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32 (2016), 125–133
www.emis.de/journals

ISSN 1786-0091

RICCI TENSOR OF A FINSLER SPACE WITH SPECIAL
(α, β)-METRICS

ROOPA M. K. AND NARASIMHAMURTHY S. K.

Abstract. In this paper, we investigate the Ricci tensor of a Finsler space

of a special (α, β)-metric F = (α+β)2

α + β, where α =
√
aijyiyj be a Rie-

mannian metric and β be a 1-form. We also prove that if α is a positive
(negative) sectional curvature and F is of α-parallel Ricci curvature with
constant Killing 1-form β, then (M,F ) is a Riemannian Einstein space.

1. Introduction

One of the most important problems in Finsler geometry is to understand
the geometric meanings of various quantities and their impacts on the global
geometric structures. The flag curvature K, which is obtained by the Riemann-
ian curvature, tells us how curved the Finsler manifold is at a specific point.
Moreover, there are several important non- Riemannian quantities in Finsler
geometry: the Cartan torsion C, the Berwald curvature B, the Landsberg cur-
vature L, and the well-known S curvature, etc. They all vanish for Riemannian
metrics, hence they are said to be non-Riemannian. These quantities interact
with the flag curvature in a fragile way.

Finsler space with (α, β) -metrics were introduced in 1972 by M. Matsumoto
[9]. The study of Finsler spaces with (α, β) -metrics is a very important aspect
of Finsler geometry and its applications (see [2, 5]). An (α, β) -metric is a
scalar function on TM defined by

F = αφ

(
β

α

)
, s =

β

α
,

where φ = φ(s) is a C∞ on (b0, b0) with certain regularity, α =
√

aij(x)yiyj is a
Riemannian metric and β = bi(x)y

i is a 1-form in the manifold M . Therefore,
(M,F ) is called the associated Riemannian manifold. A Finsler space is a
manifold M equipped with a family of smoothly varying Minkowski norms;
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one on each tangent space, Riemannian metrics are examples of Finsler norms
that are induced from an inner-product.

Some interesting examples of (α, β)-metrics are the Randers metric, Mat-
sumoto metric and Berwald metric, etc., Randers metric and its Ricci tensor
are related via their applications in physics. The well-known Ricci tensor was
introduced in 1904 by G. Ricci. Nine years later Ricci’s work was used to
formulate Einstein’s theory of gravitation [1]. Einstein metrics are defined in
the next section but, roughly, we will say a Finsler metric F is Einstein if the
average of its flag curvatures at a flag pole y is a function of position x alone,
rather than the a priori position x and flag pole y. C. Robles [13] investigated
Randers Einstein metrics in her thesis in 2003. She obtained the necessary and
sufficient conditions for Randers metric to be Einstein and by using Einstein
Zermelo navigation description, she proved the pair (h,W ) of a Riemannian
metric and an appropriate vector field W has been founded in [6].

Put Hij = Hk
ikj; denote the canonical section of the vector bundle π∗TM

and the vertical derivation with respect to yi by v and ∂̇i respectively. For
an (α, β) -metric F = αφ(β/α), by using the geodesic coefficient of α, we can
introduce a new geometric quantity. Let us denote the Levi-Civita connection

of α by ∇̃. We define the Ricci tensor H̄ and H̃ on π∗TM as follows:

H̄ij =
1

2
∂̇i∂̇jH(v, v),

H̃(X, Y ) = ∇̃v̂H̄(X,Y ), X = π∗(X̂), Y = π∗(Ŷ ),

where, X̂, Ŷ ∈ TM0 and v̂ is the geodesic spray associated with α. The

curvature H̃ is closely related to the Ricci curvature and its related to (α, β)
-metrics, especially to the associated Riemannian manifold (M,α). In this
paper we investigate an (α, β) - metric of α -parallel Ricci curvature, and we
prove the following main theorem:

Theorem. Let F = (α+β)2

α
+ β be a Finsler metric on a connected manifold

M of dimension n. Suppose that α is a positive (negative) sectional curvature

and Ricci tensor H̃ = 0, (H(v, v) = 0) and β is a constant Killing 1-form.
Then (M,F ) is a Riemannian Einstein space.

