ON THE CONVERGENCE OF CESÀRO MEANS OF NEGATIVE ORDER OF WALSH-FOURIER SERIES

GVANTSA SHAVARDENIDZE AND MARIAM TOTLADZE

ABSTRACT. In this paper we investigate the convergence of Cesàro means of negative order of Walsh-Fourier series of functions of generalized bounded oscillation.

Let \(r_0(x) \) be a function defined on \(R := (-\infty, \infty) \) by

\[
 r_0(x) = \begin{cases}
 1, & \text{if } x \in \left[0, \frac{1}{2}\right) \\
 -1, & \text{if } x \in \left[\frac{1}{2}, 1\right)
 \end{cases},
\]

\[r_0(x+1) = r_0(x). \]

The Rademacher system is defined by

\[
 r_n(x) = r_0(2^n x), \quad n \geq 1 \text{ and } x \in [0, 1).
\]

Let \(w_0, w_1, \ldots \) represent the Walsh functions, i.e., \(w_0(x) = 1 \) and if \(k = 2^{n_1} + \ldots + 2^{n_s} \) is a positive integer with \(n_1 > n_2 > \ldots > n_s \) then \(w_k(x) = r_{n_1}(x) \times \cdots \times r_{n_s}(x) \).

The idea of using products of Rademacher’s functions to define the Walsh system originated from Paley [16].

The Walsh-Dirichlet kernel is defined by

\[
 D_n(x) = \sum_{k=0}^{n-1} w_k(x).
\]

Recall that

\[
 D_{2^n}(x) = \begin{cases}
 2^n, & \text{if } x \in \left[0, \frac{1}{2^n}\right) \\
 0, & \text{if } x \in \left[\frac{1}{2^n}, 1\right)
 \end{cases}.
\]

Suppose that \(f \) is a Lebesgue integrable function on \([0,1]\) and 1-periodic. Then its Walsh-Fourier series is defined by

\[
 \sum_{k=0}^{\infty} \hat{f}(k) w_k(x),
\]

\(2020 \) Mathematics Subject Classification. 42C10.

Key words and phrases. Walsh-Fourier series, Cesàro means, generalized bounded variation.
where
\[\hat{f}(k) = \int_0^1 f(t) w_k(t) \, dt \]
is called the \(k \)-th Walsh-Fourier coefficient of the function \(f \). Denote by \(S_n(f, x) \) the \(n \)-th partial sum of the Walsh-Fourier series of the function \(f \), namely
\[S_n(f, x) = \sum_{k=0}^{n-1} \hat{f}(k) w_k(x). \]

The Cesàro \((C, \alpha)\)-means of the Walsh-Fourier series are defined as
\[\sigma_n^\alpha(f, x) = \frac{1}{A_\alpha^n} \sum_{k=0}^{n} A_\alpha^{n-k} \hat{f}(k) w_k(x), \]
where
\[A_0^\alpha = 1, \quad A_n^\alpha = \frac{(\alpha + 1) \cdots (\alpha + n)}{n!}, \quad \alpha \neq -1, -2, \ldots. \]

Let \(C([0,1]) \) denote the space of continuous functions \(f \) with period 1. If \(f \in C([0,1]) \), then the function
\[w(\delta, f) = \sup \{|f(x') - f(x'')| : |x' - x''| \leq \delta, \ x', x'' \in [0,1]| \}
\]is called the modulus of continuity of the function \(f \). The modulus of continuity of an arbitrary function \(f \in C([0,1]) \) has the following properties:

1) \(\omega(0) = 0 \),
2) \(\omega(\delta) \) is nondecreasing,
3) \(\omega(\delta) \) is continuous on \([0,1]\),
4) \(\omega(\delta_1 + \delta_2) \leq \omega(\delta_1) + \omega(\delta_2) \) for \(0 \leq \delta_1 \leq \delta_2 \leq \delta_1 + \delta_2 \leq 1. \)

An arbitrary function \(\omega(\delta) \) which is defined on \([0,1]\) and has properties 1) – 4) is called a modulus of continuity. If the modulus of continuity \(\omega(\delta) \) is given, then \(H_\omega \) denotes the class of functions \(f \in C([0,1]) \) for which
\[\omega(\delta, f) = O(\omega(\delta)) \quad \text{as} \quad \delta \to 0. \]

\(C_w([0,1]) \) is the collection of functions \(f : [0,1] \to R \) that are uniformly continuous from the dyadic topology of \([0,1]\) to the usual topology of \(R \), or for short: uniformly \(W \)-continuous.

Let \(f \) be defined on \([0,1]\). We shall represent the dyadic modulus of continuity by
\[\hat{\omega}(\delta, f) = \sup_{0 \leq h \leq \delta} \sup_x |f(x \oplus h) - f(x)|, \]
where \(\oplus \) denotes dyadic addition (see [12] or [18]).

