
Acta Mathematica Academiae Paedagogicae Nýıregyháziensis
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BERWALD SPACES OF BOUNDED CURVATURE ARE
RIEMANNIAN

NATHAPHON BOONNAM, RATTANASAK HAMA, AND SORIN V. SABAU

Abstract. We prove that Berwald spaces whose flag curvature is nowhere
vanishing are in fact Riemannian spaces. This means that any Berwald
space with flag curvature bounded below by a positive number must be also
Riemannian. This rigidity result shows the importance of non-Riemannian
examples when imposing flag curvature bounds on Finsler spaces.

1. Introduction

Finsler manifolds are natural generalizations of the Riemannian ones in the
sense that the metric depends not only on the point, but also on the direction
as well. Even though classical Finsler geometry was mainly concerned with
the local aspects of the theory, recently a lot of efforts was made to obtain
global results in the geometry of Finsler manifolds ( [1], [9], [13], [15], [16] and
many others).

In this quest of extending classical global results from Riemannian manifolds
to Finslerian ones, the complicated form of the second variation formula of the
arc length (see [1], [17]), the non-reversibility of the geodesics or the non-
symmetry of the distance function can be extremely inconvenient.

A special class of Finsler manifolds are the so-called Berwald manifolds (or
Berwald spaces) characterized by the property that its Chern connection co-
efficients depend only on the point and not on direction (see for instance [1]).
There are many reasons to be interested in such special Finsler structures.
They are natural generalizations of Riemannian and locally Minkowski struc-
tures, and it happens that the Chern connection of a Berwald manifold is in
fact the Levi-Civita connection of a Riemannian metric on M . Moreover, for
a Berwald structure, all its tangent spaces are linearly isometric to a common
Minkowski space (see Section 2 for details).
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Beside these elementary properties, Berwald manifolds have remarkable met-
ric properties such that the vanishing of the tangent-curvature (see [17]) and a
very friendly form of the second variation arc-length formula (in fact, similar to
the Riemannian case), that allow extending different well-known comparison
theorems from the Riemannian realm to the Finslerian setting.

Our initial motivation in writing this paper was to extend the famous Max-
imal Diameter Sphere Theorem (see [4] or the original paper [19]) to Finsler
manifolds, and the first natural attempt is to do it by considering Berwald
manifolds due to the reasons explained above. Obviously there are many other
beautiful results in global differential geometry that need to be extended to
the Finsler setting.

However, we found out that there is a big price to pay for trying to extend
formally such Riemanian results, to the case of Berwald manifolds, by using
upper or lower bounds on the flag curvature. In fact, these Berwald manifolds
turn out to be Riemannian, so the extension of the results, without being
wrong, are in fact trivial.

Here is our main theorem.

Theorem 1.1. A complete Berwald manifold with nowhere vanishing flag cur-
vature must be Riemannian.

Here is the structure of this paper. In Preliminaries we recall the basic
notions in Finsler geometry. In Section 3 we recall the fundamental tools
for proving our main Theorem 1.1, namely Szabó’s classification of Berwald
spaces (Lemma 3.1) and Deng-Hou result on Berwald locally symmetric space
(Lemma 3.2). Here is where we prove on Theorem 1.1.

Remark 3.3 contains a pseudo-Maximal diameter sphere theorem for Berwald
space that results directly by combining the Theorem 1.1 with the famous To-
ponogov Theorem 3.4. The statement looks as an interesting result, but a
closer look shows that the bounded curvature hypothesis forces the Finsler
metric to be Riemannian, and then we simply quoted the Riemannian result.
This is one type of frequent errors that should be avoided.

In a future research we will consider the extension to Berwald space of the
Toponogov-type Maximal diameter sphere theorem in the case when the radius
flag curvature of (M,F ) is bounded below by the radial curvature of a 2-sphere
of revolution with known cut locus as in ([3]).

2. Preliminaries

Let M be an n-dimensional differentiable manifold with the local coordinate
system x = (x1, . . . , xn), and let π : TM → M be its tangent bundle with the
natural projection π and canonical coordinates (x, y).

Let us recall ([1]) that a Riemann-Finsler manifold (M,F ) is an n-dimensional
differential manifold M endowed with a norm F : TM → [0,∞) such that

(1) F is positive and differentiable;
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(2) F is 1-positive homogeneous, i.e. F (x, λy) = λF (x, y), λ > 0, (x, y) ∈
TM ;

(3) the Hessian matrix gij(x, y) :=
1

2

∂2F 2

∂yi∂yj
is positive definite on T̃M :=

TM \ {0}.
The Riemann-Finsler structure is called absolute homogeneous if F (x,−y) =

F (x, y) because this leads to the homogeneity condition F (x, λy) = |λ|F (x, y),
for any λ ∈ R.