2. Preliminaries

Let M be an n-dimensional C∞ manifold. Denote by TxM be the tangent
space at x ∈ M and TM =

⋃
x∈M TxM be the tangent bundle of M . Each

element of TM has the form (x, y) where x ∈ M and y ∈ TxM . Let TM0 =
TM\{0}. The natural projection π : TM → M is given by, π(x, y) = x.
The pull-back tangent bundle π∗TM is a vector bundle over TM0 whose fiber
π∗
vTM at v ∈ TM0 is just TxM , where π(v) = x. Then

π∗TM = {(x, y, v)|y ∈ TxM0, v ∈ TxM}.
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A Finsler metric on a manifold M is a function ([9, 10]) F : TM → [0,∞)
which has the following properties:

(i) F is C∞ on TM0,
(ii) F (x, λy) = λF (x, y), λ > 0,

(iii) for any tangent vector y ∈ TxM , the vertical Hessian of F 2

2
given by

gij =

(
1

2
F 2

)
yiyj

,

is positive definite.

Every Finsler metric F induces a spray [7]:

G = yi
∂

∂xi
− 2Gi(x, y)

∂

∂yi
,

is defined by

Gi(x, y) =
1

4
gil(x, y)

{
2
∂gjl
∂xk

(x, y)− ∂gjk
∂xl

(x, y)

}
yjyk,

where the matrix (gij) means the inverse of matrix (gij) and the coefficients
Gi

j, G
i
jk and hv-curvature Gi

jkl of the Berwald connection can be derived from

the spray Gi as follows:

Gi
j =

∂Gi

∂yj
, Gi

jk =
∂Gi

j

∂yk
, Gi

jkl =
∂Gi

jk

∂yl
.

When F =
√

aij(x)yiyj is a Riemannian metric, Ki
k = Ri

jkl(x)y
jyl, where

Ri
jkl(x) denote the coefficients of the usual Riemannian curvature tensor. Thus,

the Ricci scalar function of F is given by

ρ =
1

F 2
Ki

i , H(v, v) = Ki
i .

Therefore, the Ricci scalar function is positive homogeneous of degree 0 in y.
This means ρ(x, y) depends on the direction of the flag pole y, but not its
length.

Hij =
1

2
∂̇i∂̇jH(v, v).

A Finsler manifold (M,F ) is called an Einstein space if there exists a differ-
entiable function c defined on M such that H(v, v) = cF 2. The Ricci identity
for a tensor Wjm of π∗TM is given by the following formula [11]:

DkDlWjm −DlDkWjm = −WrmH
r
jkl −WjrH

r
mkl −

∂Wjm

∂yr
Hr

0kl,

where Dk denotes the horizontal covariant derivative with respect to { δ
δxk } in

the Berwald connection. Let (M,F ) be an n -dimensional Finsler space. For
every x ∈ M , assume SxM = {y ∈ TxM\F (x, y) = 1}. SxM is called the
indicatrix of F at x ∈ M and is a compact hyper surface of TxM , for every
x ∈ M . Let v : SxM → TxM be its canonical embedding; where ‖v‖ = 1 and
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(t, U) be a coordinate system on SxM . Then, SxM is represented locally by
vi = vi(tα), (α = 1, 2, . . . , (n− 1)). One can easily show that:

∂

∂vi
= F

∂

∂yi
,

The (n− 1) vectors {(viα)} from a basis for the tangent space of SxM in each

point, where viα = ∂vi

∂tα
, put ∂α = ∂

∂tα
. It implies that:

∂α = Fviα
∂

∂yi
.

g = gij(x, y)y
iyj is a Riemannian metric on TxM . Inducing g in SxM , one gets

the Riemannian metric ḡ = ḡαβdt
αdtβ, where ḡαβ = viαv

i
βgij. The canonical

unit vertical vector field V (x, y) = yi ∂
∂yi

together the (n− 1) vectors, ∂α from

the local basis for TxM , B = {u1, u2, . . . , un} where, uα = (viα) and un = V .
We conclude that g(V, ∂α) = 0, that is yiv

i
α = 0.

Let (M,F ) be an n-dimensional Finsler space equipped with an (α, β) -
metric F , where

α(x, y) =
√
aij(x)yiyj, β(x, y) = bi(x)y

i.

