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Abstract. In this paper we present some results on convergence and
summability of one- and multi-dimensional trigonometric andWalsh-Fourier
series. The Fejér and Cesàro summability methods are investigated. We
will prove that the maximal operator of the summability means is bounded
from the corresponding classical or martingale Hardy space Hp to Lp for
some p > p0. For p = 1 we obtain a weak type inequality by interpola-
tion, which ensures the almost everywhere convergence of the summability
means.

1. Introduction

In this survey paper we will consider summation methods for one- and multi-
dimensional trigonometric and Walsh-Fourier series. Two types of summability
methods will be investigated, the Fejér and Cesàro or (C, α) methods. The
Fejér summation is a special case of the Cesàro method, (C, 1) is exactly the
Fejér method. In the multi-dimensional case two types of convergence and
maximal operators will be considered, the restricted (convergence over the
diagonal or over a cone or over a cone-like set), and the unrestricted (conver-
gence over Nd in Pringsheim’s sense). We introduce three types of classical
and martingale Hardy spaces Hp and prove that the maximal operators of the
summability means are bounded from the corresponding Hp to Lp whenever
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p > p0 for some p0 < 1. For p = 1 we obtain a weak type inequality by inter-
polation, which implies the almost everywhere convergence of the summability
means to the original function. The almost everywhere convergence and the
weak type inequality are proved usually with the help of a Calderon-Zygmund
type decomposition lemma. However, this lemma does not work in higher di-
mensions. Our method, that can be applied in higher dimension, too, can be
regarded as a new method to prove the almost everywhere convergence and
weak type inequalities. In this survey paper we summarize the results appeared
in this topic in the last 10–20 years. This paper was the base of my talk given
at the Conference on Dyadic Analysis and Related Fields with Applications,
June 2014, in Nýıregyháza (Hungary).

I would like to thank the referee for reading the paper carefully and for his
useful comments and suggestions.

2. Trigonometric and Walsh system

We consider either the torus X = T or the unit interval X = [0, 1), both with
the Lebesgue measure λ. We briefly write Lp(X) instead of the real Lp(X, λ)
space equipped with the norm (or quasinorm)

‖f‖p :=
(∫

X
|f |p dλ

)1/p

(0 < p ≤ ∞),

where λ is the Lebesgue measure. We use the notation |I| for the Lebesgue
measure of the set I. The weak Lp(X) space Lp,∞(X) (0 < p < ∞) consists of
all measurable functions f for which

‖f‖p,∞ := sup
ρ>0

ρλ(|f | > ρ)1/p < ∞.

Note that Lp,∞ is a quasi-normed space. It is easy to see that

Lp(X) ⊂ Lp,∞(X) and ‖ · ‖p,∞ ≤ ‖ · ‖p
for each 0 < p < ∞.

The Rademacher functions are defined by

r(x) :=

{
1, if x ∈ [0, 1

2
);

−1, if x ∈ [1
2
, 1),

and
rn(x) := r(2nx) (x ∈ [0, 1), n ∈ N).

The product system generated by the Rademacher functions is the one-dimen-
sional Walsh system:

wn :=
∞∏
k=0

rk
nk (n ∈ N),

where

n =
∞∑
k=0

nk2
k, (0 ≤ nk < 2)
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(see Figure (1)). In what follows let φn(x) denote the trigonometric system

Figure 1. Walsh system.

e2πın·x (n ∈ Z) defined on T or the Walsh system φn(x) := wn(x) (n ∈ N)
defined on the unit interval. For the Walsh system let φn = 0 if n ∈ Z \ N.

In this paper the constants Cp depend only on p and may denote different
constants in different contexts.

3. Partial sums of one-dimensional Fourier series

For an integrable function f ∈ L1(X) (X = T or X = [0, 1)) its kth trigono-
metric or Walsh-Fourier coefficient is defined by

f̂(k) :=

∫
X
fφk dλ (k ∈ Z).

The definition of the Fourier coefficients can be extended easily to distributions
in case of the trigonometric system and to martingales in case of the Walsh
system (see Weisz [77, 82]).

For f ∈ L1(X) the nth partial sum snf of the Fourier series of f is introduced
by

snf(x) :=
∑
|k|≤n

f̂(k)φk(x) =

∫
X
f(x− u)Dn(u) du (n ∈ N),

where

Dn(u) :=
∑
|k|≤n

φk(u)
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is the nth trigonometric or Walsh-Dirichlet kernel (see Figure 2). In case of
the Walsh system we use dyadic addition instead of addition.
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(b) The Walsh-Dirichlet kernel

Figure 2. The Dirichlet kernels Dn with n = 5.

It is a basic question as to whether the function f can be reconstructed from
the partial sums of its Fourier series. It can be found in most books about
Fourier series (e.g., Zygmund [85], Bary [1], Torchinsky [62], Grafakos [28],
Schipp, Wade, Simon and Pál [50]), that the partial sums converge to f in the
Lp-norm if 1 < p < ∞.

Theorem 1. If f ∈ Lp(T) for some 1 < p < ∞, then

‖snf‖p ≤ Cp ‖f‖p (n ∈ N)

and
lim
n→∞

snf = f in the Lp-norm.

This theorem is due to Riesz [44] for trigonometric series and to Paley [43]
for Walsh-Fourier series.

One of the deepest results in harmonic analysis is Carleson’s result, i.e., the
partial sums snf of the Fourier series converge almost everywhere to f ∈ Lp(X)
(1 < p < ∞). This result is due to Carleson [8] for trigonometric Fourier series
and for one-dimensional functions f ∈ L2(T). Later Hunt [30] extended this
result to all f ∈ Lp(T) spaces, 1 < p < ∞. Billard [4], Sjölin [58] and Schipp
[47, 51] generalized both results for Walsh-Fourier series.

