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Abstract. It is of main interest in the theory of Fourier series the recon-
struction of a function from the partial sums of its Fourier series. Just to
mention two examples: Billard proved [2] the theorem of Carleson for the
Walsh-Paley system, that is, for each function in L2 we have the almost
everywhere convergence Snf → f and Fine proved [4] the Fejér-Lebesgue
theorem, that is for each integrable function in L1 we have the almost ev-
erywhere convergence of Fejér means σnf → f . In 1992 Móricz, Schipp and
Wade proved [18], that for each two-variable function in the space L log+ L
the Fejér means of the two-dimensional Walsh-Fourier series converge to
the function almost everywhere. In this paper we summarize some results
with respect to this issue concerning convergence and also divergence.

Introduction

Let the numbers n ∈ N and x ∈ I := [0, 1) be expanded with respect to the
binary number system:

n =
∞∑
k=0

nk2
k, x =

∞∑
k=0

xk2
−k−1,

where if x is a dyadic rational, that is an element of the set {k/2n : k, n ∈ N},
then we choose the finite expansion. For n ∈ P let |n| = blog2 nc. That is,
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2|n| ≤ n < 2|n|+1. Let (ωn, n ∈ N) represent the Walsh-Paley system. That is,
the nth Walsh-Paley function is

ωn(x) :=
∞∏
k=0

(−1)nkxk .

The nth Walsh-Fourier coefficient of the integrable function f ∈ L1(I) is

f̂(n) :=

∫
I

f(x)ωn(x)dx.

The nth partial sum of the Walsh-Fourier series of the integrable function
f ∈ L1(I):

Snf(y) :=
n−1∑
k=0

f̂(k)ωk(y).

The Cesàro means

The nth Fejér or (C, 1) mean of the function f is

σnf :=
1

n

n∑
k=1

Skf.

In 1955 Fine proved [4] for the Walsh-Paley system the well known Fejér-
Lebesgue theorem. Namely, for every integrable function f we have the a.e.
relation

σnf → f.

Let have a look for the situation with the (C, α) means. What are they? Let

Aα
n := (1+α)...(n+α)

n!
, where n ∈ N and α ∈ R (−α /∈ N). It is known, that

Aα
n ∼ nα.
The nth (C,α) mean of the function f ∈ L1(I):

σα
n+1f :=

1

Aα
n

n∑
k=0

Aα−1
n−kSkf.

For the proof that σα
nf → f a.e. for each f ∈ L1(I) and α > 0 see the papers

of Fine [4], Yano [26] and Schipp [20] with different methods. The method
of Schipp based on the investigation of maximal operator supn |σn| brought a
new and widely used approach to this issue.

In other words, the maximal convergence space of the (C,α) means is the
L1 Lebesgue space. That is, the largest possible.

It is also of prior interested that what can be said – with respect to this
reconstruction issue – if we have only a subsequence of the partial sums. In
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1936 Zalcwasser [27] asked how “rare” can the sequence of integers a(n) be
such that

(1)
1

N

N∑
n=1

Sa(n)f → f

for functions belonging to some space. This problem with respect to the
trigonometric system is completely solved [19, 3] for continuous functions (uni-
form convergence). That is, if the sequence a is convex, then the condition
supn n

−1/2 log a(n) < +∞ is necessary and sufficient for the uniform conver-
gence for every continuous function. For the time being, this issue with respect
to the Walsh-Paley system has not been solved. Only, a sufficient condition
is known, which is the same as in the trigonometric case. The paper about
this was written by Glukhov [12]. See also the more dimensional case also by
Glukhov [13].

With respect to convergence almost everywhere, and integrable functions
the situation is more complicated. Belinksky proved [1] for the trigonometric

system the existence of a sequence a(n) ∼ exp( 3
√
k) such that the relation (1)

holds a.e. for every integrable function. In his paper Belinksky also conjectured
that if the sequence a is convex, then the condition supn n

−1/2 log a(n) < +∞
is necessary and sufficient again. So, that would be an answer for the problem
of Zalcwasser [27] in this point of view (trigonometric system, a.e. convergence
and L1 functions). This is not the case for the Walsh-Paley system. See below
Theorem 1 in [8].