By means of the Finsler fundamental function F one defines the indicatrix
bundle (or the Finslerian unit sphere bundle) by SM :=

⋃
x∈M SxM , where

SxM := {y ∈M : F (x, y) = 1}.
In order to remove the redundancy resulting from the homogeneity, it is

useful to consider all geometrical objects in Finsler geometry to be defined
on the pull-back bundle π∗TM over SM . Using the global section l :=
yi

F (x,y)
∂
∂xi

of π∗TM one can construct a positively oriented g-orthonormal frame

{e1, e2, . . . , en} by putting en := l, where g = gijdx
i ⊗ dxj is the induced Rie-

mannian metric on the fibres of π∗TM .
The vector bundle π∗TM has a torsion-free and almost g-compatible connec-

tion called the Chern connection D : C∞(TSM)⊗C∞(π∗TM)→ C∞(π∗TM)
given by

DX̂Z := {X̂(zi) + zjω i
j (X̂)}ei,

where X̂ is a vector field on SM , Z := ziei is a section of π∗TM , and {ω i
j }

are the connection 1-forms on SM (see [1] or [17] for details).

Remark 2.1. Locally, the connection 1-forms of the Chern connection are given
by ω i

j = Γi jk(x, y)dxk, where

Γi jk =
1

2
gis
(δgjs
δxk

+
δgks
δxj
− δgjk
δxs

)
are the local coefficients of the Chern connection, and

(
δ
δxi
, F ∂

∂yi

)
is a local

adapted basis for T (T̃M) determined by the non-linear connection of (M,F )
(see [1] for details).

The curvature 2-forms of the Chern connection Ω i
j := dω i

j − ω k
j ∧ ω i

k can
be locally written as

Ω i
j =

1

2
R i
j kldx

k ∧ dxl + P i
j kldx

k ∧ δy
l

F
.

The concrete form of the coefficients R i
j kl and P i

j kl are not essential for our
study and can be found in [1], [17] or any other classical textbook in Finsler
geometry.

The Finslerian analogue of the sectional curvature is the flag curvature de-
fined as following (see [1]). A flag on M at a point x ∈ M is given by (y, σ),
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where the flag pole y is a non-zero vector in σ, and the flag cloth σ is a 2-plane
in the tangent space TxM . The flag curvature of the flag (y, σ) is defined by

K(y, σ) :=
V i(yjRjikly

l)V k

g(y, y)g(V, V )− [g(y, V )]2
,

where V := V i ∂
∂vi

is any non-zero vector in σ such that y and V are linear
independent.

Let γ : [a, b] → M be a smooth piecewise curve on M with the velocity

T (t) := dγ(t)
dt

, and let W (t) be an arbitrary vector field along γ. The (non-
linear) covariant derivative of W along γ is defined by

DTW :=
[dW i

dt
+W jT kΓi jk(γ(t), T (t))

] ∂
∂xi
|γ(t),

where Γi jk are the coefficients of the Chern connection. The vector field W is
said to be parallel along γ if DTW = 0.

This covariant derivative is used to define the parallel translation along γ by

Pγ : Tγ(a)M → Tγ(b)M, Pγ(v) = W (b),

where W = W (t) is the parallel vector field along γ with W (a) = v. Observe
that for given initial conditions, this W is unique. It is known that Pγ is a
diffeomorphism that preserves the Finslerian norm.

Using the notion of parallel transport one can define the holonomy group Hp

of (M,F ) at a point p by analogy with the Riemannian case (see for instance
[2], [5]).

For any point p ∈ M , the holonomy group acts on the tangent space TpM .
This action may either be irreducible as a group representation, or reducible
in the sense that there is a splitting of TpM into orthogonal subspaces TpM =
T ′pM⊕T ′′pM , each of which is invariant under the action of the holonomy group.
Depending on the holonomy group M is said to be irreducible or reducible,
respectively.

The theory of holonomy groups on Finsler manifolds is well developed (for
details see for instance [10]).

We also recall that a Finsler space (M,F ) is called a locally symmetric
Finsler space if for any p ∈M , there exists a neighbourhood Up of p such that
the geodesic symmetry with respect to p is a local isometry of Up.