Theorem 2. If f ∈ Lp(X) for some 1 < p < ∞, then∥∥∥∥sup
n∈N

|snf |
∥∥∥∥
p

≤ Cp ‖f‖p

and
lim
n→∞

snf = f a.e.
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The inequalities of Theorems 1 and 2 do not hold if p = 1 or p = ∞, and
the almost everywhere convergence does not hold if p = 1. du Bois Reymond
proved the existence of a continuous function f ∈ C(T) and a point x0 ∈ T
such that the partial sums snf(x0) diverge as n → ∞. Kolmogorov gave an
integrable function f ∈ L1(T), whose Fourier series diverges almost everywhere
or even everywhere (see Kolgomorov [32, 33], Zygmund [85] or Grafakos [28]).
The analogous results for Walsh-Fourier series can be found in Schipp [45] and
Simon [53].

4. Hardy spaces Hp(X)

To prove almost everywhere convergence of the summability means intro-
duced in the next section, we will need the concept of Hardy spaces and their
atomic decomposition. First we consider the classical Hardy spaces for the
trigonometric system and then the dyadic Hardy spaces for the Walsh system.

4.1. The Hp(T) classical Hardy spaces. A distribution f is in the classical
Hardy space Hp(T) (0 < p ≤ ∞) if

‖f‖Hp
:=

∥∥∥∥sup
0<t

|f ∗ Pt|
∥∥∥∥
p

< ∞,

where

Pt(x) :=
∞∑

k=−∞

r|k|e2πıkx =
1− r2

1 + r2 − 2r cos 2πx
(r := e−t, x ∈ T)

is the periodic Poisson kernel. Since Pt ∈ L1(T), the convolution in the defini-
tion of the norms are well defined.

4.2. The Hp[0, 1) dyadic Hardy spaces. By a dyadic interval we mean one
of the form [k2−n, (k+1)2−n) for some k, n ∈ N, 0 ≤ k < 2n. Given n ∈ N and
x ∈ [0, 1) let In(x) be the dyadic interval of length 2−n which contains x. The
σ-algebra generated by the dyadic intervals {In(x) : x ∈ [0, 1)} will be denoted
by Fn (n ∈ N). It is easy to show that for a martingale f = (fn, n ∈ N) we
have s2nf = fn.

We investigate the class of martingales f = (fn, n ∈ N) with respect to
(Fn, n ∈ N). For 0 < p ≤ ∞ the dyadic Hardy space Hp[0, 1) consists of all
martingales for which

‖f‖Hp
:=

∥∥∥∥sup
n∈N

|fn|
∥∥∥∥
p

< ∞.

4.3. Atomic decomposition of Hp(X). The results of this subsection hold
for both the classical and the dyadic Hardy spaces. It is known (see e.g. Stein [59]
or Weisz [77]) that

Hp(X) ∼ Lp(X) (1 < p ≤ ∞)

and H1(X) ⊂ L1(X), where ∼ denotes the equivalence of spaces and norms.
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The atomic decomposition provides a useful characterization of Hardy spaces.
A function a ∈ L∞(T) is a classical p-atom if there exists an interval I ⊂ T
such that

(1) supp a ⊂ I,
(2) ‖a‖∞ ≤ |I|−1/p,
(3)

∫
I
a(x)xk dx = 0 for all k ∈ N with k ≤ b1/p− 1c,

where b·c denotes the integer part. While a function a ∈ L∞[0, 1) is called a
dyadic p-atom if there exists a dyadic interval I ⊂ [0, 1) such that (i), (ii) and
(iii) with k = 0 hold.

The Hardy space Hp(X) has an atomic decomposition. In other words,
every function (more exactly, distribution resp. martingale) from the Hardy
space can be decomposed into the sum of atoms. A first version of the atomic
decomposition was introduced by Coifman and Weiss [10] in the classical case
and by Herz [29] in the martingale case. The proof of the next theorem can
be found in Latter [34], Lu [36], Wilson [83, 84], Stein [59] and Weisz [66, 77].

Theorem 3. A distribution (resp. martingale) f is in Hp(X) (0 < p ≤ 1) if
and only if there exist a sequence (ak, k ∈ N) of classical (resp. dyadic) p-atoms
and a sequence (µk, k ∈ N) of real numbers such that

∞∑
k=0

|µk|p < ∞ and
∞∑
k=0

µka
k = f

in the sense of distributions (resp. martingales). Moreover,

‖f‖Hp
∼ inf

(
∞∑
k=0

|µk|p
)1/p

.

The “only if” part of the theorem holds also for 0 < p < ∞. The following
result gives a sufficient condition for an operator to be bounded from Hp(X)
to Lp(X) (see Weisz [77, 81] and, for p0 = 1, Schipp, Wade, Simon and Pál [50]
and Móricz, Schipp and Wade [40]). For I ⊂ T let Ir be the interval having
the same center as the interval I and length 2r|I|. If I ⊂ [0, 1) is a dyadic
interval then let Ir be a dyadic interval, for which I ⊂ Ir and |Ir| = 2r|I|
(r ∈ N).

Theorem 4. For each n ∈ N, let Vn : L1(X) → L1(X) be a bounded linear
operator and let

V∗f := sup
n∈N

|Vnf |.

Suppose that ∫
X\Ir

|V∗a|p0 dλ ≤ Cp0

for all classical (resp. dyadic) p0-atoms a and for some fixed r ∈ N and 0 <
p0 ≤ 1, where the interval I is the support of the atom. If V∗ is bounded from
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Lp1(X) to Lp1(X) for some 1 < p1 ≤ ∞, then

(1) ‖V∗f‖p ≤ Cp‖f‖Hp (f ∈ Hp(X))

for all p0 ≤ p ≤ p1. Moreover, if p0 < 1, then the operator V∗ is of weak type
(1, 1), i.e., if f ∈ L1(X) then

(2) sup
ρ>0

ρ λ(|V∗f | > ρ) ≤ C‖f‖1.

