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ON DEDEKIND SUBRINGS

JANUSZ ZIELIŃSKI

Abstract. We present an elementary proof of a theorem of Zaks concern-
ing Dedekind subrings of polynomial rings over an infinite field.

1. Introduction

Let k be an infinite field. The following theorem first appeared in Zaks [7].

Theorem 1.1. Let k ⊂ R ⊂ k[x1, . . . , xn]. If R is a Dedekind domain, then
it is a polynomial ring in one variable.

Zaks’ theorem is also valid for finite fields, but the proof (see [7]) is slightly
different. The case of infinite fields has numerous applications. It plays notably
important role in differential algebra. For instance, it follows from it that
the ring of constants of a non-zero derivation (or a family of derivations) of
the polynomial ring in two variables over the field of characteristic zero is
isomorphic to the polynomial ring in one variable. It was proved by Nagata
and Nowicki in [5]. Zaks’ theorem was also used in [6] for the description of the
centralizer. For more results that are consequences of Theorem 1.1 we refer
the reader to [4].

In the proof of Proposition 4 in [7] it states: ”Since k[u] ⊂ R and R ⊂ k(u),
R is a localization of k[u]. As R ⊂ k[x], the invertible elements of R are
the (non-zero) elements of k thus R = k[u].” This is not clear why there do
not exist other rings between k[u] and k(u). No references nor arguments are
given. Also the latter sentence is not obvious. Nevertheless Zaks’ approach
is correct. The aim of this paper is to complete his proof. One possible way
is theory of Prüfer domains, namely so-called domains with QR-property (see
[3]). However, we give a completely elementary proof.

Recall that a Dedekind domain is a Noetherian domain that is normal (i.e.,
integrally closed in its field of fractions) and its Krull dimension equals 1
(i.e., its non-zero prime ideals are maximal). Note that our proof does not
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exploit Noetherianity. Basic examples of Dedekind domains are principal ideal
domains. In that case an analogous theorem was known earlier (see [2]). An
alternative proof of Theorem 1.1 was given by Eakin [1].

2. Auxiliary lemmas

In the following two lemmas k is an arbitrary field. If R is a domain, then
we denote by R0 the field of fractions of R.

Lemma 2.1. Let R ⊂ k[x] be a subring containing k. If R0 = k(w) for some
w ∈ R, then R = k[w].

Proof. Obviously k[w] ⊂ R. Suppose that there exists a polynomial f ∈
R \ k[w]. Let n = degw. We show that there exists g ∈ R \ k[w] such that
deg g is not divisible by n. If n - deg f , then we take g = f . If deg f = mn for
some natural m, then subtracting from f the polynomial wm with the suitable
coefficient from k we obtain a polynomial f1 ∈ R of the degree < mn. If
f1 ∈ k[w], then f ∈ k[w], which is a contradiction. Thus f1 ∈ R \ k[w]. If
n - deg f1, we take g = f1. If n | deg f1, then analogously as above we find
a polynomial f2. By recursion we obtain the sequence (fr) of polynomials
not belonging to k[w] with decreasing degrees. Because each polynomial of
degree < 1 belongs to k[w] (since k ⊂ k[w]), the procedure stops at some
polynomial fs. Then n - deg fs and we take g = fs.

Since R0 = k(w), there exist univariate polynomials F and G with coeffi-
cients in k such that

g

1
=

F (w)

G(w)
.

Thus g · G(w) = F (w). This is a contradiction, because n | degF (w) and
n - deg(g ·G(w)). �
Lemma 2.2. Let R be a ring such that k ⊂ R ⊂ k[x]. If R0 ∩ k[x] = R, then
R = k[u] for some u ∈ R.

Proof. If degx r < 1 for every r ∈ R, then R ⊂ k. Consequently, R = k = k[1].
Assume then that R contains a polynomial of positive degree. Let u(x) ∈ R be
a polynomial of smallest positive degree in R (obviously u(x) is not uniquely
determined). Let m = degx u(x). Consider the polynomial ring R0[z], where
z is a new independent variable.