If the sequence a is lacunary, then the a.e. relation Sa(n)f → f holds for all
functions f in the Hardy spaceH. The trigonometric and the Walsh-Paley case
can be found in [29] (trigonometric case) and [15] (Walsh-Paley case). But, the
space H is a proper subspace of L1. Therefore, it is of interest to investigate
relation (1) for L1 functions and lacunary sequences a. The following two
a.e. convergence theorems with respect to the Fejér and logarithmic means
of subsequences of the partial sums of the Walsh-Fourier series of integrable
functions can be found in [8]:

Theorem 1 ([8]). Let a : N → N be a sequence with property a(n+1)
a(n)

≥ q >

1 (n ∈ N). Then for all integrable function f ∈ L1(I) we have the a.e. relation

1

N

N∑
n=1

Sa(n)f → f.

Theorem 2 ([8]). Let a : N → N be a convex sequence with property a(+∞) =
+∞. Then for each integrable function f we have the a.e. relation

1

logN

N∑
n=1

Sa(n)f

n
→ f.
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That is, if one have any subsequence (with convex sequence of indices) of
the partial sums of the Walsh-Fourier series of an integrable function, then its
Riesz logarithmic means reconstruct the function a.e. It is worth to mention
that these two results have no trigonometric analogue.

Two dimensional Cesàro means

What can be said in the two dimensional situation? This is quite a different
story. Define the two-dimensional Walsh-Paley functions in the following way:

ωn(x) := ωn1(x
1)ωn2(x

2),

where n := (n1, n2) ∈ N2, x := (x1, x2) ∈ I2. Let f be an integrable function.
Its Fourier coefficients, rectangular partial sums of its Fourier series:

f̂(n) :=

∫
I2
f(x)ωn(x)dx, Sn1,n2f :=

n1−1∑
k1=0

n2−1∑
k2=0

f̂(k1, k2)ωk.

Moreover, the two-dimensional Fejér or (C, 1) means of the function f ∈
L1(I2):

σn1,n2f :=
1

n1n2

n1∑
k1=1

n2∑
k2=1

Sk1,k2f (n ∈ P2).

In 1931 Marczinkiewicz and Zygmund proved for the two-dimensional trigono-
metric system [16], and in 1992 Móricz, Schipp and Wade verified for the
two-dimensional Walsh-Paley system, that for every f ∈ L log+ L(I2)

σn1,n2f → f

a.e. as min{n1, n2} → ∞, that is, in the Pringsheim sense.
Since L log+ L(I2) & L1(I2), then it would be interesting to “enlarge” the

convergence space, if possible. In 2000 Gát proved [6], that it is impossible.
That is:

Theorem 3 ([6]). For each measurable function δ : [0,+∞) → [0,+∞), δ(∞)
= 0, (that is vanishing at plus infinity) there exists an f ∈ L log+ Lδ(L) such
that for the Walsh-Fejér means σn1,n2f 6→ f a.e. (in the Pringsheim sense).

However, what “positive” can be said for the functions in L1(I2) as if the a.e.
convergence of the two-dimensional Fejér means in the Pringsheim sense can
not be said? That could be the so called restricted convergence. For the two-
dimensional trigonometric system Marcinkiewicz and Zygmund proved [17] in
1939, that

σn1,n2f → f

a.e. for every f ∈ L1(I2) as if min{n1, n2} → ∞, provided that

2−α ≤ n1

n2

≤ 2α
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for some α ≥ 0. In other words, the set of admissible indices (n1, n2) remains
in some cone. This theorem for the two-dimensional Walsh-Paley system was
verified by Móricz, Schipp and Wade in 1992 in the case when n1, n2 both are
powers of two.

σ2n1 ,2n2f → f

a.e. for every f ∈ L1(I2) as if min{n1, n2} → ∞, provided that |n1 − n2| ≤ α
for some α ≥ 0.

