almost
contact metric spaces by the following two reasons. On one hand, there exist
a big number of interesting and deep examples of Sasakian structures (see
e.g. [2]), on the other hand, the Sasakian manifolds have very important and
natural properties.

We say that a coordinate mapK(xα) (α, β, γ = 1, . . . , n) (a, b, c, e = 1, . . . , n−
1) on a manifold X is adapted to the non-holonomic manifold D if

D⊥ = span

(
∂

∂xn

)
holds [5].

Let P : TX → D be the projection map defined by the decomposition
TX = D ⊕D⊥ and let K(xα) be an adapted coordinate map. Vector fields

P (∂a) = ~ea = ∂a − Γn
a∂n

are linearly independent, and linearly generate the system D over the domain
of the definition of the coordinate map:

D = span(~ea).

Thus we have on X the non-holonomic field of bases (~ea, ∂n) and the corre-
sponding field of cobases

(dxa, θn = dxn + Γn
adx

a).

It can be checked directly that

[~ea, ~eb] =Mn
ab∂n,
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where the components Mn
ab form the so-called tensor of non-holonomicity [9].

Under assumption that for all adapted coordinate systems it holds ~ξ = ∂n, the
following equality takes place

[~ea, ~eb] = 2ωba∂n,

where ω = dη. We say also that the basis

~ea = ∂a − Γn
a∂n

is adapted, as the basis defined by an adapted coordinate map. Note that
∂nΓ

n
a = 0.

We call a tensor field defined on an almost contact metric manifold admis-
sible (to the distribution D) if it vanishes whenever its vectorial argument
belongs to the closing D⊥ and its covectorial argument is proportional to the
form η. The coordinate form of an admissible tensor field of type (p, q) in an
adapted coordinate map looks like

t = t
a1,...,ap
b1,...,bq

~ea1 ⊗ · · · ⊗ ~eap ⊗ dxb1 ⊗ · · · ⊗ dxbq .

In particular, an admissible vector field is a vector field tangent to the distri-
bution D, and an admissible 1-form is a 1-form that is zero on the closing D⊥.
It is clear that any tensor structure defined on the manifold X defines on it
a unique admissible tensor structure of the same type. From the definition of
an almost contact structure it follows that the field of endomorphisms ϕ is an
admissible tensor field of type (1, 1). The field of endomorphisms ϕ we call an
admissible almost complex structure, taking into the account its properties.
The 2-form ω = dη is also an admissible tensor field and it is natural to call it
an admissible symplectic form.

All constructions done by Wagner in [9] are grounded on the usage of
adapted coordinates (Wagner called such coordinates by gradient coordinates).
Adapted coordinates are used in the foliation theory [6]. It seems that in the
theory of almost contact metric spaces, the adapted coordinates were used in
essence only in the works [5, 1, 4].

One of the main notions of this work is the notion of an admissible inte-
grable tensor structure. In the definition of an admissible integrable tensor
structure, the words ”integrable” and ”admissible” should be consider in the
semantic union. We call an admissible tensor field integrable if there is an open
neighborhood of each point of the manifold X and admissible coordinates on it
such that the components of the tensor fields are constant with respect to these
coordinates. The form ω = dη is an example of an admissible tensor structure.
If the distribution D is integrable, then any admissible integrable structure is
an integrable structure on the manifold X. The following facts show that the
notion of an integrable admissible tensor structure is natural. As it is known,
the integrable closing D⊥ defines a foliation with one-dimensional lives. If one
defines on this foliation a structure of a smooth manifold, then that any inte-
grable tensor structure defines on this manifold an integrable tensor structure
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in the usual sense. Below we consider some important ideas of the develop-
ment of the notion of the integrability in the geometry of almost contact metric
structures. The following two theorems show the meaning of the notion of an
integrable tensor structure in the context of our investigations.

Theorem 2. The admissible almost complex structure ϕ is integrable if and
only if P (Nϕ) = 0 holds.

Proof. The expression of the non-zero components of the Nijenhuis torsion
tensor

Nϕ(~x, ~y) = [ϕ~x, ϕ~y] + ϕ2[~x, ~y]− ϕ[ϕ~x, ~y]− ϕ[~x, ϕ~y]

of the tensor ϕ in adapted coordinates has the form:

N e
ab = ϕc

a~ecϕ
e
b − ϕc

b~ecϕ
e
a + ϕe

c~ebϕ
c
a − ϕe

d~eaϕ
d
b ,(2)

Nn
ab = 2ϕc

aϕ
d
bωdc,(3)

N e
na = −ϕe

c∂nϕ
c
a.(4)

Thus the equality P (Nϕ) = 0 is equivalent to the condition that (2) and (4)
are zero.

