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THE INTERSECTION GRAPH OF FINITE COMMUTATIVE
PRINCIPAL IDEAL RINGS

EMAD ABU OSBA

Abstract. In this article we consider the intersection graph G(R) of non-
trivial proper ideals of a finite commutative principal ideal ring R with unity
1. Two distinct ideals are adjacent if they have non-trivial intersection.
We characterize when the intersection graph is complete, bipartite, planar,
Eulerian or Hamiltonian. We also find a formula to calculate the number
of ideals in each ring and the degree of each ideal. We apply our results to
the intersection graph of the ring of Gaussian integers modulo n.

1. Introduction

All rings are assumed to be finite commutative principal ideal rings with
unity 1.

Let F = {Aj : j ∈ J} be a family of non-empty sets. The intersection
graph G(F ) defined on F is a simple graph whose vertices are Aj, j ∈ J
and two vertices Aj and Ai are adjacent if Aj 6= Ai and Aj ∩ Ai 6= φ. It
is interesting to study the intersection graphs G(F ) when the members of F
have an algebraic structure. There were studies for the intersection graph
for semigroups, subgroups of a finite group, and ideals of a ring, see [5]. In
[2], the intersection graph G(R) of ideals of a ring R was studied. In this
graph two proper non-trivial ideals I and J are adjacent if I 6= J and I ∩
J 6= {0}. The authors studied when G(R) is disconnected and when it is
complete for arbitrary ring R. They characterized when G(Zn) is connected,
complete, planar and when it has cycles, they also characterized when G(Zn) is
Eulerian or Hamiltonian. In [5], the authors continued the investigation of the
intersection graph for ideals, and gave characterization for G(R) to be planar,
where R is a commutative ring with unity 1.

In this article we consider the intersection graph G(R) of non-trivial proper
ideals of a finite commutative principal ideal ring R with unity 1. We generalize
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all results of [2], and we also calculate the number of ideals in each such
rings, and find the degree of each ideal. Finally, we apply our results to the
intersection graph G(Zn[i]).

For distinct vertices x and y of a graph Γ, let d(x, y) be the length of a short-
est path from x to y, and let diam(Γ) = sup{d(x, y) : x, y are distinct vertices in
Γ}. For each vertex x in Γ, let deg(x) be the number of vertices adjacent to
x and let N(x) be the set of vertices adjacent to x in Γ. For any undefined
terms, the reader may contact [6].

Let R be a finite local ring with maximal ideal M . Then there exists
n ∈ N such that Mn = {0} but Mn−1 6= {0}. In this case we say that
Nilpotency(R) = n. Note that if R is a field, then Nilpotency(R) = 1. If

R =
m∏
j=1

Rj, where Rj is a ring with identity for each j, then any ideal I in R

is of the form
m∏
j=1

Ij with Ij is an ideal in Rj. Hence if {Rj : j = 1, 2, . . . ,m}

is a family of finite commutative principal ideal rings, then so is
m∏
j=1

Rj.

The following lemma is well known and it can be found in many classical
books. For instance see the proof of Proposition 8.8 in [1].

Lemma 1. Let R be a finite local principal ideal ring with Nilpotency(R) = n.
Then R has n− 1 non-trivial proper ideals.

Theorem 2. Let R be a finite non-local ring such that R =
m∏
j=1

Rj, where Rj

is a local principal ideal ring with Nilpotency(Rj) = nj for j = 1, . . . ,m. Then

R has (
m∏
j=1

(nj + 1))− 2 non-trivial proper ideals.

Proof. The result follows immediately, since any ideal I in R is of the form
m∏
j=1

Ij, where Ij is an ideal in Rj, and we subtract 2 to eliminate the ideals {0}

and R. �

2. When is G(R) complete?

Definition 3. A graph Γ is called complete if any two vertices in Γ are adja-
cent. If a complete graph Γ has n vertices, then it is denoted by Kn.

It is clear that in a local principal ideal ring R with Nilpotency(R) = n,
the intersection of any non-trivial ideals is non-trivial, and so G(R) is the
complete graph Kn−1. If R is non-local principal ideal ring, then R = R1×R2

with Rj 6= {0} for j = 1, 2. Let I1 = R1 × {0} and I2 = {0} × R2. Then
I1 ∩ I2 = {0} and G(R) is not complete. Hence G(R) is complete if and only
if R is local.