Now we give a typical proof of this theorem. If, instead of V∗, the linear or
sublinear operator V satisfies the condition∫

Xd\Ir
|V a|p0 dλ ≤ Cp0

with p0 ≤ 1, then we can easily show that ‖V a‖p0 ≤ C for all p0-atoms a. We
take an atomic decomposition of f :

f =
∞∑
k=0

µka
k,

where each ak is a p0-atom and(
∞∑
k=0

|µk|p0
)1/p0

≤ Cp0‖f‖Hp0
.

Next

(3) |V f | ≤
∞∑
k=0

|µk|
∣∣V ak

∣∣
and

‖V f‖p0p0 ≤
∞∑
k=0

|µk|p0
∥∥V ak

∥∥p0
p0

≤ Cp0 ‖f‖
p0
Hp0

.

The problem is that this proof is falls because the inequality (3) does not
necessarily hold. Indeed, Bownik [6] have given an operator V for which (3)
does not hold. Moreover, though the Lp0-norms of V a are uniformly bounded,
V is not bounded from Hp0(R) to Lp0(R). The correct proof of Theorem 4 can
be found in Weisz [81].

Note that (2) can be obtained from (1) by interpolation. For the basic
definitions and theorems on interpolation theory see Bergh and Löfström [3]
and Bennett and Sharpley [2] or Weisz [66, 77]. The interpolation of martingale
Hardy spaces was worked out in [66]. Theorem 4 can be regarded also as an
alternative tool to the Calderon-Zygmund decomposition lemma for proving
weak type (1, 1) inequalities. In many cases this theorem can be applied better
and more simply than the Calderon-Zygmund decomposition lemma.
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5. Summability of one-dimensional Fourier series

Though Theorems 1 and 2 are not true for p = 1 and p = ∞, with the help of
some summability methods they can be generalized for these endpoint cases.
Obviously, summability means have better convergence properties than the
original Fourier series. Summability is intensively studied in the literature.
We refer at this time only to the books Stein and Weiss [61], Butzer and
Nessel [7], Trigub and Belinsky [63], Grafakos [28] and Weisz [77, 82] and the
references therein.

The best known summability method is the Fejér method. In 1904 Fejér [14]
investigated the arithmetic means of the partial sums, the so called Fejér means
and proved that if the left and right limits f(x − 0) and f(x + 0) exist at a
point x, then the Fejér means converge to (f(x− 0) + f(x + 0))/2. One year
later Lebesgue [35] extended this theorem and obtained that every integrable
function is Fejér summable at each Lebesgue point, thus almost everywhere.
Some years later M. Riesz [44] proved that the Cesàro means of a function
f ∈ L1(T) converge almost everywhere to f (see also Zygmund [85, Vol. I,
p.94]).

In this paper we consider the Fejér and Cesàro (or (C, α)) means defined
by

σnf(x) :=
1

n

n−1∑
k=0

skf(x) =
∑
|j|≤n

(
1− |j|

n

)
f̂(j)φj(x) =

∫
X
f(x− u)Kn(u) du

and

σα
nf(x) :=

1

Aα
n−1

n−1∑
k=0

Aα−1
n−1−kskf(x)

=
1

Aα
n−1

∑
|j|≤n

Aα
n−1−|j|f̂(j)φj(x) =

∫
X
f(x− u)Kα

n (u) du,

where

Aα
k :=

(
k + α

k

)
=

(α+ 1)(α+ 2) . . . (α+ k)

k!

and the Fejér and Cesàro kernels are given by

Kn(u) :=
∑
|j|≤n

(
1− |j|

n

)
φj(u) =

1

n

n−1∑
k=0

Dk(u)

and

Kα
n (u) :=

1

Aα
n−1

∑
|j|≤n

Aα
n−1−|j|φj(u) =

1

Aα
n−1

n−1∑
k=0

Aα−1
n−1−kDk(u)

(see Figure 3). It is known (Zygmund [85]) that Aα
k ∼ kα (k ∈ N). The Cesàro

means are generalizations of the Fejér means, if α = 1, then we get back the
Fejér means. We will suppose always that 0 < α ≤ 1. The case α > 1 can
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Figure 3. The Fejér kernels Kn with n = 5.

be led back to α = 1. The next result extends Theorem 1 to the summability
means (see Zygmund [85] and Paley [43]).

Theorem 5. If 0 < α ≤ 1 and 1 ≤ p ≤ ∞, then

‖σα
nf‖p ≤ Cp‖f‖p (f ∈ Lp(X), n ∈ N).

Moreover, for all f ∈ Lp(X) (1 ≤ p < ∞),

lim
n→∞

σα
nf = f in the Lp-norm.

The maximal operator of the Cesàro means are defined by

σα
∗ f := sup

n∈N
|σα

nf | .

Applying Theorem 4, we have extended the previous result to the Lp(X)
spaces (0 < p < 1) and to the maximal operator in [67, 76, 77]. The first
inequality of Theorem 6 was proved by Fujii [18] in the Walsh case for p = 1
(see also Schipp and Simon [49]).

Theorem 6. If 0 < α ≤ 1 and 1/(α+ 1) < p ≤ ∞, then

‖σα
∗ f‖p ≤ Cp‖f‖Hp (f ∈ Hp(X))

and for f ∈ H1/(α+1)(X),

‖σα
∗ f‖1/(α+1),∞ = sup

ρ>0
ρλ(σα

∗ f > ρ)α+1 ≤ C‖f‖H1/(α+1)
.

The critical index is p = 1/(α+1), if p is smaller than or equal to this critical
index, then σα

∗ is not bounded anymore (see Stein, Taibleson and Weiss [60],
Simon and Weisz [57], Simon [55] and Gát and Goginava [23]).

Theorem 7. The operator σα
∗ (0 < α ≤ 1) is not bounded from Hp(X) to

Lp(X) if 0 < p ≤ 1/(α+ 1).
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We get the next weak type (1, 1) inequality from Theorem 6 by interpolation
(Weisz [67, 76, 77], Zygmund [85] for the trigonometric system, for α = p = 1
Móricz [39], for α = 1 and for the Walsh system Schipp [46] and Simon [54]).

