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Abstract. The aim of this paper is to present a novel heart beat detection
algorithm using rational modelling of ECG signals. The algorithm considers
several candidate beat locations. For a given candidate a rational model is
fitted to the ECG signal by means of numerical optimization and Fourier
partial sums with respect to the Malmquist-Takenaka system. The resultant
model parameters are used as a basis of classification. The classification is
performed by an SVM classifier, which is trained on annotated ECG records
of the PhysioNet database.

1. Introduction

ECG is a widely used tool in cardiology for inspecting heart condition and
diagnosing malfunction. Computer aided analysis of ECG signals, which pro-
vides additional diagnostic apparatus to cardiologists, is an active research
area of biomedical signal processing.

An important aspect of ECG processing is the problem of detecting heart
beat locations. Several analysis algorithms operate on beats, hence these pro-
cedures rely on beat locations found by a previous processing stage. In this
paper a novel beat detection method based on rational modeling of QRS com-
plexes [5] is presented and compared to other well-known ones, such as the
gqrs and gqpost functions [11] of the PhysioNet [7] software package and the
Pan-Tompkins algorithm [13].

The novel method operates as follows. The peaks of the input signal are
considered as candidate beat locations, then rational models are fitted to the
neighbourhood of each one of these locations. The candidate locations are
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found by selecting local maxima in the input signal. The candidates have to
be at least 200 ms apart; if two candidates are closer than this threshold, the
one with lower peak value is discarded. The parameters of the rational model
serve as features describing that particular candidate, which are then used by
a classifier algorithm to distinguish heart beats from non-beat locations. The
mathematical background of the rational model is described briefly in Sec-
tion 2. The details of extracting signal features using the rational model are
elaborated in Section 3. The extracted features are passed to a classification
phase, which is the main focus of Section 4. The results obtained by run-
ning the algorithm on the PhysioNet CinC challenge 2014 set-p dataset are
presented in Section 5. Section 6 concludes the paper with a summary and a
discussion of possible development directions.

The algorithm described above was originally motivated by the PhysioNet
CinC challenge 2014 contest [6], however it wasn’t submitted as a solution due
to run-time performance problems. Although speeding up the algorithm is
possible, the main focus of this paper is not performance-related. Instead, the
main goal here is to demonstrate the usability of the rational model as a tool
in ECG beat detection.

The idea of rational modelling has been applied recently in the field of
biomedical signal processing. The rational model has already been shown
to describe heart beats well regardless of the ECG lead used: the numerical
optimization of the Malmquist-Takenaka basis parameters (see Section 2 and 3)
yield approximately the same results for different leads [4]. Another application
of rational signal modelling is epileptic seizure classification in EEG signals
[10].

2. Rational modeling of ECG signals

This section briefly outlines the process of rational ECG modelling along
with the mathematical apparatus required to understand the beat detection
algorithm. The interested reader is encouraged to refer to [5] for more details.

Let's consider the sequence a0, a1, . . . , an, . . . of complex numbers in the open
unit disc, i.e. an ∈ C, |an| < 1 (n ∈ N). The rational functions

Φn(z) =

√
1− |an|2
1− ānz

n−1∏
j=0

z − an
1− ānz

are called Malmquist-Takenaka functions (see e.g. [8], [14]), the parameters
an are referred to as inverse poles. These functions form an orthogonal system
with respect to the scalar product

〈f, g〉 = 1

2π

∫ π

−π

f(eit)g(eit)dt,

where the functions f and g are square integrable on the complex unit circle.
QRS complexes of ECG signals can be approximated using Fourier partial
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sums with respect to the system (Φn, n ∈ N):

f̃(z) =
N∑

n=0

〈f,Φn〉Φn(z)

where the complex unit circle is parameterized by z = eit; t ∈ [−π, π) is the
normalized time variable.

Since the Malmquist-Takenaka basis is a complex-valued system, one has
to find an appropriate imaginary part for the real-valued signal, or construct
a real-valued orthogonal system from the Malmquist-Takenaka basis. Both
approaches are viable. Here the former method is followed, since the RAIT
toolbox [9] for MATLAB, upon which the beat detection algorithm has been
built, provides tools to construct the imaginary part.

Figure 1 shows a concrete example of QRS complexes approximated by
rational functions.

Figure 1. Rational approximation of QRS complexes. The
dashed curves are graphs of the real part of Malmquist-Takenaka
partial sums.

3. Feature extraction

To be able to distinguish QRS complexes from other parts of the ECG signal,
a concise description of a particular location in the ECG signal is needed. This
section describes the process of obtaining this description using the rational
model introduced in Section 2.

The parameters (a0, a1, . . . , aN) of the Malmquist-Takenaka system make
the model very general and adaptable, however, for practical reasons, some
constraints are needed to be introduced. Firstly, to be able to represent con-
stant signals, setting a0 to 0 is required. Secondly, to keep the implementation
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simple and the run-time performance manageable, the rest of the parameters
are set to be equal. Formally:

a0 = 0, a1 = a2 = . . . = aN = a.

