Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 33 (2017), 195-198 www.emis.de/journals ISSN 1786-0091

ON A TAYLOR REMAINDER

LARS-ERIK PERSSON AND HUMBERTO RAFEIRO

ABSTRACT. In this note we derive a new Taylor remainder, which extends the well known Lagrange remainder as well as the obscure Gonçalves remainder.

1. INTRODUCTION

The Taylor formula is one of the most well-known results in analysis. The Lagrange, Cauchy and Peano remainders are well-known but there are other less known Taylor remainders e.g. Schlömilch, Bourget, Blumenthal and Gonçalves among others, see [2] for a detailed review and historical remarks on these remainders.

2. New Taylor Remainder

Since our main result depends crucially on the Cauchy generalized mean value theorem, we give its exact formulation taken from [3, Theorem 5.9]:

CAUCHY GENERALIZED MEAN VALUE THEOREM: If f and g are continuous real functions on [a, b] which are differentiable in (a, b), then there is a point $x \in (a, b)$ at which

$$[f(b) - f(a)]g'(x) = [g(b) - g(a)]f'(x).$$

Note that differentiability is not required at the end points. Moreover, if $g'(\tau) \neq 0$ for all $\tau \in (a, b)$ then we have the equality

(1)
$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(x)}{g'(x)}.$$

²⁰¹⁰ Mathematics Subject Classification. 26A03, 26A04, 26A05.

Key words and phrases. Taylor remainder, Taylor formula, Lagrange remainder, Gonçalves remainder.

The second-named author was partially supported by the research project ID-PRJ: 6576 of the Faculty of Sciences of Pontificia Universidad Javeriana, Bogotá, Colombia.

We highlight the fact that $g'(\xi)$ can be zero in $\xi = a$ or $\xi = b$, since the conditions in the Cauchy generalized mean value theorem only require that $g'(\xi) \neq 0$ in (a, b). For a recent work on mean value theorem we refer the reader to [1].

The following observation will be useful. Let φ be continuous in [a, b] and differentiable in (a, b) such that $\varphi(x) \neq 0$ for all $x \in (a, b)$. If $\varphi'(\xi)R(\xi)$ has a primitive $\psi(\xi)$, then by the Cauchy generalized mean value theorem we get

(2)
$$\frac{\psi(b) - \psi(a)}{\varphi(b) - \varphi(a)} = \frac{\psi'(\xi)}{\varphi'(\xi)} = R(\xi),$$

where ξ lies between b and a.

Our main results reads:

Theorem 1. Let $f^{(j)}$ and $\varphi^{(j)}$ be real-valued continuous functions in $[\alpha, \beta]$ and differentiable in (α, β) for j = 0, ..., n - 1. Then, for $a \in [\alpha, \beta]$ and all $x \in [\alpha, \beta] \setminus \{a\}$ and $\varphi = \varphi(x)$ such that $\varphi^{(s)}(\xi) \neq 0$ for all ξ lying between a and x and for s = 1, ..., n we have

(3)
$$f(x) = f(a) + f'(a)(x-a) + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + r_n(x;a),$$

with

(4)
$$r_n(x;a) = \left(\varphi(x) - \sum_{k=0}^{n-1} \frac{(x-a)^k}{k!} \varphi^{(k)}(a)\right) \left(\frac{f^{(n)}(\xi) - f^{(n)}(a)}{\varphi^{(n)}(\xi)}\right),$$

where $x \neq a$ and ξ lies between a and x.