Conversely, suppose that P (Nϕ) = 0. Consider a sufficiently small neigh-
borhood U of an arbitrary point of the manifold X. Assume that U = U1×U2,
TU = span(∂a)⊕ span(∂n). We set the natural denotation T (U1) = span(∂a).
We define over the set U the isomorphism of bundles ψ : D → T (U1) by the
formula ψ(~ea) = ∂a. This endomorphism induces an almost complex structure
on the manifold U1. This complex structure is integrable due to the equal-
ity P (Nϕ) = 0. Indeed, from (4) it follows that the right hand side part of
(2) coincides with the torsion of the almost complex structure induced on the
manifold U1. Choosing an appropriate coordinate system on U1, and conse-
quently, an appropriate adapted coordinate system on the manifold X, we get
a coordinate map with respect to that the components of the endomorphism
field ϕ are constant. �
Theorem 3. An almost contact metric structure is is an almost contact Her-
mitian structure if and only if the admissible almost complex structure ϕ is
integrable.

Proof. Equality (1) written in adapted coordinates is equivalent to the condi-
tion that the right hand sides of (2) and (4) are zero. This and Theorem 2
gives the proof of the theorem. �

Note that we have de facto proved the equality

P (Nϕ) = Nϕ + 2(dη ◦ ϕ)⊗ ~ξ.

Using adapted coordinates we introduce the following admissible tensor
fields:

hab =
1

2
∂nϕ

a
b , Cab =

1

2
∂ngab, Ca

b = gdaCdb, ψb
a = gdbωda.
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We denote by ∇̃ and Γ̃α
βγ the Levi-Civita connection and the Christoffel sym-

bols of the metric g. The proof of the following theorem follows from direct
computations.

Theorem 4. The Christoffel symbols of the Levi-Civita connection of an al-
most contact metric space with respect to adapted coordinates are the following:

Γ̃c
ab = Γc

ab, Γ̃n
ab = ωba − Cab, Γ̃b

an = Γ̃b
na = Cb

a − ψb
a, Γ̃n

na = Γ̃a
nn = 0,

where

Γa
bc =

1

2
gad(~ebgcd − ~ecgbd − ~edgbc).

In the case of a contact metric space the Christoffel symbols of the Levi-
Civita connection are found in [1].

3. Connection over a distribution. The extended connection

An intrinsic linear connection on a non-holonomic manifold D is defined in
[9] as a map

∇ : ΓD × ΓD → ΓD

that satisfies the following conditions:

1) ∇f1~u1+f2~u2 = f1∇~u1 + f2∇~u2 ;

2) ∇~uf~v = f∇~u~v + (~uf)~v,

where ΓD is the module of admissible vector fields. The Christoffel symbols
are defined by the relation

∇~ea~eb = Γc
ab~ec.

The torsion S of the intrinsic linear connection is defined by the formula

S(~x, ~y) = ∇~x~y −∇~y~x− p[~x, ~y].

Thus with respect to an adapted coordinate system it holds

Sc
ab = Γc

ab − Γc
ba.

The action of an intrinsic linear connection can be extended in a natural
way to admissible tensor fields. An important example of an intrinsic linear
connection is the intrinsic metric connection that is uniquely defined by the
conditions ∇g = 0 and S = 0 [4]. With respect to the adapted coordinates it
holds

(5) Γa
bc =

1

2
gad(~ebgcd − ~ecgbd − ~edgbc).

In the same way as a linear connection on a smooth manifold, an intrinsic
connection can be defined by giving a horizontal distribution over the total
space of some vector bundle. The role of such bundle plays the distribution D.
The notion of a connection over a distribution was applied to non-holonomic
manifolds with admissible Finsler metrics in [4, 3]. One says that over a
distribution D a connection is given if the distribution D̃ = π−1

∗ (D), where
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π : D → X is the natural projection, can be decomposed into a direct some of
the form

D̃ = HD ⊕ V D,

where V D is the vertical distribution on the total space D.
Let us introduce a structure of a smooth manifold on D. This structure

is defined in the following way. To each adapted coordinate map K(xα) on
the manifold X we put in correspondence the coordinate map K̃(xα, xn+α) on
the manifold D, where xn+α are the coordinates of an admissible vector with
respect to the basis

~ea = ∂a − Γn
a∂n.