With these constraints in place, the only remaining free parameter is a. To
find the optimal value of this parameter for a given ECG signal, a numerical
optimization algorithm is used in the following way. For a given candidate
location a small window centered at the candidate is considered. Although
the length of a normal QRS complex is at most 200 ms, a bit wider 250 ms
window is used in order to help the periodic model to assume the same value
at the interval ends. Then a Nelder-Mead simplex algorithm [12] is used to
optimize the parameter a by minimizing the `2 norm of the approximation
error measured at the signal samples in the window. The initial value of
the parameter a is chosen to align the peak of the Malmquist-Takenaka basis
functions with the candidate location, which promotes faster convergence of
the optimization algorithm.

Finding a good rational approximation is important in order to represent
the ECG signal faithfully. The approximation error can be reduced by increas-
ing the number of terms in the Fourier partial sums or letting the optimizer
perform more iterations. Both of these modifications however increase com-
putational costs. To find suitable values for the number N of Fourier-terms
corresponding to the inverse pole a (the order of a) and the maximal number
of Nelder-Mead iterations M , a subset of the set-p database containing 10 ran-
domly chosen records are selected. The reference beats of the selected records
are approximated by a rational model using the parameters N = 2, 3, 4 and
M = 2, 4, 8, 16, 32.

Figure 2 compares the distributions of the approximation errors in terms of
PRD (percentage root-mean-square difference) [1] using a box plot: on each
box, the central mark is the median, the edges of the box are the lower and
upper quartiles, and the whiskers extend to the most extreme data points not
considered outliers. The PRD of a sample x̂[k] (k = 1, 2, . . . , K) with respect
to the reference x[k] (k = 1, 2, . . . , K) is calculated using the following formula

PRD =

√∑K
k=1(x[k]− x̂[k])2∑K
k=1(x[k]− x̄)2

,

where x̄ is the sample mean.
One can conclude that setting M greater than 16 doesn’t perceivably im-

prove the accuracy, therefore the proposed algorithm uses M = 16. Increasing
the parameter N does decrease approximation error, however, as described in
Section 5, it does not improve classification accuracy. Therefore N = 2 is used.

The resultant parameter a and the corresponding Fourier coefficients form
the feature vector of the candidate. The coefficient corresponding to a0 = 0 is
omitted, since this term in the Fourier partial sum is constant, which has no
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Figure 2. Box plot of PRD approximation errors with respect
to the parameters M (top) and N (bottom). The outliers are
not shown.

influence on the QRS waveform. The `2 approximation error is also added as
a feature.

4. Classification

To find the heart beats in the ECG signal, each candidate is classified as
beat or non-beat location using the features introduced in Section 3. The
classification is performed by a Support Vector Machine (SVM) [3] classifier
implemented by the libsvm library [2].

Only the signals similar to beat waveforms encountered during training
should be accepted as beats. To this end the proposed algorithm uses the

K(x, x′) = exp
(
γ‖x− x′‖2

)
so called RBF kernel, which acts as a similarity function between the feature
vectors x and x′. This way the distance of candidate and ground truth features
will determine the outcome of the classification.

The classifier is trained on a subset of the PhysioNet CinC challenge set-p
database consisting of 10% of the total 100 records. The features were normal-
ized to zero mean and unity standard deviation, hence the same transformation
is needed before beat detection. The standard RBF γ and soft margin C pa-
rameters are selected using grid search based on the performance on a separate
set of cross-validation data containing 10% of the records. The parameter grid
follows an exponential pattern.

The final performance of the algorithm is evaluated on the remaining 80%
of the records (test records) of the database (see Section 5).
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5. Results

Table 1 summarizes the results obtained using different N parameters while
also comparing them to the gqrs, gqpost and Pan-Tompkins beat detection
algorithms. The algorithms were run on 80% of the PhysioNet CinC challenge
set-p records, as described in Section 4.

The basis of comparison is sensitivity (Se) and positive predictivity (+P).
These values are computed using the following formulas:

Se = 100
TP

TP + FN
,

+P = 100
TP

TP + FP
,

where TP, FP and FN are the number of true positive, false positive and
false negative detections. The gross and average (avg) values represent overall
scores and per-record averages respectively.

algorithm gross Se gross +P avg Se avg +P

gqrs 99.90% 99.20% 99.91% 99.29%
gqrs + gqpost 99.90% 99.52% 99.90% 99.57%
Pan-Tompkins 99.35% 99.73% 99.44% 99.75%
rational, N=2 99.59% 99.73% 99.61% 99.75%
rational, N=3 99.66% 99.51% 99.68% 99.55%
rational, N=4 99.53% 99.55% 99.54% 99.59%

Table 1. Results of the gqrs, gqpost, Pan-Tompkins and the
proposed rational algorithm with different values of the order N
of the inverse pole a.

The results show that the rational algorithm performs competitively as the
classical ones with slight improvements either in sensitivity or positive predic-
tivity. The parameter N can be set to 2, as higher values increase computa-
tional costs without noticeable accuracy improvement.

6. Conclusion

A novel ECG heart beat detection method based on rational modeling of
QRS complexes has been proposed. The results are competitive to classic algo-
rithms tailored to this task, but the rational model and the extracted features
enable a much broader set of applications, such as beat type classification and
the extraction of diagnostic parameters.

Run-time performance improvements are also possible, e.g. switching to the
conjugate gradient method to optimize the inverse poles or using a discrete
real Malmquist-Takenaka system could speed up the algorithm.

The elaboration of the aforementioned applications and optimization strate-
gies remain future work.
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