Remark 2.2. Such a Finsler space must be an absolute homogeneous one.

A related notion is a globally symmetric Finsler space, that is a Finsler space
whose each point is the isolated fixed point of an involutive isometry (see [6]
for properties of local and global symmetric Finsler spaces).

Riemannian manifolds are trivial examples of Finsler structures. The Levi-
Civita connection coincides with the Chern connection and the sectional cur-
vature to the flag curvature of the Finsler counterpart.
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The simplest non-trivial examples are the locally Minkowski spaces. We
recall that a Finsler manifold (M,F ) is called a locally Minkowski space if there
exist certain privileged local coordinates x = (xi) on M , which together with
the canonical coordinates (x, y) induced in TM make the fundamental function
F dependent only on y and not on x. It is easy to see that locally Minkowski
spaces are characterized by the vanishing of the curvature coefficients R and
P of the Chern connection, hence they must have zero flag curvature for all
flags on M .

3. Berwald spaces

Another simple example of Finsler manifolds are the so-called Berwald
spaces that play a central role in the present paper. A Finsler manifold (M,F )
is called a Berwald space if the Chern connection coefficients Γi jk are constant

on each punctured tangent space T̃xM at each point x ∈M . There is a variety
of conditions characterizing Berwald spaces (see [1]) and remarkable properties
of these spaces, we recall here only the most important ones.

Let (M,F ) be a Berwald space and γ : [a, b] → M a smooth curve on M
with velocity vector T (t) = dγ

dt
. Then the (non-linear) parallel translation

Pγ : Tγ(a)M → Tγ(b)M is a linear isomorphism ([8]). Remark that in the
assumption that (M,F ) is Berwald is essential. Indeed, in general, for arbitrary
Finsler metrics the parallel translation is not linear.

It is easy to see that the forward completeness of a Berwald space implies
the backward completeness and hence, similar with the Riemannian case there
is no distinction between forward and backward completeness. It is therefore
natural to call Berwald spaces simply complete. Indeed, a countable product
of complete metric spaces is a complete metric space as well.

However, the most intriguing property of Berwald spaces is the existence
of a Riemannian metric gF , called the Binet-Legendre metric on M whose
Levi-Civita connection coincides with the Chern connection of the Berwald
metric (M,F ) (see [18], [12]). This implies that the geodesics of the Berwald
space (M,F ) coincide with the geodesics of (M, gF ) and same for the holonomy
groups at a point p ∈M .

Using this last remarkable property the Berwald spaces can be classified as
in the following

Lemma 3.1. ([18]) A connected Berwald manifold (M,F ) must be one of the
following four types:

(1) (M,F ) is a Riemannian manifold;
(2) (M,F ) is a locally Minkowski space;
(3) (M,F ) is locally irreducible and it is a locally symmetric non-Riemannian

Berwald space of rank r ≥ 2;
(4) (M,F ) has locally reducible, and in this case M can be locally decom-

posed in a Descartes product of Riemannian spaces, locally Minkowski
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spaces and locally symmetric non-Riemannian Berwald space of rank
r ≥ 2.

Using this classification we are interested in learning more about Berwald
spaces of bounded curvature below, but we can consider here the much more
general case of non-vanishing flag curvature as in our main Theorem 1.1.

Proof of the Theorem 1.1. Let us assume that the flag curvature of the Berwald
space (M,F ) is nowhere vanishing on M for any flag (y, σ). We will show that
(M,F ) must be Riemannian. We can therefore eliminate cases (1) and (2)
because (1) is trivial and (2) must have flag curvature zero that means it does
not satisfy the hypothesis of our theorem.

Let us consider the case (3) when then holonomy group is irreducible and
(M,F ) is a locally symmetric non-Riemannian Berwald space of rank r ≥ 2.

The argument is eased by the following result.

Lemma 3.2. ([6]) Let (M,F ) be a complete Berwald locally symmetric space.
If the flag curvature of (M,F ) is nowhere zero, then F is Riemannian.

(Compare with [11]).
It follows immediately that the Berwald spaces of type (3) with nowhere

vanishing flag curvature must be Riemannian and this case is also solved.
The remaining case (4) is when the holonomy group is reducible and in this

case the manifold M can be written as the product of, say a Riemannian, a
locally Minkowski and a locally symmetric (rank r ≥ 2) space (the number of
factors is not important). Recall that in this case the tangent space to M is
also obtained as the product of the tangent spaces to each factor.