We show that the polynomial u(z)− u(x) is irreducible in R0[z]. Suppose it
is reducible. Let

(2.1) u(z)− u(x) = p1(x, z) · p2(x, z),
where p1(x, z), p2(x, z) ∈ R0[z]. We write the variable x in the polynomials p1
and p2 for the technical reason. Formally it is the factorization of polynomials
in the variable z. Nevertheless, the coefficients of these polynomials belong
to R0 and hence are rational functions in variable x. It will be useful in the
proof to consider x as well. We aim to have the variable x in p1 and p2 in



ON DEDEKIND SUBRINGS 35

the polynomial form (it is not guaranteed yet). The coefficient of the highest
power of z on the left-hand side of (2.1) belongs to the field k. Without loss of
generality we can assume that the coefficients of the highest powers of z in p1
and p2 also belong to k (we may multiply one of these polynomials, and divide
the other, by a suitable element from R0). We show that then the polynomials
p1(x, z) and p2(x, z) belong to k[x, z].

Consider (2.1) as an equality in the ring k(x)[z]. Let r = degz p1 and
s = degz p2. Let hr(x) ∈ k[x] be the least common denominator of the coeffi-
cients of the polynomial p1 ∈ R0[z] and let fs(x) ∈ k[x] be the least common
denominator of the coefficients of the polynomial p2 ∈ R0[z]. Then we can
write:

p1(x, z) =
1

hr(x)
(h0(x) + h1(x)z + · · ·+ chr(x)z

r) ,(2.2)

p2(x, z) =
1

fs(x)
(f0(x) + f1(x)z + · · ·+ dfs(x)z

s) ,(2.3)

where h0, . . . , hr, f0, . . . , fs ∈ k[x], gcd(h0, . . . , hr) = 1, gcd(f0, . . . , fs) = 1 and
c, d ∈ k. Then

hr(x)fs(x) (u(z)− u(x)) = (h0(x) + · · ·+ chr(x)z
r) (f0(x) + · · ·+ dfs(x)z

s) .

Since both factors of the right-hand side of the last equation are primitive poly-
nomials, it follows from Gauss’s lemma that the left-hand side of the equation
is a primitive polynomial. In particular, hr(x), fs(x) ∈ k, and consequently
(2.2) and (2.3) imply p1(x, z), p2(x, z) ∈ k[x, z]. Thus, we established that
the coefficients of the polynomials p1, p2 ∈ R0[z] belong to k[x], and hence to
R0 ∩ k[x] = R.

Temporarily consider p1 and p2 as polynomials in k[x, z]. Let (i1, j1), (i2, j2)
be the respective grades of these polynomials in the lexicographic order. Then
i1 is the highest exponent of x in p1 and j1 is the highest exponent of z
among terms of p1 divisible by xi1 . Then the grade of p1(x, z) · p2(x, z) equals
(i1 + i2, j1 + j2). However that grade is equal to the grade of u(z)− u(x), that
is to (m, 0). Therefore j1 = 0 and j2 = 0. We examine what polynomial in the
variable x is the coefficient of z0 in p1. The grade of p1(x, z) is (i1, 0), then the
expansion of p1(x, z) contains the term ai1x

i1 for a non-zero ai1 ∈ k. Thus the
coefficient of z0 is equal to ai1x

i1 + · · ·+ a1x+ a0. Because we showed that the
coefficients of p1 belong to R, we obtain that R contains a polynomial of degree
(with respect to x) i1. Since i1 > 0, i2 > 0 and i1 + i2 = m, the minimality
of m implies that i1 = 0 or i1 = m. In the latter case we have i2 = 0, hence
the grade of one of the polynomials p1(x, z), p2(x, z) equals (0, 0). Therefore
one of these polynomials belong to the field k. This proves the irreducibility
of u(z)− u(x) in R0[z].

Since x is a root of an irreducible (over R0) polynomial u(z) − u(x), it
follows that [R0(x) : R0] = m. Since k ⊂ R ⊂ k[x], we have R0(x) = k(x),
thus [k(x) : R0] = m. An element x is also a root of u(y)−u(x) ∈ k(u)[y], and
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then [k(x) : k(u)] 6 m, where similarly to above we make use of the formula
(k(u)) (x) = k(x). Since u ∈ R ⊂ R0, we have k(u) ⊂ R0 ⊂ k(x), hence

[k(x) : k(u)] = [k(x) : R0] · [R0 : k(u)].