Proof. Let x > a and define R(x) as

(5)
$$f^{(n)}(x) - f^{(n)}(a) = \varphi^{(n)}(x)R(x)$$

Applying (2) to (5) we obtain

(6)
$$f^{(n-1)}(x) - f^{(n-1)}(a) - (x-a)f^{(n)}(a) = [\varphi^{(n-1)}(x) - \varphi^{(n-1)}(a)](R \circ \vartheta_1)(x),$$

where $\vartheta_1(x) = a + \theta_1(x)(x-a)$ and $\theta_1(x) \in (0,1)$. Applying again (2) to (6) we obtain

$$f^{(n-2)}(x) - f^{(n-2)}(a) - (x-a)f^{(n-1)}(a) - \frac{(x-a)^2}{2}f^{(n)}(a)$$

= $\left[\varphi^{(n-2)}(x) - \varphi^{(n-2)}(a) - (x-a)\varphi^{(n-1)}(a)\right] (R \circ \vartheta_1 \circ \vartheta_2)(x)$

where $\vartheta_2(x) = a + \theta_2(x)(x-a)$ and $\theta_2(x) \in (0,1)$.

196

Now iterating the previous reasoning we finally obtain

$$f(x) = f(a) + (x - a)f'(a) + \dots + \frac{(x - a)^n f^{(n)}(a)}{n!} + \left[\varphi(x) - \sum_{k=0}^{n-1} \frac{(x - a)^k}{k!} \varphi^{(k)}(a)\right] (R \circ \vartheta_1 \circ \dots \circ \vartheta_n)(x)$$

from which we get the desired result since $R(x) = \frac{f^{(n)}(x) - f^{(n)}(a)}{\varphi^{(n)}(x)}$. The case of x < a is similar.

Remark 1. Taking $\varphi(\kappa) = (\kappa - a)^{n+1}$ we obtain the Gonçalves remainder (see [2] for an historical account on this remainder)

(7)
$$r_n(x;a) = \frac{(x-a)^{n+1}}{(n+1)!} \left(\frac{f^{(n)}(\xi) - f^{(n)}(a)}{\xi - a}\right),$$

and if f has n+1 derivatives it follows from (7) and the Lagrange mean value theorem the well-known Lagrange remainder.

Since in the nth remainder (4) we only ask for the existence of the derivative of f up to order n instead of up to order n + 1 as in the case of Lagrange, Cauchy, Schlömilch, etc., the remainder (4) gives a theoretical improvement. Let us give an example.

Example 1. Taking $f(x) = \frac{1}{2}x^2 \operatorname{sign}(x)$ and remembering that f'(x) = |x|, we now calculate the Taylor formula with two different remainders.

For x < 0 and a = 1, we have the Taylor formula with Lagrange remainder of f given by

$$f(x) = \frac{1}{2} + (x-1)|\xi|, \quad \xi \in (x,1),$$

whereas taking the Taylor formula with Gonçalves remainder (7) we obtain

$$f(x) = \frac{1}{2} + (x-1) + \frac{(x-1)^2}{2} \left(\frac{|\xi| - 1}{\xi - 1}\right), \quad \xi \in (x, 1).$$

3. Acknowledgements

H.R. thanks *Luleå University of Technology* for financial support for research visit in January-February of 2016. The authors thank the anonymous referee for pointing us the reference [1].

References

- [1] Z. Páles. A general mean value theorem. Publ. Math. Debrecen, 89(1-2):161-172, 2016.
- [2] L.-E. Persson, H. Rafeiro, and P. Wall. Historical synopsis of the Taylor remainder. Note Mat., 37(1):1–21, 2017.
- [3] W. Rudin. *Principles of mathematical analysis*. McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953.

Received December 31, 2016.

LARS-ERIK PERSSON DEPARTMENT OF ENGINEERING SCIENCES AND MATHEMATICS, LULEÅ UNIVERSITY OF TECHNOLOGY, SE 97187 LULEÅ, SWEDEN & UIT, THE ARTIC UNIVERSITY OF NORWAY, NORWAY *E-mail address*: larserik@ltu.se

HUMBERTO RAFEIRO DEPARTAMENTO DE MATEMÁTICAS, PONTIFICIA UNIVERSIDAD JAVERIANA, CRA. 7 NO. 43-82, BOGOTÁ, COLOMBIA *E-mail address*: silva-h@javeriana.edu.co