The constructed over-coordinate map will be called adapted. Thus the assign-
ment of a connection over a distribution is equivalent to the assignment of the
object Ga

b (X
a, Xn+a) such that

HD = span(~εa),

where ~εa = ∂a − Γn
a∂n −Gb

a∂n+b. If it holds

Ga
b (x

a, xn+a) = Γa
bc(x

a)xn+c,

then the connection over the distribution D is defined by the intrinsic linear
connection. In [4] the notion of the prolonged connection was introduced.
The prolonged connection can be obtained from an intrinsic connection by the
equality

TD = H̃D ⊕ V D,

where HD ⊂ H̃D. Essentially, the prolonged connection is a connection in a
vector bundle. As it follows from the definition of the extended connection,
for its assignment (under the condition that a connection on the distribution
is already defined) it is enough to define a vector field on the manifold D that
has the following coordinate form: ~u = ∂n − Ga

n∂n+a. The components of the
object Ga

n are transformed as the components of a vector on the base. Setting
Ga

n = 0, we get an extended connection denoted by ∇1. In [9] the admissible
tensor field

R(~u,~v)~w = ∇~u∇~v ~w −∇~v∇~u ~w −∇p[~u,~v] ~w − p[q[~u,~v], ~w]

is called by Wagner the first Schouten curvature tensor. With respect to the
adapted coordinates it holds

Ra
bcd = 2~e[aΓ

d
b]c + 2Γd

[a||e||Γ
e
b]c.

If the distribution D does not contain any integrable subdistribution of dimen-
sion n−2, then the Schouten curvature tensor is zero if and only if the parallel
transport of admissible vectors does not depend on the curve [9]. We say that
the Schouten tensor is the curvature tensor of the distribution D. If this tensor
is zero, we say that the distribution D is a zero-curvature distribution. Note
that the partial derivatives are components of an admissible tensor field [9].
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4. Properties of almost contact Kählerian spaces related to
the usage of the connection over a distribution

Let (ϕ, ~ξ, η, g) be an almost contact metric structure. In [5], the following
theorem is proved:

Theorem 5. Let ∇ be a torsion-free intrinsic linear connection on an almost
contact metric space X. Then there exists on X a connection with the torsion

S(~x, ~y) =
1

4
P (Nϕ) (~x, ~y) , ~x, ~y ∈ ΓD

and compatible with ϕ.

The following theorem is the corollary of Theorem 5.

Theorem 6. An almost contact metric space admits a torsion-free intrinsic
connection ∇ such that ∇1ϕ = 0 if and only if the admissible structure ϕ is
integrable.

Proof. Let ∇ be a torsion-free connection such that ∇1ϕ = 0. Applying this
∇ to the proof of Theorem 5, we get

S(~x, ~y) =
1

4
P (Nϕ) (~x, ~y) = 0, ~x, ~y ∈ ΓD.

Adding to this condition the equality ∂nϕ
a
b = 0, we get

P (Nϕ) (~x, ~y) = 0, ~x, ~y ∈ TX.

By Theorem 2, this is equivalent to the integrability of ϕ. The converse state-
ment is obvious. �
Theorem 7. An almost contact metric structure is an almost contact Kählerian
structure if and only if it holds

L~ξg = 0, ∇1ϕ = 0,

where ∇ is the intrinsic torsion-free metric connection.

Proof. According [1], any almost contact metric space satisfies the following
equality:

(6) 2g((∇̃~xϕ)~y, ~z) = 3dΩ (~x, ϕ~y, ϕ~z)− 3dΩ (~x, ~y, ~z) + g
(
N (1) (~y, ~z) , ϕ~x

)
+N (2) (~y, ~z) η (~x) + 2dη (ϕ~y, ~x) η (~z)− 2dη (ϕ~z, ~x) η(~y),

where

N (1) = Nϕ + 2dη ⊗ ~ξ, N (2)(~x, ~y) = (Lϕ~xη) ~y − (Lϕyη) ~x.

Theorem 6 and the definition of an almost contact Kählerian structure allow us
to assume in what follows that the almost contact metric structure (ϕ, ~ξ, η, g)
is almost normal. In this case,

P (Nϕ) = Nϕ + 2(dη ◦ ϕ)⊗ ~ξ = 0.
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Thus,

N (1) = 2(dη ⊗ ~ξ − (dη ◦ ϕ)⊗ ~ξ),

and the equality (6) takes the simpler form:

(7) 2g((∇̃~xϕ)~y, ~z) = 3dΩ (~x, ϕ~y, ϕ~z)− 3dΩ (~x, ~y, ~z) +N (2) (~y, ~z) η (~x)

+ 2dη (ϕ~y, ~x) η (~z)− 2dη (ϕ~z, ~x) η(~y).

Sufficiency. Substituting to (7) ~x = ~ea, ~y = ∂n, ~z = ~ec, we get dΩabc = 0.
Together with the equality dΩabn = 0 this implies dΩ = 0.