We now calculate the diameter of the intersection graph. If R is local, then
diam(G(R)) = 1. If R is a product of two fields, then diam(G(R)) = ∞, since
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G(R) = 2K1. If R = F×R2, where F is a field and R2 is not, then the possible
forms of the ideals are: F × {0}, F × J, {0} × R2 and {0} × J , where J is a
non-trivial ideal of R2, and a simple argument shows that diam(G(R)) = 2. If
R = R1 × R2, where R1 and R2 are non-fields, then the possible forms of the
ideals in R are: R1×{0}, R1×J, {0}×R2, {0}×J, I ×R2, I ×{0}, and I ×J ,
where I and J are non-trivial proper ideals in R1 and R2, respectively. Again
diam(G(R)) = 2.

3. When is G(R) Eulerian?

Definition 4. A graph Γ is called Eulerian if there exists a closed trail con-
taining every edge of Γ.

The following is an easier criterion for a graph to be Eulerian, which was
proved by Euler.

Proposition 5 (Euler). A connected graph Γ is Eulerian if and only if the
degree of each vertex of Γ is even.

In this article we will consider a discrete graph to be Eulerian, and if a graph
Γ is the disjoint union of the subgraphs A and B with A is discrete, then Γ is
Eulerian if and only if B is.

Let R be a local principal ideal ring with Nilpotency(R) = n. Then G(R) =
Kn−1 and for each vertex I in G(R), deg(I) = n−2. So, we have the following
result:

Theorem 6. Let R be a finite local principal ideal ring. Then G(R) is Eulerian
if and only if Nilpotency(R) is even.

Let R be a non-local ring with R =
m∏
j=1

Rj, where Rj is a local ring with

Nilpotency(Rj) = nj for j = 1, . . . ,m. Any ideal I in R is of the form I =
m∏
j=1

Ij, where Ij is an ideal in Rj. Define the function πj : G(R) → {0, 1} such

that

πj(I) =

{
0, Ij 6= {0},
1, Ij = {0}.

Then number of proper non-trivial ideals J such that I ∩ J = {0} is
m∏
j=1

(nj +

1)πj(I) − 1, and hence

deg(I) =
m∏
j=1

(nj + 1)−
m∏
j=1

(nj + 1)πj(I) − 2.

Theorem 7. If R is a finite non-local principal ideal ring, then G(R) is Euler-
ian if and only if R is a product of fields or a product of local rings each of
which has even nilpotency number.
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Proof. It is clear that G(R) is Eulerian if R is a product of fields or a product
of local rings each of which has even nilpotency number, since in these cases

the degree of each vertex is even. Now, let R =
m∏
j=1

Rj, where Rj is a local

ring with Nilpotency(Rj) = nj = 2mj +1, for each j, and Nilpotency(R1) > 1.

Consider the ideal I =
m∏
j=1

Ij, with I1 /∈ {{0}, R1} and Ij = Rj for j = 2, . . . ,m.

Then I is adjacent to every other vertex in G(R) and deg(I) =
m∏
j=1

(nj +1)− 3

which is an odd number, hence G(R) is not Eulerian. Finally, assume that

R =
m∏
j=1

Rj, where Rj is a local ring with Nilpotency(Rj) = nj, n1 is even,

while n2 is odd. Consider the ideal, I =
m∏
j=1

Ij with I1 = {0} and Ij = Rj

otherwise. Then deg(I) =
m∏
j=1

(nj +1)−n1− 3, which is an odd number, hence

G(R) is not Eulerian. �

4. When is G(R) Hamiltonian?

Definition 8. A Hamiltonian cycle of a graph Γ is a cycle that contains every
vertex of Γ. A graph is Hamiltonian if it contains a Hamiltonian cycle.

The following proposition is a well known fact, see for example [6, page 36].

Proposition 9. If Γ is a graph with n (≥ 3) vertices, and deg(v) ≥ n
2
for each

vertex v, then Γ is Hamiltonian.

Let R be a finite local principal ideal ring. Then it is clear that G(R) is
Hamiltonian if and only if Nilpotency(R) > 3.

The following two lemmas are easy to prove and are left as an exercise for
the reader.

Lemma 10. If R = F1×F2, where F1 and F2 are fields, or R = F ×R2, where
F is a field and R2 is a finite local principal ideal ring with Nilpotency(R2) = 2,
then G(R) is not Hamiltonian.

Lemma 11. If R = F1 × F2 × F3, where F1, F2 and F3 are finite fields or
R = F × R2, where F is a finite field and R2 is a finite local principal ideal
ring with Nilpotency(R2) > 2, or R = F1×F2×R3, where F1 and F2 are finite
fields, and R3 is a finite local principal ideal ring with Nilpotency(R3) = 2,
then G(R) is Hamiltonian.