Corollary 1. If 0 < α ≤ 1 and f ∈ L1(X) then
sup
ρ>0

ρλ(σα
∗ f > ρ) ≤ C‖f‖1.

This weak type (1, 1) inequality and the density argument of Marcinkiewicz
and Zygmund [37] imply the well known theorem of Fejér [14] and Lebesgue [35]
with α = 1. Riesz [44] proved it for other α’s and Fine [15], Schipp [46] and
Weisz [76] for the Walsh system.

Corollary 2. If 0 < α ≤ 1 and f ∈ L1(X) then
lim
n→∞

σα
nf = f a.e.

With the help of the conjugate functions we ([77]) proved also

Theorem 8. If 0 < α ≤ 1 and 1/(α+ 1) < p ≤ ∞ then

‖σα
nf‖Hp ≤ Cp‖f‖Hp (f ∈ Hp(X)).

Corollary 3. If 0 < α ≤ 1, 1/(α+ 1) < p < ∞ and f ∈ Hp(X) then
lim
n→∞

σα
nf = f in the Hp-norm.

6. Partial sums of multi-dimensional Fourier series

Let us fix d ≥ 1, d ∈ N. For a set Y 6= ∅ let Yd be its Cartesian product
Y × · · · × Y taken with itself d-times. The Lp(Xd) spaces are defined in the
usual way. The d-dimensional trigonometric and Walsh system is introduced
as a Kronecker product by

φk(x) := φk1(x1) · · ·φkd(xd),

where k = (k1, . . . , kd) ∈ Nd, x = (x1, . . . , xd) ∈ Xd. The multi-dimensional
Fourier coefficients of an integrable function f are defined by

f̂(k) :=

∫
Xd

fφk dλ (k ∈ Nd).

The definition of the Fourier coefficients can be again extended to distributions
resp. to martingales (see Weisz [77, 82]).

For f ∈ L1(Xd) the nth rectangular partial sum snf of the Fourier series of
f is introduced by

snf(x) :=
∑

|k1|≤n1

. . .
∑

|kd|≤nd

f̂(k)φk(x) =

∫
Xd

f(x− u)Dn(u) du (n ∈ Nd),

where

Dn(u) :=
d∏

j=1

Dnj
(uj)
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is the nth multi-dimensional trigonometric or Walsh-Dirichlet kernel (see Fig-
ure 4). By iterating the one-dimensional result, we get easily the next theorem.

Theorem 9. If f ∈ Lp(Xd) for some 1 < p < ∞, then

‖snf‖p ≤ Cp ‖f‖p (n ∈ Nd)

and
lim
n→∞

snf = f in the Lp-norm.
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Figure 4. The Dirichlet kernels Dn with n1 = 5, n2 = 4.

Other types of partial sums are considered e.g. in Weisz [77, 82]. The ana-
logue of the Carleson’s theorem is not true, i.e., snf is not convergent (Feffer-
man [11, 12]). However, investigating the partial sums over the diagonal, only,
Carleson’s theorem holds also for higher dimensions and for the trigonomet-
ric system (see Fefferman [11] and Grafakos [28]), and it holds for the Walsh
system if p = 2 (see Móricz [38] or Schipp, Wade, Simon and Pál [50]).

Theorem 10. If f ∈ Lp(Xd) for some 1 < p < ∞, then for the trigonometric
Fourier series ∥∥∥∥sup

n∈N
|sn,...,nf |

∥∥∥∥
p

≤ Cp ‖f‖p

and
lim
n→∞

sn,...,nf = f a.e.

The same result holds for the Walsh-Fourier series if p = 2.

It is an open question, whether this theorem holds for the Walsh system and
for p 6= 2 (cf. Schipp, Wade, Simon and Pál [50]).

7. Multi-dimensional Hardy spaces

In this section we introduce three types of multi-dimensional classical Hardy
spaces for the trigonometric system and three types of multi-dimensional dyadic
Hardy spaces for the Walsh system.
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7.1. Multi-dimensional classical Hardy spaces. A distribution f is in the
classical Hardy space H2

p (Td), in the product Hardy space Hp(Td) and in the

hybrid Hardy space H i
p(Td) (0 < p ≤ ∞) if

‖f‖H2
p
:=

∥∥∥∥sup
t>0

|f ∗ (Pt ⊗ · · · ⊗ Pt)|
∥∥∥∥
p

< ∞,

‖f‖Hp
:=

∥∥∥∥ sup
tk>0,k=1,...,d

|f ∗ (Pt1 ⊗ · · · ⊗ Ptd)|
∥∥∥∥
p

< ∞

and

‖f‖Hi
p
:=

∥∥∥∥ sup
tk>0,k=1,...,d;k 6=i

∣∣f ∗ (Pt1 ⊗ · · · ⊗ Pti−1
⊗ Pti+1

⊗ · · · ⊗ Ptd)
∣∣∥∥∥∥

p

< ∞,

respectively, where Pt the one-dimensional Poisson kernel and i = 1, . . . , d.

7.2. Multi-dimensional dyadic Hardy spaces. By a dyadic rectangle we
mean a Cartesian product of d dyadic intervals. For n ∈ Nd and x = (x1, . . . , xd)
∈ [0, 1)d let In(x) := In1(x1)×· · ·×Ind

(xd) be a dyadic rectangle. The σ-algebra
generated by the dyadic rectangles {In(x) : x ∈ [0, 1)d} will be denoted again
by Fn (n ∈ Nd).