Necessity. Suppose that dΩ = 0. We may rewrite (7) in the form

(8) 2g((∇̃~xϕ)~y, ~z) = N (2) (~y, ~z) η (~x) + 2dη (ϕ~y, ~x) η (~z)− 2dη (ϕ~z, ~x) η(~y).

Substituting ~x = ~ea, ~y = ~eb, ~z = ~ec to (8), we get ∇aϕ
b
c = 0. �

In the rest of this section we formulate and prove a theorem generalizing
the following classical result [1]: an almost contact metric space is a Sasakian
space if and only if the following equality holds:

(∇̃~xϕ)~y = g(~x, ~y)~ξ − η (~y) ~x.

Theorem 8. An almost contact metric structure is an almost contact Kählerian
structure if and only if it holds

(9) (∇̃~xϕ)~y = dη (ϕ~y, ~x) ~ξ + η (~y) (ϕ ◦ ψ) (~x)− η (~x) (ϕ ◦ ψ − ψ ◦ ϕ) ~y.

Proof. The equality (9) is equivalent to the following conditions:

L~ξg = 0, ∇1ϕ = 0.

Together with Theorem 7 this proves the theorem. �

5. Almost contact metric structures over a zero-curvature
distribution

Consider the vector bundle (D, π,X), where D is the distribution of the

contact metric structure (ϕ, ~ξ, η, g). If the distribution D is a zero-curvature
distribution and it does not contain any involutive subdistribution of dimension
n − 2, then the equality P a

bc = 0 holds [9]. In what follows we assume that
n > 3. On the total space D of the vector bundle under the consideration we
define an almost contact metric structure (D̃, g̃, J, d(π∗ ◦ η), D) by setting

g̃(~εa,~εb) = g̃(∂n+a, ∂n+b) = g̃(~ea, ~eb), g̃(~εa, ∂n) = g̃(∂n+a, ∂n) = 0,

J(~εa) = ∂n+a, J(∂n+a) = −~εa, J(∂n) = 0,

D̃ = π−1
∗ (D),

D̃ = HD ⊕ V D,

V D is the vertical distribution on the total space D, and HD is the horizontal
space defined by the intrinsic linear connection. The vector fields

~εa = ∂a − Γn
a∂n − Γb

acx
n+c∂n+b, ∂n, ∂n+a
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define on D a non-holonomic field of bases, and the forms

dxa, Θn = dxn + Γn
adx

a, Θn+a = dxn+a + Γa
bcx

n+bdxc

define the corresponding field of cobases. The vector field ∂n is the Reeb vector
field of the almost contact metric structure (D̃, g̃, J, d(π∗ ◦ η)).

Theorem 9. The almost contact metric structure (D̃, g̃, J, d(π∗ ◦ η)) is an
almost contact Hermitian structure if and only if the distribution D is a zero-
curvature distribution.

Proof. It is easy to check that the following holds:

[~εa, ~εb] = 2ωba∂n +Re
abcx

n+c∂n+e,(10)

[~εa, ∂n] = xn+cP b
ac∂n+b,(11)

[~εa, ∂n+b] = Γc
ab∂n+c.(12)

These equalities directly imply

NJ (~εa, ~εb) = −Re
abcx

n+c∂n+e,

NJ (∂n+a, ∂n+b) = 2ωba∂n +Re
abcx

n+c∂n+e,

NJ (~εa, ∂n+b) = 0,

NJ (~εa, ∂n) = NJ (∂n+a, ∂n) = −xn+cP b
ac∂n+b.

These equalities yield the proof of the theorem. �

Let us show that the structure (D̃, g̃, J, d(π∗ ◦ η)) is not normal. It holds

NJ (∂n+a, ∂n+b) + 2dη̃ (∂n+a, ∂n+b) ∂n = 2ωba∂n +Re
abcx

n+c∂n+e.

It is clear that this expression can not be zero.

Theorem 10. The almost contact metric structure (D̃, g̃, J, d(π∗ ◦ η)) is an

almost contact Kählerian structure if and only if (ϕ, ~ξ, η, g) is a Sasakian struc-
ture with the zero-curvature distribution.

Proof. It can be checked directly that dΩ = 0 if and only if dΩ̃ = 0, where
Ω̃(~x, ~y) = g(~x, J~y). This proves the theorem. �

Almost contact metric spaces of zero intrinsic curvature appear in mechanics
and physics.

Wagner [9, 8] paid a big attention to non-holonomic manifolds of zero cur-
vature. In particular, in [8], Wagner defines a non-holonomic manifold of zero
curvature that is a geometric model of a solid body under non-holonomic con-
strains.
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