M. Matsumoto ([2, 9]) proved that, the spray Gi of Finsler space with (α, β)-
metrics are given by

2Gi = γi
00 + 2Bi,

where

Bi =
E

α
yi +

(
αFβ

Fα

)
si0 −

(
αFαα

Fα

)
C

{
yi

α
− α

β
bi
}
,

E =

(
β
Fβ

F

)
C,

C = αβ(r00Fα − 2αs0Fβ)/2(β
2Fα + αγ2Fαα),

bi = airbr, b2 = brbr, γ2 = b2α2 − β2,

rij =
1

2
(∇̃jbi + ∇̃ibj), sij =

1

2
(∇̃jbi − ∇̃ibj),

sij = aihshj, sj = bis
i
j.

The matrix (aij) means the inverse of matrix (aij). The function γi
jk stands for

the Christoffel symbols in the space (M,α), and the suffix 0 means transvecting
length with respect to α, equivalently

rij = 0 and si = 0.

In an n-dimensional coordinate neighborhood U , we consider a liner partial
differential equation of second order,

L(ϕ) = gik
∂2ϕ

∂xixk
+ hi ∂ϕ

∂xi
.
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where gik(x) and hi(x) are continuous function of point x in U , and quadratic
form gjkZjZk is supposed to be positive definite everywhere in U . Then we
call L an elliptic differential operator.

Strong maximum principle. In coordinate neighborhood U , if a function
ϕ(p) of class C2 satisfies

L(ϕ) ≥ 0,

where ϕ : M → Rn, and if there exists a fixed point p0 in U such that ϕ(p) ≤
ϕ(p0) then we have ϕ(p) = ϕ(p0), ∀p ∈ U . If ϕ have absolute maximum in U ,
then ϕ is constant on U .

The following are the simple examples for existence of constant sectional
curvature and constant flag curvature:

Example 1 ([8]). Consider the family of Riemannian metrics:

αµ =

√
|y|2 + µ(|x|2|y|2− < x, y >2)

1 + µ|x|2
, y ∈ TxB

n(rµ) ∼= Rn.

The spray coefficients Gi = Pyi, where

P = −µ < x, y >

1 + µ|x|2
.

Using the equation,

K =
P 2 − Pxkyk

F 2
.

we obtain that K = µ. Thus αµ has constant sectional curvature.

Example 2 ([4]). Let F = α + β be the family of Randers metric on S3 con-
structed in [4]. β satisfies that rij = 0 and si = 0. Moreover, the authors have
found a special family of these Randers metrics with constant flag curvature
K = 1.

Now, we consider the (α, β) -metrics where α is of positive (negative) sec-

tional curvature. Let
{

δ
δxi

}
and

{
δ̂

δ̂xi

}
be the natural locally horizontal basis

of TM0 with respect to F and α, respectively. To prove the main theorem ,
we use the following proposition, proved by [11]:

Proposition 2.1. Let F = αφ(β
α
) be an (α, β) - metric on a connected mani-

fold M . Suppose that α is of positive (negative) sectional curvature. Then, we
have H(v, v) = cα2 c ∈ R, if and only if H̄ = 0.

3. Einstein criterion for special (α, β)-metric

In this section, we consider the Finsler space with special (α, β)-metric is of

the form F = (α+β)2

α
+ β. In [12], we obtained the following relation between



130 ROOPA M. K. AND NARASIMHAMURTHY S. K.

H(v, v) and R̃(v, v) for special (α, β)- metrics with constant Killing 1-form β:

H(v, v) = R̃(v, v) +
2α2(3α+ 2β)

α2 − β2
∇̃is

i
0 −

2α2(3α+ 2β)2

(α2 − β2)2
(3.1) {

−α

(
9

2
α+ 2β

)2

+ β

(
9

2
α+ 2β

)2

+ α(3α+ 2β)2

}
si0s0i

+
α4(3α+ 2β)2

(α2 − β2)2
sijsij.

Let H(v, v) = cα2 , where c ∈ R, we obtain

0 = R̃(v, v) +
2α2(3α+ 2β)

α2 − β2
∇̃is

i
0 −

2α2(3α+ 2β)2

(α2 − β2)2{
−α

(
9

2
α+ 2β

)2

+ β

(
9

2
α+ 2β

)2

+ α(3α+ 2β)2

}
si0s0i

+
α4(3α+ 2β)2

(α2 − β2)2
sijsij − cα2,

0 = R̃(v, v) +
2α2(3α+ 2β)

α2 − β2
∇̃is

i
0 −

α

2(3α+ 2β)3
(3.2)

(413α3 − 1152α3β3 − 488αβ4 + 51α4β − 1260α2β3 − 64β5)si0s0i

+
α4(3α+ 2β)2

(α2 − β2)2
sijsij − cα2.