For 0 < p ≤ ∞ the martingale Hardy space H2
p [0, 1)

d, the product Hardy

space Hp[0, 1)
d and the hybrid Hardy space H i

p[0, 1)
d consist of all d-parameter

dyadic martingales f = (fn, n ∈ Nd) with respect to (Fn, n ∈ Nd), for which

‖f‖H2
p
:=

∥∥∥∥sup
n∈N

|fn,...,n|
∥∥∥∥
p

< ∞,

‖f‖Hp
:=

∥∥∥∥ sup
n∈Nd

|fn1,...,nd
|
∥∥∥∥
p

< ∞,

and

‖f‖Hi
p
:=

∥∥∥∥ sup
nk∈N,k 6=i

∣∣En1 · · ·Eni−1
Eni+1

· · ·End
f
∣∣∥∥∥∥

p

< ∞,

respectively, where Eni
denotes the conditional expectation operator relative

to Fni
(i = 1, . . . , d). We can show again that for a martingale f = (fn, n ∈ Nd)

we have s2n1 ,...,2ndf = fn.

7.3. Atomic decomposition of H2
p (Xd). It is known again (see e.g. Stein [59]

or Weisz [77, 82]) that

H2
p (Xd) ∼ Hp(Xd) ∼ H i

p(Xd) ∼ Lp(Xd) (1 < p ≤ ∞).

and
H i

1(Xd) ⊃ L(logL)d−1(Xd) (i = 1, . . . , d),

i.e.,
‖f‖Hi

1
≤ C + C

∥∥|f |(log+ |f |)d−1
∥∥
1

(f ∈ L(logL)d−1(Xd))

where log+ u = 1{u>1} log u.
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To obtain some convergence results of the summability means over the di-
agonal or over a cone we consider the Hardy space H2

p (Xd). Now the situation

is similar to the one-dimensional case. A function a ∈ L∞(Td) is a multi-
dimensional classical p-atom if there exists a cube I ⊂ Td such that

(1) supp a ⊂ I,
(2) ‖a‖∞ ≤ |I|−1/p,
(3)

∫
I
a(x)xk dx = 0 for all multi-indices k = (k1, . . . , kd) for which ‖k‖2 ≤

bd(1/p− 1)c.
A function a ∈ L∞[0, 1)d is called a multi-dimensional dyadic p-atom if there
exists a dyadic cube I ⊂ [0, 1)d such that (i), (ii) and (iii) with k = 0 hold.

The atomic decomposition holds for the multi-dimensional Hardy spaces,
too (see Latter [34], Lu [36], Wilson [83, 84], Stein [59] and Weisz [66, 77]).

Theorem 11. A distribution (resp. martingale) f is in H2
p (Xd) (0 < p ≤ 1)

if and only if there exist a sequence (ak, k ∈ N) of multi-dimensional classical
(resp. dyadic) p-atoms and a sequence (µk, k ∈ N) of real numbers such that

∞∑
k=0

|µk|p < ∞ and
∞∑
k=0

µka
k = f

in the sense of distributions (resp. martingales). Moreover,

‖f‖Hp
∼ inf

(
∞∑
k=0

|µk|p
)1/p

.

For a cube

I = I1 × · · · × Id ⊂ Xd let Ir = Ir1 × · · · × Ird .

For the proof of the next theorem see Weisz [77, 81].

Theorem 12. For each n ∈ Nd, let Vn : L1(Xd) → L1(Xd) be a bounded linear
operator and let

V∗f := sup
n∈Nd

|Vnf |.

Suppose that ∫
Xd\Ir

|V∗a|p0 dλ ≤ Cp0

for all classical (resp. dyadic) p0-atoms a and for some fixed r ∈ N and 0 <
p0 ≤ 1, where the cube I is the support of the atom. If V∗ is bounded from
Lp1(Xd) to Lp1(Xd) for some 1 < p1 ≤ ∞, then

‖V∗f‖p ≤ Cp‖f‖Hp (f ∈ Hp(Xd))

for all p0 ≤ p ≤ p1. Moreover, if p0 < 1, then

sup
ρ>0

ρ λ(|V∗f | > ρ) ≤ C‖f‖1 (f ∈ L1(Xd)).
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7.4. Atomic decomposition of Hp(Xd). In the investigation of the conver-
gence in the Prighheim’s sense (i.e., over all n) we use the Hardy spacesHp(Xd).
The atomic decomposition for Hp(Xd) is much more complicated. One reason
of this is that the support of an atom is not a rectangle but an open set.
Moreover, here we have to choose the atoms from L2(Xd) instead of L∞(Xd).
This atomic decomposition was proved by Chang and Fefferman [9, 13] and
Weisz [72, 77]. For an open set F ⊂ (Xd) denote by M(F ) the maximal dyadic
subrectangles of F .

A function a ∈ L2(Xd) is a classical Hp-atom if

(a) supp a ⊂ F for some open set F ⊂ Xd,
(b) ‖a‖2 ≤ |F |1/2−1/p,
(c) a can be further decomposed into the sum of “elementary particles”

aR ∈ L2(Xd), a =
∑

R∈M(F ) aR in L2(Xd), satisfying

(a) supp aR ⊂ R ⊂ F ,
(b) for i = 1, . . . , d, k ≤ b2/p− 3/2c and R ∈ M(F ), we have∫

X
aR(x)x

k
i dxi = 0,

(c) for every disjoint partition Pl (l = 1, 2, . . .) of M(F ),∑
l

∥∥∥∥∥∑
R∈Pl

aR

∥∥∥∥∥
2

2

1/2

≤ |F |1/2−1/p.

We get the definition of dyadic Hp-atoms if k = 0 in (b).
The analogue of Theorem 11 holds in this case, too, however, the proof is

much more complicated (see Chang and Fefferman [9, 13] and Weisz [72, 77]).

Theorem 13. A distribution (resp. martingale) f is in Hp(Xd) (0 < p ≤ 1)
if and only if there exist a sequence (ak, k ∈ N) of classical (resp. dyadic)
Hp-atoms and a sequence (µk, k ∈ N) of real numbers such that

∞∑
k=0

|µk|p < ∞ and
∞∑
k=0

µka
k = f

in the sense of distributions (resp. martingales). Moreover,

‖f‖Hp
∼ inf

(
∞∑
k=0

|µk|p
)1/p

.