The proof of the Marcinkiewicz-Zygmund theorem [17] (with respect to the
Walsh-Paley system) for arbitrary set of indices remaining in some cone is due
to Gát and Weisz [5, 21], separately in 1996.

It is an interesting question that is it possible to weaken somehow the “cone
restriction” in a way that a.e. convergence remains for each function in L1.
Maybe for some “interim space” if not for space L1. The answer is negative
both in the point of view of space and in the point of view of restriction.
Namely, in 2001 Gát proved [7] the theorem below:

Theorem 4 ([7]). Let δ : [0,+∞) → [0,+∞) measurable, δ(+∞) = 0 and let
w : N → [1,+∞) be an arbitrary increasing function such that

sup
x∈N

w(x) = +∞.

Moreover, ∨n := max(n1, n2), ∧n := min(n1, n2). Then, there exists a func-
tion f ∈ L log+ Lδ(L) such that for the two dimensional Walsh-Fejér means

σn1,n2f 6→ f

a.e. as ∧n → ∞ provided that the restriction condition ∨n
∧n ≤ w(∧n) is fulfilled.

That is there is no “interim” space. Either we have space L log+ L and “no
restriction at all”, or the “cone restriction” and then the maximal convergence
space is L1. As a consequence of this we have that

σn1,n2f → f

a.e. for each f ∈ L(I2) as min{n1, n2} → ∞, provided that

∨n
∧n

≤ w(∧n)

if and only if
supw(x) < ∞.

Another question. What is the situation with the (C,α) summation methods
of 2-dimensional Walsh-Fourier series? What are they?

σα
n1+1,n2+1f :=

1

Aα
n1
Aα

n2

n1∑
k1=0

n2∑
k2=0

Aα−1
n1−k1

Aα−1
n2−k2

Sk1,k2f.

In 1999 Weisz proved [22], that

σα
n1,n2

f → f
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a.e. as min{n1, n2} → ∞ for each f ∈ L log+ L(I2) and α > 0.
The question is that is it possible to give a “larger” convergence space for

the (C,α) summability method (α > 0)? Is there such an α? If α ≤ 1, then
not. Because for the (C, 1) method one can not give such a “larger” space.
Karagulyan and the author of this paper answered this question (among others)
in the negative [11].

In the sequel consider also the Riesz means of the Walsh-Fourier means of
f . The Riesz means of the integrable function f are defined as follows:

σα,γ
n f : =

1∏2
i=1 n

αiγi
i

n1∑
k1=0

n2∑
k2=0

(
2∏

i=1

(nγi
i − kγi

i )
αi

)
f̂(k)ωk,

where n = (n1, n2), γ = (γ1, γ2) and 0 < αj ≤ 1 ≤ γj (j = 1, 2). In special
case, αj = γj = 1 (j = 1, 2), the Riesz means and the Fejér means coincide.
The proof of the almost everywhere convergence of the restricted Riesz means
of Walsh-Fourier series (moreover, in the more general d-dimensional case) is
due to Weisz (see [25] or [24, page 132]). In [10] there are some generalized
Cesàro and Riesz means in a way that the set of indices of the means need not
necessarily be in a positive cone. (In [10] the general d dimensional situation
is discussed.)

Theorem 5 ([10]). Let a = (a1, a2) : N → N2 be a sequence with property
aj(+∞) = +∞ (j = 1, 2). Suppose that there exists a δ > 0 such that aj(n +
1) ≥ δ supk≤n aj(k) (j = 1, 2, n ∈ N). Then for all 0 < αj ≤ 1 ≤ γj (j =
1, 2) we have for the 2-dimensional Cesàro and Riesz means the following a.e.
relation for each integrable function f ∈ L1(I2)

lim
n→∞

σα
a(n)f = f, lim

n→∞
σα,γ
a(n)f = f.

From Theorem 5 it follows the a.e. convergence of the restricted Cesàro ([5],
[21]) and Riesz ([25]) means of integrable functions. For the proof of this
consequence see also [10].