Theorem 12. If R =
m∏
j=1

Rj with Rj is a finite local principal ideal ring which

is not a field for each j, then G(R) is Hamiltonian.
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Proof. Assume that 1 < Nilpotency(R1) = n1 ≤ nj = Nilpotency(Rj) for each
j. Let I = R1 × {0} × {0} × · · · × {0}. Then

deg(I) =
m∏
j=1

(nj + 1)−
m∏
j=2

(nj + 1)− 2,

and so I is a vertex with least degree in G(R). So for each proper non-trivial
ideal J of R,

deg(J) ≥ deg(I) =

(
m∏
j=2

(nj + 1)

)
(n1 + 1− 1)− 2

= n1

m∏
j=2

(nj + 1)− 2 ≥ (n1 + 1)

2

m∏
j=2

(nj + 1)− 1

=

m∏
j=1

(nj + 1)− 2

2
=

|V (G(R))|
2

,

where V (G(R)) is the set of vertices in G(R), so it follows by Proposition 9
that G(R) is Hamiltonian. �

Theorem 13. If R = F×K, where F is a finite field and K is a finite principal
ideal ring such that G(K) is Hamiltonian, then G(R) is Hamiltonian.

Proof. Let I1, . . . , In be all distinct proper non-trivial ideals of K and assume
that I1 − I2 − · · · − In − I1 is a Hamiltonian cycle in G(R). The ideals of R
are F × {0}, {0) × K,F × Ij, {0} × Ij for j = 1, 2, . . . , n. Thus we have the
following Hamiltonian cycle: (F × I1) − ({0} ×K) − (F × I2) − (F × {0}) −
(F × I3)−· · ·−(F × In)−({0} × I1)−({0} × I2)−· · ·−({0} × In)−(F × I1).
Thus G(R) is Hamiltonian. �

Theorem 14. Let R be a finite non-local principal ideal ring. Then G(R) is
Hamiltonian if and only if R has more than 4 proper non-trivial ideals.

Proof. Assume 4 < n = number of proper non-trivial ideals of R. Assume

R =
m∏
j=1

Rj, where Rj is a local ring with Nilpotency(Rj) = nj. Then n =

m∏
j=1

(nj + 1) − 2, and so 6 < n + 2 =
m∏
j=1

(nj + 1). Now, the result follows by

Lemma 11 and Theorems 12 and 13. �

5. When is G(R) bipartite or planar?

Definition 15. A graph Γ is called bipartite if the vertex set of Γ can be split
into two disjoint sets A and B so that each edge of Γ joins a vertex of A to a
vertex of B.
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It is known that a simple graph Γ is bipartite if and only if it has no odd
cycles, see [2].

Lemma 16. Let R be a finite local principal ideal ring. Then G(R) is bipartite
if and only if

Nilpotency(R) = 2 or 3.

Proof. In these cases G(R) is K1 or K2, which are bipartite, otherwise G(R)
has a triangle and so it is not bipartite. �

Lemma 17. Let R be a finite non-local principal ideal ring. Then G(R) is
never a bipartite graph

Proof. If R is a product of two fields, then it is an edgeless graph. So assume
that R = R1 × R2 with R1 is not a field and Nilpotency(R1) = n ≥ 2. The
ideals are R1 × {0}, M × {0}, and M × R2 form a triangle, where M is a
maximal ideal in R1, and so G(R) is not bipartite. �

According to the previous work one can calculate the girth for G(R). Recall
that the girth of a graph Γ, denoted by g(Γ) is the length of a shortest cycle
in Γ, (g(Γ) = ∞ if Γ contains no cycles). If R is a finite local principal ideal
ring, with Nilpotency(R) = n ≥ 4, then G(R) = Kn−1and so, g(G(R)) = 3.
If Nilpotency(R) ≤ 3, then G(R) has no cycles. So assume now that R is a
non-local principal ideal ring. If R is a product of two fields, then G(R) has no
cycles. If R = R1×R2 with R1 is not a field and Nilpotency(R1) ≥ 2, then the
ideals R1×{0}, M ×{0}, and M ×R2 form a triangle, where M is a maximal
ideal in R1, and so g(G(R)) = 3. Hence we have the following theorem.

Theorem 18. If R is finite local principal ideal ring with Nilpotency(R) ≥ 4,
or R is a product of two finite non-trivial principal ideal rings with at least one
of them is not a field, then g(G(R)) = 3.

A graph is called planar if it can be drawn in the plane so that its edges
intersect only at their ends. Two graphs are said to be homeomorphic if both
can be obtained from the same graph by inserting new vertices of degree 2 into
its edges.

Proposition 19 (Kuratowski). A graph is planar if and only if it contains no
subgraph homeomorphic to K5 or K3,3.

Theorem 20. If R is a finite local principal ideal ring, then G(R) is planar
if and only if 1 < Nilpotency(R) < 6.