The problems of summability of Cesàro means of the Walsh-Fourier series were studied in [4], [7], [10], [9], [8], [16], [18], [17].

Tevzadze [19] has studied the uniform convergence of Cesàro means of negative order of the Walsh-Fourier series. In particular, in terms of modulus of
continuity and variation of function \(f \in C_w ([0, 1]) \) he has proved the criterion for the uniform summability by the Cesàro method of negative order of Fourier series with respect to the Walsh system.

In [9] Goginava investigated the problem of estimating the deviation of \(f \in L_p \) from its Cesàro means of negative order in the \(L_p \)-metric, \(p \in [1, \infty) \). Analogous results for Walsh-Kaczmarz system were proved by Nagy [15] and Gát, Nagy [6].

In his monograph [23, part 1, chapter 4] Zhizhiashvili investigated the behavior of Cesàro means of negative order of trigonometric Fourier series in detail.

The notion of a function-bounded variation was introduced by Jordan [13]. Generalizing this notion Wiener [21] considered the class of function \(V_p \). Young [22] introduced the notion of the function of bounded \(\Phi \)-variation. Waterman [20] studied the class of function of bounded \(\Lambda \)-variation, and Chanturia [3] defined the notion of the modulus of variation of a function. In 1990, Kita and Yoneda [14] introduced the notion of the generalized Wiener’s class \(BV (p (n) \uparrow p) \).

Generalizing the class \(BV (p (n) \uparrow p) \), Akhobadze [1, 2] considered the classes of function \(BV (p (n) \uparrow p, \phi) \) and \(B \Lambda (p (n) \uparrow p, \phi) \).

Definition 1. [11] Let \(1 \leq p (n) \uparrow p \) as \(n \to \infty \) where \(1 \leq p \leq \infty \). We say that a function belongs to the \(BO (p (n) \uparrow p) \) class if

\[
O (f; p(n) \uparrow p) := \sup_n \left\{ 2^{n-1} \sup_{l=0}^{2^n-1} \sup_{t,u \in [2^{-n},(l+1)2^{-n})} |f(t) - f(u)|^{p(n)} \right\}^{1/p(n)} < \infty.
\]

When \(p(n) = p \) for all \(n \), \(BO (p (n) \uparrow p) \) coincides with the class of \(p \)-bounded fluctuation \(BF_p \) [18].

Estimates of the Fourier coefficients of functions of bounded fluctuation with respect to the Vilenkin system were studied by Gát and Toledo [5].

In [11] Goginava proved that the following statements are true.

Theorem 1. Let \(f \) be a function in the class \(BO (p (n) \uparrow \infty) \) and

\[
\dot{\omega} \left(\frac{1}{2^n}, f \right) = o \left(\frac{1}{p(n+1) \log_2 p(n+1)} \right) \text{ as } n \to \infty.
\]

Then the Walsh-Fourier series of the function \(f \) converges uniformly in \([0, 1]\).

Theorem 2. Let \(p(2n) \leq cp(n), n \in P \) and \(p(n) \log_2 p(n) = o(n) \) as \(n \to \infty \). If \(\omega \) satisfies the condition

\[
\lim_{n \to \infty} \sup \omega \left(\frac{1}{n}, p([\log_2 n]) \log_2 p([\log_2 n]) \right) = c_0 > 0,
\]

then there exists a function in the class \(H^\omega \cap BO (p (n) \uparrow \infty) \) for which the Walsh-Fourier series diverges at some point.

The theorem of Tevzadze [19] implies that if \(p < \frac{1}{\alpha} \) and \(f \in BF_p \cap C_\omega \), then the Cesàro mean \(\sigma_n^{-\alpha} (f) \) of Walsh-Fourier series uniformly converges to the
function f. On the other hand, for $p = \frac{1}{\alpha}$ there exists a continuous function f for which $\sigma_n^{-\alpha}(f, 0)$ diverges. On the basis of the above facts the following problems arise naturally:

Let $f \in BO\left(p(n) \uparrow \frac{1}{\alpha}\right)$, $0 < \alpha < 1$. Under what condition on the sequence \{p(n) : n \geq 1\} the uniform convergence of Cesàro $(C, -\alpha)$ means of Walsh-Fourier series of the function f holds?

The following theorem is true.

Theorem 3. Let $f \in C_w([0, 1]) \cap BO\left(p(n) \uparrow \frac{1}{\alpha}\right)$, $0 < \alpha < 1$, $2^k \leq n \leq 2^{k+1}$. Then

$$\left\|\sigma_n^{-\alpha}(f) - f\right\|_c \leq c(\alpha) \left\{ \sum_{r=0}^{k} 2^{r-k} \omega\left(\frac{1}{2^r}, f\right) + \frac{(\omega\left(\frac{1}{2^r}, f\right))^{1-\alpha p(k)}}{1 - \alpha p(k)} \right\}.$$

Corollary 1. Let $f \in C_w([0, 1]) \cap BO\left(p(n) \uparrow \frac{1}{\alpha}\right)$, $0 < \alpha < 1$ and

$$\frac{(\omega\left(\frac{1}{2^r}, f\right))^{1-\alpha p(k)}}{1 - \alpha p(k)} \to 0 \text{ as } k \to \infty.$$

Then

$$\left\|\sigma_n^{-\alpha}(f) - f\right\|_c \to 0.$$

In order to prove Theorem 3 we need the following lemmas proved by Goginava in [9, 8].