The corresponding result to Theorem 12 for the Hp(Xd) space are much
more complicated again. Since the definition of the Hp-atom is very complex,
to obtain a usable condition about the boundedness of the operators, we have
to introduce simpler atoms.

First suppose that d = 2. A function a is a simple Hp-atom if

(1) supp a ⊂ R for some rectangle R ⊂ T2,
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(2) ‖a‖2 ≤ |R|1/2−1/p,
(3)

∫
T a(x)x

k
i dxi = 0 for all i = 1, 2 and k ≤ b2/p− 3/2c.

A function a is called a simple dyadic Hp-atom if there exists a dyadic rectangle
R ⊂ [0, 1)2 such that (i), (ii) and (iii) with k = 0 hold.

Note that there are not enough simple Hp-atoms, more exactly, Hp(X2)
cannot be decomposed into simple Hp-atoms, a counterexample can be found
in Weisz [66]. However, the following result says that for an operator V to
be bounded from Hp(Xd) to Lp(Xd) (0 < p ≤ 1) it is enough to check V∗ on
simple Hp-atoms and the boundedness of V∗ on L2(Xd).

Theorem 14. For each n ∈ N2, let Vn : L1(X2) → L1(X2) be a bounded linear
operator and

V∗f := sup
n∈N2

|Vnf |.

Let d = 2 and 0 < p0 ≤ 1. Suppose that there exists η > 0 such that for every
simple Hp0-atom a and for every r ≥ 1∫

X2\Rr

|V∗a|p0 dλ ≤ Cp02
−ηr,

where R is the support of a. If V∗ is bounded from L2(X2) to L2(X2), then

‖V∗f‖p ≤ Cp‖f‖Hp (f ∈ Hp(X2))

for all p0 ≤ p ≤ 2. Moreover, if p0 < 1, then

sup
ρ>0

ρ λ(|V∗f | > ρ) ≤ C‖f‖Hi
1

(f ∈ H i
1(X2), i = 1, 2).

Theorem 14 for two-dimensional classical Hardy spaces is due to Feffer-
man [13] and for martingale Hardy spaces to Weisz [70]. Journé [31] veri-
fied that the preceding result do not hold for dimensions greater than 2. So
there are fundamental differences between the theory in the two-parameter
and three- or more-parameter cases. Now we present the analogous theorem
for higher dimensions.

If d ≥ 3, a function a ∈ L2(Td) is called a simple Hp-atom if there exist
intervals Ii ⊂ T, i = 1, . . . , j for some 1 ≤ j ≤ d− 1, such that

(1) supp a ⊂ I1 × · · · × Ij × A for some measurable set A ⊂ Td−j,

(2) ‖a‖2 ≤ (|I1| · · · |Ij||A|)1/2−1/p,
(3)

∫
T a(x)x

k
i dxi =

∫
A
a dλ = 0 for all i = 1, . . . , j and k ≤ b2/p− 3/2c.

If j = d − 1, we may suppose that A = Id is also an interval. Of course
if a ∈ L2(Td) satisfies these conditions for another subset of {1, . . . , d} than
{1, . . . , j}, then it is also called a simple Hp-atom. If the intervals are dyadic
and k = 0, then we get the definition of simple dyadic Hp-atoms.

Note that Hp(Xd) cannot be decomposed into simple p-atoms. The following
result is due to the author [72, 77]. Let Hc denote the complement of the set
H.
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Theorem 15. For each n ∈ Nd, let Vn : L1(Xd) → L1(Xd) be a bounded linear
operator and

V∗f := sup
n∈Nd

|Vnf |.

Let d ≥ 3 and 0 < p0 ≤ 1. Suppose that there exist η1, . . . , ηd > 0 such that for
every simple Hp0-atom a and for every r1 . . . , rd ≥ 1∫

(I
r1
1 )c×···×(I

rj
j )c

∫
A

|V∗a|p0 dλ ≤ Cp02
−η1r1 · · · 2−ηjrj ,

where I1 × · · · × Ij × A is the support of a. If j = d − 1 and A = Id is an
interval, then we also assume that∫

(I
r1
1 )c×···×(I

rd−1
d−1 )c

∫
(Id)c

|V∗a|p0 dλ ≤ Cp02
−η1r1 · · · 2−ηd−1rd−1 .

If V∗ is bounded from L2(Xd) to L2(Xd), then

‖V∗f‖p ≤ Cp‖f‖Hp (f ∈ Hp(Xd))

for all p0 ≤ p ≤ 2. Moreover, if p0 < 1, then

sup
ρ>0

ρ λ(|V∗f | > ρ) ≤ C‖f‖Hi
1

(f ∈ H i
1(Xd), i = 1, . . . , d).

In some sense the space H i
1(Xd) plays the role of the one-dimensional L1(X)

space.

8. Summability of multi-dimensional Fourier series

The multi-dimensional Fejér and Cesàro means of a distribution resp. mar-
tingale f are defined by

σnf :=
1∏d

i=1 ni

n1−1∑
k1=0

. . .

nd−1∑
kd=0

skf =
∑

|k1|≤n1

. . .
∑

|kd|≤nd

d∏
i=1

(
1− |ki|

ni

)
f̂(k)φk

=

∫
Xd

f(x− u)Kn(u) du

and

σα
nf :=

1∏d
i=1 A

αi
ni−1

n1−1∑
k1=0

. . .

nd−1∑
kd=0

A
αj−1
nj−1−kj

skf

=
1∏d

i=1 A
αi
ni−1

∑
|k1|≤n1

. . .
∑

|kd|≤nd

(
d∏

i=1

Aαi

ni−1−|ki|

)
f̂(k)φk

=

∫
Xd

f(x− u)Kα
n (u) du,
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where the Fejér and Cesàro kernels (see Figure 5) are given by

Kn(u) :=
d∏

j=1

Knj
(uj) and Ka

n(u) :=
d∏

j=1

Kαj
nj
(uj).