Proof. The result follows immediately since if Nilpotency(R) ≥ 6, then G(R)
contains the subgraph K5, while if 1 < Nilpotency(R) < 6, then G(R) has
at most 4 vertices, and so it contains on subgraph homeomorphic to K5 or
K3,3. �
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Theorem 21. Let R = R1 × R2 be a finite non-local principal ideal ring.
Then G(R) is planar if and only if R1 and R2 are fields, or R1 is a field and
Nilpotency(R2) = 2.

Proof. If R is a product of two fields, then G(R) = 2K1 is planar. If R1 is a field
and Nilpotency(R2) = 2, then the vertices of G(R) are {R1×{0}, R1×M, {0}×
R2, {0}×M} which form a planar graph. If R1 and R2 are non-fields, then the
subgraph consisting of {R1×M2, R1×{0},M1×R2,M1×M2,M1×{0}} is the
graph K5, so G(R) cannot be planar. If R1 is a field and Nilpotency(R2) > 2,
then the subgraph {R1 ×M,R1 ×M2, {0}×R2, {0}×M, {0}×M2} is K5, so
G(R) cannot be planar. �

6. Gaussian Integers Modulo n

The set of all complex numbers a + ib, where a and b are integers, forms a
Euclidean domain with the usual complex number operations. This domain
will be denoted by Z[i] and well be called the ring of Gaussian integers. If t
is a prime integer, then t = 2 or t ≡ 1 ( mod 4) or t ≡ 3 ( mod 4). In this
article p and pi will denote prime integers that are congruent to 1 ( mod 4),
while q and qi will denote prime integers that are congruent to 3 ( mod 4).
If p ≡ 1 ( mod 4), then there are integers a, b such that p = a2 + b2.

Let n be a natural number and let < n > be the principal ideal generated
by n in Z[i] and let Zn = {0, 1, . . . , n− 1} be the ring of integers modulo n.
Then the factor ring Z[i] /< n > is isomorphic to Zn[i] = {a+ i b : a, b ∈ Zn},
which implies that Zn[i] is a principal ideal ring. The ring Zn[i] is called the
ring of Gaussian integers modulo n.

If n =
s∏

j=1

t
kj
j , the prime power decomposition of the positive integer n,

then Zn[i] is the direct product of the rings Z
t
kj
j

[i]. Also if m = tk for some

prime t and positive integer k, then Zm[i] is local if and only if t = 2 or
t ≡ 3( mod 4). In Z2m [i], the ideal < 1 + i > is the maximal ideal, and
< 1 + i >2m= {0}. In Zqm [i], Zq[i] is a field, while Zqm [i] is local with max-
imal ideal < q >, in this case < q >m= {0}. If p ≡ 1 ( mod 4), then
p = a2 + b2, and Zpm [i] ' Z[i] /< a+ ib >m × Z[i] /< a− ib >m , in this case
Z[i] /< a+ ib >m and Z[i] /< a− ib >mare local rings with maximal ideals
< a+ ib > /< a+ ib >m and < a− ib > /< a− ib >m , respectively. For more
details on Gaussian integers and Gaussian integers modulo n, the reader may
refer to [3] and [4].

It was shown in [2], Corollary 2.7, that for a commutative ring R with unity,
the graph G(R) is disconnected if and only if R is a product of two fields.
Hence we conclude immediately that G(Zn[i]) is disconnected if and only if
n = p or n = q1q2.

Theorem 22. The intersection graph G(Zn[i]) is complete if and only if n =
qm, where m > 1 or n = 2m for any m ≥ 1.
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Since Nilpotency(Z2m [i]) = 2m, we have G(Z2m [i]) is Eulerian for any m
and G(Zqm [i]) is Eulerian if and only if m is even.

Theorem 23. The intersection graph G(Zn[i]) is Eulerian if and only if n =

2m, m ≥ 1, n = q2m, m ≥ 1, n =
m∏
j=1

tj, where the tj’s are distinct odd primes,

or n = 2k
m∏
j=1

t
2mj

j , where the tj’s are distinct odd primes and k is any non-

negative integer.

Theorem 24. The intersection graph G(Zn[i]) is Hamiltonian if and only if
n 6= p, q, q1q2, q1q

2
2, 2q.

Theorem 25. The intersection graph G(Zn[i]) is bipartite if and only if n = q3.

Theorem 26. If n 6= 1, 2, p, q, q2, q3, q1q2, then g(G(Zn[i]) = 3.

Theorem 27. The intersection graph G(Zn[i]) is planar if and only if n =
2, 4, p, 2q, qp, q1q2, q1q

2
2, q1q2q3, q

m with 1 < m < 6.
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