Therefore m > m · [R0 : k(u)], and thus 1 > [R0 : k(u)], because m is positive.
Consequently [R0 : k(u)] = 1, and finally R0 = k(u). Then Lemma 2.1 implies
R = k[u]. �

From now on, we assume that k is an infinite field. The proof of the next
lemma is based on the proof of Lemma 1 in [7]. Zaks proves that the tran-
scendence degree of R0 over k equals 1. We can also easily deduce it from
the following lemma, however the weakened assertion of Lemma 2.3 suffices to
prove the main theorem.

Lemma 2.3. Let R be a ring such that k ⊂ R ⊂ k[x1, . . . , xn]. If the Krull
dimension of R equals 1, then R is a subring of the polynomial ring in one
variable.

Proof. Let m be the smallest positive integer such that R is a subring of the
polynomial ring in m variables k[y1, . . . , ym]. If m = 1, the assertion follows.
Suppose then that m > 1.

Let a be an arbitrary element of k. Consider the homomorphism

fa : R −→ k[y1, . . . , ym]

defined by fa(r) = r(y1, . . . , ym−1, a) for r(y1, . . . , ym) ∈ R. The kernel of a
homomorphism is a prime ideal and the Krull dimension of R equals 1, then
either ker fa = 0, or ker fa is a maximal ideal in R. In the former case, we
obtain an inclusion of R into the ring k[y1, . . . , ym−1], which is a contradiction
to the minimality of m. In the latter case, the quotient ring R/ ker fa is a field.
It is isomorphic to the image of R under fa. Hence every non-zero element
in the image is invertible. The only invertible elements in k[y1, . . . , ym−1] are
non-zero elements of k. Thus r(y1, . . . , ym−1, a) ∈ k for all r ∈ R and a ∈ k.

Sincem is minimal and greater than 1, the inclusion R ⊂ k[ym] is impossible.
Then there exists r ∈ R \ k[ym]. Let

r =
∑

bi1...imy
i1
1 · · · yimm =

∑(∑
bi1...imy

im
m

)
yi11 · · · yim−1

m−1 ,

where every bi1...im belongs to k. If all elements of the form
∑

bi1...imy
im
m are

zero polynomials, then r = 0, contrary to r /∈ k[ym]. Furthermore, if only∑
b0...0imy

im
m is a non-zero polynomial, then r =

∑
b0...0imy

im
m ∈ k[ym]. Hence,

there exist integers j1, . . . , jm−1, not all equal to zero, such that the polynomial∑
bj1...jm−1imy

im
m is non-zero. Denote this polynomial by b(ym). Since it is non-

zero, it has finitely many roots. The field k is infinite, then there exists a ∈ k
such that b(a) 6= 0. Thus r(y1, . . . , ym−1, a) /∈ k, because in that evaluation the

coefficient of the monomial yj11 · · · yjm−1

m−1 is a non-zero element of k. This is a
contradiction with the fact we obtained above, and this proves that m = 1. �
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3. Proof of Zaks’ theorem

Proof. In view of Lemma 2.3 we may assume that R ⊂ k[x]. Let S = R0∩k[x].
Then S is a ring, as an intersection of rings. Since R ⊂ R0 and R ⊂ k[x], we
have R ⊂ S. Then R0 ⊂ S0. Moreover, S ⊂ R0 and R0 is a field, then we have
S0 ⊂ R0 and consequently S0 = R0. Because k is included in both k[x] and
R0, we deduce that k ⊂ S ⊂ k[x]. Furthermore, S0 = R0 implies S = S0∩k[x].
By Lemma 2.2, S = k[v] for some v ∈ S.

Thus R ⊂ k[v] and R0 = S0 = k(v). In particular, v = r
s
for r, s ∈ R.

Therefore vs−r = 0. Since s ∈ R ⊂ k[v], it follows that s = f(v), where f is a
univariate polynomial over k. Then v is a root of the polynomial xf(x)− r ∈
R[x]. The leading coefficient of the latter polynomial belongs to k and hence
is invertible in R. Consequently, the element v is integral over R. Since v ∈ R0

and the ring R is normal, we have v ∈ R. Finally, R = k[v]. �
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