−2

0

2

−2

0

2

0

5

10

15

(a) The trigonometric Fejér kernel
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(b) The Walsh-Fejér kernel

Figure 5. The Fejér kernels Kn with n1 = 5 and n2 = 4.

Theorem 16. If 0 < αj ≤ 1 (j = 1, . . . , d) and 1 ≤ p ≤ ∞, then

‖σα
nf‖p ≤ Cp‖f‖p (f ∈ Lp(Xd), n ∈ Nd).

Moreover, for all f ∈ Lp(Xd) (1 ≤ p < ∞),

lim
n→∞

σα
nf = f in the Lp-norm.

This theorem can be found e.g. in Zygmund [85] and Weisz [77]. Here the
convergence is understood in Pringsheim’s sense, i.e., n → ∞ means that
min(n1, . . . , nd) → ∞.

9. Restricted convergence of summability means

For a given τ ≥ 1 we define a cone (see Figure 6) by

Nd
τ := {n ∈ Nd : τ−1 ≤ ni/nj ≤ τ, i, j = 1, . . . , d}.

In this section we investigate the convergence of the summability means over
this cone, the multi-dimensional Hardy space H2

p (Xd) and the restricted max-
imal operator defined by

σα
2f := sup

n∈Nd
τ

|σα
nf |.

For the Walsh system let

p0 := max

{
1

α1 + 1
, . . . ,

1

αd + 1

}
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Figure 6. The cone for d = 2.

and for the trigonometric system

p0 := max

{
d

d+ 1
,

1

α1 + 1
, . . . ,

1

αd + 1

}
.

Theorem 17. If 0 < αj ≤ 1 (j = 1, . . . , d) and p0 < p < ∞, then

‖σα
2f‖p ≤ Cp‖f‖H2

p
(f ∈ H2

p (Xd)).

This theorem is due to the author [71, 75, 77, 78, 82] (for Walsh-Kaczmarz
system see Simon [55]). For the Fejér means (i.e., αj = 1, j = 1, . . . , d) there
are counterexamples for the boundedness of σα

2 if p ≤ p0 = 1/2 (Goginava and
Nagy [25, 27]).

Theorem 18. For the Walsh system the operator σ1
2 (αj = 1, j = 1, . . . , d) is

not bounded from H2
p (Xd) to Lp(Xd) if 0 < p ≤ 1/2.

By interpolation we obtain ([71, 75])

Corollary 4. If 0 < αj ≤ 1 (j = 1, . . . , d) and f ∈ L1(Xd) then

sup
ρ>0

ρλ(σα
2f > ρ) ≤ C‖f‖1.

The usual density argument and Corollary 4 imply the generalization of the
Marcinkiewicz-Zygmund result.

Corollary 5. If 0 < αj ≤ 1 (j = 1, . . . , d) and f ∈ L1(Xd), then

lim
n→∞,n∈Nd

τ

σα
nf = f a.e.

Note that this corollary is due to the author [71, 68, 75, 78]. For Fejér means
of two-dimensional Walsh-Fourier series it can also be found in Gát [19] (see
also Móricz, Schipp and Wade [40], Simon [56] for Walsh-Kaczmarz system
and Blahota and Gát [5] for a general orthonormal system).

The following results are known ([71, 75]) for the norm convergence of σnf .
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Theorem 19. If 0 < αj ≤ 1 (j = 1, . . . , d), p0 < p < ∞ and n ∈ Nd
τ , then

‖σα
nf‖H2

p
≤ Cp‖f‖H2

p
(f ∈ H2

p (Xd)).

Corollary 6. If 0 < αj ≤ 1 (j = 1, . . . , d), p0 < p < ∞ and f ∈ H2
p (Xd),

then
lim

n→∞,n∈Nd
τ

σα
nf = f in the H2

p -norm.

10. Convergence of summability means over a cone-like set

Here we extend the results of the preceding section. First we introduce the
cone-like sets, which are generalizations of the cones investigated before. Sup-
pose that for all j = 2, . . . , d, γj : R+ → R+ are strictly increasing continuous
functions such that limj→∞ γj = ∞ and limj→+0 γj = 0. Moreover, suppose
that there exist cj,1, cj,2, ξ > 1 such that

cj,1γj(x) ≤ γj(ξx) ≤ cj,2γj(x) (x > 0).

For a fixed τ ≥ 1 we define the cone-like set (see Figure 7) by

Figure 7. Cone-like set for d = 2.

Nd
τ,γ := {n ∈ Nd : τ−1γj(n1) ≤ nj ≤ τγj(n1), j = 2, . . . , d}.

To investigate the convergence of the summability means over these cone-
like sets, we have to introduce another maximal operator and other Hardy
spaces. Now we introduce the maximal operator

σα
γ f := sup

n∈Nd
τ,γ

|σα
nf |.

The Hardy spaces Hγ
p (Td) and Hγ

p [0, 1)
d are given with the norms

‖f‖Hγ
p
:=

∥∥∥∥sup
t>0

∣∣f ∗ (Pt ⊗ Pγ2(t) ⊗ · · · ⊗ Pγd(t))
∣∣∥∥∥∥

p



296 FERENC WEISZ

and

‖f‖Hγ
p
:=

∥∥∥∥ sup
n1∈N

|s2n1 ,...,2ndf |
∥∥∥∥
p

< ∞,

respectively, where

2nj ≤ γj(2
n1) < 2nj+1 (j = 2, . . . , d).

For the Walsh system let p1 = 0. For the trigonometric system we can
define a number p1 < 1 depending only on the functions γj (see Weisz [79]).
The results of the preceding section can be generalized as follows (see Weisz [79,
80, 82], for two-dimensional Walsh-Kaczmarz-Fejér means Nagy [41]).