The Marcinkiewicz means

This is another and also very interesting story the investigation of the almost
everywhere convergence of the Marcinkiewicz means

tnf :=
1

n

n−1∑
j=0

Sj,jf

of integrable functions with respect to orthonormal systems. Although, this
means are defined for two-variable functions, in the view of almost everywhere
convergence there are similarities with the one-dimensional case. On the one
side, the maximal convergence space for two dimensional Fejér means (no
restriction on the set of indices other than they have to converge to +∞)
is L log+ L and on the other side, for the Marcinkiewicz means we have a.e.
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convergence for every integrable functions (for the trigonometric, Walsh Paley
systems).

We mention that the first result is due to Marcinkiewicz [16]. But he proved
“only” for functions in the space L log+ L the a.e. relation tnf → f with
respect to the trigonometric system. For the “L1 result” for the trigonometric
and Walsh-Paley systems see the papers of Zhizhiasvili [28] (trigonometric
system) and Weisz [23] (Walsh system).

After then, we turn our attention to a generalization of Walsh-Marcinkiewicz
means. Let α := (α1, α2) : N2 → N2 be a function. Define the following
Marcinkiewicz-like kernels and means [9]:

Mα
n (x) :=

1

n

n−1∑
k=0

Dα1(|n|,k)(x
1)Dα2(|n|,k)(x

2),

tαnf(y) :=

∫
I2
f(x)Mα

n (y + x)dx (f ∈ L1(I2), y ∈ I2, n ∈ P).

The following properties play a prominent role in the behaviour of Marcinkie-
wicz-like means. (#B denotes the cardinality of set B.) Roughly speaking they
will be necessary and sufficient conditions in order to have almost everywhere
condition for each integrable function.

# {l ∈ N : αj(|n|, l) = αj(|n|, k), l < n} ≤ C (k < n, n ∈ P, j = 1, 2)(2)

max {αj(|n|, k) : k < n} ≤ Cn (n ∈ P, j = 1, 2).(3)

The “theorem of convergence” can be found in [9].

Theorem 6 ([9]). Let α satisfy (2) and (3). Then we have tαnf → f for each
f ∈ L1(I2).

Condition (2) is clearly a necessary one in the following sense. Let α1(|n|, k)
= 0, α2(|n|, k) = k for every n, k ∈ N. Then (3) is satisfied and (2) is not. It
is very simple to give a function f ∈ L1(I2) such as tαnf → f fails to hold a.e.
To construct an α with (2) which fails to satisfy (3) and a f ∈ L1(I2) such
that tαnf does not converge to f a.e. is more complicated.

The “theorem of divergence” aims to show that (3) is also a necessary con-
dition in certain sense. That is,

Theorem 7 ( [9]). Let γ : N → N be any function with property γ(+∞) = +∞.
Then there exists a function α satisfying (2),

max {α1(|n|, k) : k < n} ≤ Cn, max {α2(|n|, k) : k < n} ≤ Cnγ(n) (n ∈ P)

and f ∈ L1(I2) such that lim supn∈N |tαnf | = +∞ almost everywhere.

A corollary of Theorem 6 also can be found in [9]

Corollary 1 ([9]). Let (an) be a lacunary sequence of natural numbers, i.e.
an+1 ≥ anq for some q > 1 (n ∈ N) and α satisfy conditions (2) and αj(n, k) ≤
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Can (k < an, j = 1, 2) (modified version of condition (3)). Then for every
integrable function f ∈ L1(I2) we have

1

an

an−1∑
k=0

Sα1(n,k),α2(n,k)f(x) → f(x)

for a.e. x ∈ I2.

A straightforward consequence of Corollary 1 is the a.e. convergence of lacu-
nary subsequences of the triangular means of two dimensional Walsh-Fourier
series. In other words, let α1(n, k) = an − k, α2(n, k) = k. Then we have

1

an

an−1∑
k=0

San−k,kf(x) → f(x)

for a.e. x ∈ I2. This last result in the case of an = 2n is due to Goginava and
Weisz [14]. The general case an = n is still open.
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