Since (M,F ) is a Berwald space, its Chern connection coincides to the Levi-
Civita connection of a Riemannian space (M, gF ) (the Binet-Legendre metric
studied in [12]), as explained already, so we can think of the Chern connection
in terms of a Riemannian one.

It is a classical fact of Riemannian geometry that the Levi-Civita connection
of the Riemannian product space (M, gF ) must satisfy ∇XY = 0, for any
tangent vectors X and Y belonging to the tangent spaces of different factors
in the decomposition of M . Since this Levi-Civita connection coincides with
the Chern connection of the Berwald space (M,F ), same fact can be said about
the Chern connection.

Indeed, if (M1, g1), (M2, g2) are Riemannian manifolds with Levi-Civita con-
nection∇1 and∇2, respectively, then the Levi-Civita connection of the product
manifold M := M1 ×M2 with Riemannian metric g := g1 + g2 is given by

∇Y1+Y2(X1 +X2) = ∇1
Y1
X1 +∇2

Y2
X2,

where X1, Y1 ∈ χ(M1), X2, Y2 ∈ χ(M2), that is ∇ has the properties

∇Y1X1 = ∇1
Y1
X1, ∇Y2X2 = ∇2

Y2
X2
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and ∇YiXj = ∇Xj
Yi = 0, for any i 6= j. Note that here we canonically identify

vector fields on the factors M1 and M2 with the vector fields on the product
manifold M1 ×M2 by Xi ≡ (Xi, 0), Yi ≡ (0, Yi) for i ∈ {1, 2}.

If we consider the curvature operator

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z

on M = M1 ×M2 it is easy to see that R(X, Y )Z = 0, when X ≡ (X1, 0),
Y ≡ (0, Y2) come from different factors.

Moreover, for any section σ = span{X, Y } ⊂ T(p,q)(M1 × M2) such that
X ∈ TpM1, Y ∈ TqM2, one can easily see that the sectional curvature of this σ
with respect to the product Riemannian structure vanishes, i.e. Kp,q(σ) = 0.
(see for instance [7], Chapter 6, Exercise 1 or [14], Chapter 2, Exercise 22).

The geometrical intuition underlying this phenomena become clear if we
think to the product of two spheres M := Sna ×Smb of dimensions n and m and
radii a and b, respectively. Straightforward computations show that all sec-
tional curvatures lie in the interval [0,max{a, b}] and hence Sna×Smb has always
constant scalar curvature, but can never have constant sectional curvature (see
[14], Section 3.2)

This means that there must exist a tangent plane σ to M whose flag cur-
vature, with respect to any flag pole y is zero, that is K(y, σ) cannot be
non-vanishing for any point of M and any flag. This proves our theorem. �

Remark 3.3. A classical result in Riemannian geometry due to Bonnet says
that if the sectional curvature K of a complete Riemannian manifold (M, g)
satisfies K ≥ H, where H is a positive constant, then diam(M, g) ≤ π√

H
(see

for instance [2]).
It is natural to ask what happens when the diameter of the Riemannian

manifold is maximal, that is diam(M, g) = π√
H

, and this led Toponogov to his

famous Maximal diameter sphere theorem.

Theorem 3.4. ([19]) Let (M, g) be a complete connected n-dimensional Rie-
mannian manifold such that

(1) the sectional curvature is bounded from bellow by a positive constant
H;

(2) diam(M, g) = π√
H

.

Then (M, g) is isometric to the n-dimensional sphere of radius π√
H

.

In the light of the previous section, one could formulate a pseudo-Maximal
diameter sphere theorem for Berwald spaces.

Let (M,F ) be a complete connected Berwald space such that

(1) the flag curvature is bounded below by a positive number, that is
K(y, σ) ≥ H for any flag (y, σ) at x ∈ M , where H is a positive
constant;

(2) diam(M,F ) = π√
H

.
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Then (M,F ) is isometric to the n-dimensional sphere of radius π√
H

with canonical Riemannian metric.

Indeed, let us assume the same conditions as Toponogov for a complete con-
nected Berwald space (M,F ). Then flag curvature bounded condition com-
bined with our Theorem 1.1 shows that actually (M,F ) must be Riemannian,
and hence the conclusion follows from Toponogov’s Theorem 3.4.

However, one should be aware of the fact that the hypothesis here implies
that the Finsler metric is a Riemannian metric one and then we simply write
down the Riemannian result. In order to around such traps are should al-
ways look for explicit non-trivial examples of Finsler metrics with the desired
properties.
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