Theorem 20. If 0 < αj ≤ 1 (j = 1, . . . , d) and p0 ∨ p1 < p < ∞, then∥∥σα
γ f
∥∥
p
≤ Cp‖f‖Hγ

p
(f ∈ Hγ

p (Xd)).

Corollary 7. If 0 < αj ≤ 1 (j = 1, . . . , d) and f ∈ L1(Xd), then

sup
ρ>0

ρλ(σα
γ f > ρ) ≤ C‖f‖1.

Corollary 8. If 0 < αj ≤ 1 (j = 1, . . . , d) and f ∈ L1(Xd), then

lim
n→∞,n∈Nd

τ,γ

σα
nf = f a.e.

In the two-dimensional case, Corollaries 7 and 8 were proved by Gát and
Nagy [22, 24] for Fejér summability, for a general orthonormal system by
Nagy [42]. For two-dimensional Fejér means the border point p0 is essential
[41].

11. Unrestricted convergence of summability means

In this section we deal with the Hardy spaces Hp(Xd) and the non-restricted
maximal operator introduced by

σα
∗ f := sup

n∈Nd

|σα
nf |.

Now we investigate the convergence of σα
nf in Pringsheim’s sense, that is,

min(n1, . . . , nd) → ∞. The next result is due to the author ([69, 74, 70, 73, 72])
(for Walsh-Kaczmarz systems see Simon [55]). Let

p2 := max

{
1

α1 + 1
, . . . ,

1

αd + 1

}
.

Theorem 21. If 0 < αj ≤ 1 (j = 1, . . . , d) and p2 < p < ∞, then

‖σα
∗ f‖p ≤ Cp‖f‖Hp (f ∈ Hp(Xd)).

The following unboundedness result was proved by Goginava [25, 26].

Theorem 22. For the Walsh system the operator σ1
∗ (αj = 1, j = 1, . . . , d) is

not bounded from Hp(Xd) to Lp(Xd) if 0 < p ≤ p2.
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By interpolation we get here almost everywhere convergence for functions
from the spaces H i

1(Xd) instead of L1(Xd).

Corollary 9. If 0 < αj ≤ 1 and f ∈ H i
1(Xd) (i, j = 1, . . . , d) then

sup
ρ>0

ρλ(σα
∗ f > ρ) ≤ C‖f‖Hi

1
.

Recall that H i
1(Xd) ⊃ L(logL)d−1(Xd) for all i = 1, . . . , d.

Corollary 10. If 0 < αj ≤ 1 and f ∈ H i
1(Xd) (i, j = 1, . . . , d) then

lim
n→∞

σα
nf = f a.e.

For the L(logL)[0, 1)2 space and Walsh system see also Móricz, Schipp and
Wade [40]. Gát [20, 21] proved for the Fejér means that this corollary does not
hold for all integrable functions.

Theorem 23. The almost everywhere convergence is not true for all f ∈
L1(Xd).

Theorem 24. If 0 < αj ≤ 1 (j = 1, . . . , d) and p2 < p < ∞, then

‖σα
nf‖Hp ≤ Cp‖f‖Hp (f ∈ Hp(Xd), n ∈ Nd).

Corollary 11. If 0 < αj ≤ 1 (j = 1, . . . , d), p2 < p < ∞ and f ∈ Hp(Xd)
then

lim
n→∞

σα
nf = f in the Hp-norm.
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[72] F. Weisz. (C,α) means of several-parameter Walsh- and trigonometric-Fourier series.
East J. Approx., 6(2):129–156, 2000.

[73] F. Weisz. The maximal (C,α, β) operator of two-parameter Walsh-Fourier series. J.
Fourier Anal. Appl., 6(4):389–401, 2000.

[74] F. Weisz. The maximal (C,α, β) operator on Hp(T ×T ). Approx. Theory Appl. (N.S.),
16(1):52–65, 2000.

[75] F. Weisz. Maximal estimates for the (C,α) means of d-dimensional Walsh-Fourier series.
Proc. Amer. Math. Soc., 128(8):2337–2345, 2000.

[76] F. Weisz. (C,α) summability of Walsh-Fourier series. Anal. Math., 27(2):141–155, 2001.
[77] F. Weisz. Summability of multi-dimensional Fourier series and Hardy spaces, volume

541 ofMathematics and its Applications. Kluwer Academic Publishers, Dordrecht, 2002.
[78] F. Weisz. Summability results of Walsh- and Vilenkin-Fourier series. In Functions,

series, operators (Budapest, 1999), pages 443–464. János Bolyai Math. Soc., Budapest,
2002.

[79] F. Weisz. Restricted summability of Fourier series and Hardy spaces. Acta Sci. Math.
(Szeged), 75(1-2):197–217, 2009.

[80] F. Weisz. Restricted summability of multi-dimensional Vilenkin-Fourier series. Ann.
Univ. Sci. Budapest. Sect. Comput., 35:305–317, 2011.

[81] F. Weisz. Boundedness of operators on Hardy spaces. Acta Sci. Math. (Szeged), 78(3-
4):541–557, 2012.

[82] F. Weisz. Summability of multi-dimensional trigonometric Fourier series. Surv. Approx.
Theory, 7:1–179, 2012.



CONVERGENCE OF TRIGONOMETRIC AND WALSH-FOURIER SERIES 301

[83] J. M. Wilson. A simple proof of the atomic decomposition for Hp(Rn), 0 < p ≤ 1.
Studia Math., 74(1):25–33, 1982.

[84] J. M. Wilson. On the atomic decomposition for Hardy spaces. Pacific J. Math.,
116(1):201–207, 1985.

[85] A. Zygmund. Trigonometric series. Vol. I, II. Cambridge Mathematical Library. Cam-
bridge University Press, Cambridge, third edition, 2002. With a foreword by Robert A.
Fefferman.

Received January 17, 2015

Department of Numerical Analysis,
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