Multiplying (3.2) by 2(α2−β2)3 removes y from the denominators and we can
derive the following identity:

Rat+α Irrat = 0,

where Rat and Irrat are polynomials of degree 6 and 5 in y respectively and
are given as follows:

Rat = (2α6 − 6α4β2 + 6α2β4 − 2β6)R̃(v, v)

+(4α8β + 4α4β5 − 8α6β3)∇̃is
i
0

−(413α6 − 1152α4β2 − 488α2β4)si0s0i

+(24α6β − 18α6β2 − 8α4β2)sijsij

−cα2(2α6 − 6α4β2 + 6α2β4 − 2β6),

Irrat = (6α4β4 − 4α6β2)∇̃is
i
0

−(51α4β − 1260α2β3 − 64β5)si0s0i

+(8α4β2 − 24α4β3)sijsij.

We have the following lemma:
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Lemma 3.1. Let F = (α+β)2

α
+ β be a metric with constant Killing from β ,

and H(v, v) = cα2 for some constants c ∈ R. Then, (M,F ) is a Riemannian
Einstein space.

Proof. We know that α can never be a polynomial in y. Otherwise the qua-
dratic α2 = aij(x)y

iyj would have been factored into two linear terms. Its zero
set would then consist of a hyper-plan, contradicting the positive definiteness
of aij. Now suppose the polynomial Rat were not zero. The above equation
would imply that it is the product of polynomial Irrat with a non-polynomial
factor α. This is not possible. So Rat must vanish and, since α is positive at
all y 6= 0, we see that Irrat must be zero as well. Notice that Rat = 0 shows

that α2 divides β6R̃(v, v). Since α2 is an irreducible degree two polynomial
in y, and β6 factors into six linear terms, it must be the case that α2 divides

R̃(v, v), that is, (M,α) is an Einstein space.

Therefore, R̃(v, v) = kα2, where the function k must be a constant by the
Riemannian Schur’s Lemma for the case n > 2. But, we can easily reform
Rat = 0 as the following relation:

−2kβ6 − 488ββ4si0s0i + 2cβ6

= α2(−6kβ4 + 8β2sijsij − 1152β2si0s0i + 4β5∇̃is
i
o + 2cβ4),

which results in, α2 divides β. From the irreducibility of α2, it shows that,
β = 0 and F is a Riemannian Einstein metric. �

4. Proof of The Main Theorem

Theorem 4.1. Let F = (α+β)2

α
+β be a Finsler metric on a connected manifold

M of dimension n. Suppose that α is a positive (negative) sectional curvature

and Ricci tensor H̃ = 0, (H(v, v) = 0) and β is a constant Killing 1-form.
Then (M,F ) is a Riemannian Einstein space.

Proof. By proposition 2.1 says that, α is of positive (negative) sectional curva-
ture. Then, H(v, v) = cα2, where c is a non-zero constant and by lemma 3.1 it
shows that if F is Einstein then, it is Riemannian Einstein space, that means:
if F is Einstein if and only if Rat = 0 and Irrat = 0 are holds. Again from proof

of lemma, we know that α2 divides R̃(v, v), then their is a function k defined

on M and F = α, it implies that, R̃(v, v) = kα2. Hence (M,α) is an Einstein

space. Therefore, we conclude that main theorem, (M,F = (α+β)2

α
+ β) is a

Riemannian Einstein space. �

5. Conclusion

The Einstein metrics comprise a major focus in differential geometry and
mainly connect with gravitational in general relativity. In particular, Einstein
metric are solutions to Einstein field equations in general relativity containing
Ricci tensor [1]. Einstein Finsler metric which represent a non-Riemannian
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stage for the extensions of metric gravity provide an interesting source of geo-
metric issues and the (α, β)-metric is an important class of Finsler metric
appearing frequently in the study of applications in physics [4].

In this paper, we consider a special (α, β)-metric such as F = (α+β)2

α
+ β.

For this , we investigate an (α, β)-metric of α-parallel Ricci curvature. Finally,
we prove that the above mentioned Einstein metric must be Riemannian.
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