Lemma 1 (Goginava [9]). Let $f \in C_w([0, 1])$. Then for every $\alpha \in (0, 1)$ the following estimation holds

$$\frac{1}{A_n^{-\alpha}} \left\| \int_0^{1/2^{k-1}} \sum_{\nu=0}^{2^{k-1}-1} A_{n-k}^{-\alpha} w_\nu(u) [f (\cdot \oplus u) - f (\cdot)] du \right\|_c \leq c(\alpha) \sum_{r=0}^{k-1} 2^{r-k} \omega\left(1/2^r, f\right)_p,$$

where $2^k \leq n < 2^{k+1}$.

Lemma 2 (Goginava [8]). Let $f \in C_w([0, 1])$ and $2^k \leq n < 2^{k+1}$. Then for every $\alpha \in (0, 1)$ the following estimations hold

$$\frac{1}{A_n^{-\alpha}} \left\| \int_0^{1/2^{k-1}} \sum_{\nu=0}^{2^{k-1}-1} A_{n-k}^{-\alpha} w_\nu(u) [f (\cdot \oplus u) - f (\cdot)] du \right\|$$

$$\leq c(\alpha) \left(\sum_{j=1}^{2^{k-1}-1} \frac{1}{j^{1-\alpha}} \left| f \left(x \oplus \frac{2j}{2^k} \right) - f \left(x \oplus \frac{2j + 1}{2^k} \right) \right| \right),$$

$$\frac{1}{A_n^{-\alpha}} \left\| \int_0^{1/2^k} \sum_{\nu=2^k}^{n} A_{n-k}^{-\alpha} w_\nu(u) [f (\cdot \oplus u) - f (\cdot)] du \right\|$$

$$\leq c(\alpha) \left(\sum_{j=1}^{2^k} \frac{1}{j^{1-\alpha}} \left| f \left(x \oplus \frac{2j}{2^{k+1}} \right) - f \left(x \oplus \frac{2j + 1}{2^{k+1}} \right) \right| \right).$$
Proof of Theorem 3. We can write

\[
\sigma_{n}^{-\alpha}(f, x) - f(x) = \frac{1}{A_{n}^{-\alpha}} \int_{0}^{1} \sum_{\nu=0}^{n} A_{n-\nu}^{-\alpha} w_{\nu}(x) [f(x + u) - f(x)] du
\]

\[
= \frac{1}{A_{n}^{-\alpha}} \int_{0}^{1} \sum_{\nu=0}^{2k-1} A_{n-\nu}^{-\alpha} w_{\nu}(x) [f(x + u) - f(x)] du
\]

\[
+ \frac{1}{A_{n}^{-\alpha}} \int_{0}^{1} \sum_{\nu=2k-1}^{2k-1} A_{n-\nu}^{-\alpha} w_{\nu}(x) [f(x + u) - f(x)] du
\]

\[
+ \frac{1}{A_{n}^{-\alpha}} \int_{0}^{1} \sum_{\nu=2k}^{n} A_{n-\nu}^{-\alpha} w_{\nu}(x) [f(x + u) - f(x)] du
\]

\[= I + II + III. \tag{1}\]

From Lemmas 1 and 2 we have

\[
\|I\| \leq c(\alpha) \sum_{\nu=0}^{k-1} 2^{r-k} \omega \left(\frac{1}{2^{r}}, f \right), \tag{2}\]

\[
|II| \leq c(\alpha) \left(\sum_{j=1}^{2k-1} \frac{1}{j^{1-\alpha}} \left| f \left(x + \frac{2j}{2k} \right) - f \left(x + \frac{2j+1}{2k} \right) \right| \right)
\]

and

\[
|III| \leq c(\alpha) \left(\sum_{j=1}^{2k-1} \frac{1}{j^{1-\alpha}} \left| f \left(x + \frac{2j}{2k+1} \right) - f \left(x + \frac{2j+1}{2k+1} \right) \right| \right).
\]

Using Abel’s transformation, we get

\[
|III| \leq c(\alpha) \left(\sum_{j=1}^{2k-2} \left(\frac{1}{j^{1-\alpha}} - \frac{1}{(j+1)^{1-\alpha}} \right) \right.
\]

\[
\times \sum_{l=1}^{j} \left| f \left(x + \frac{2l}{2k+1} \right) - f \left(x + \frac{2l+1}{2k+1} \right) \right|
\]

\[
+ \frac{1}{(2k-1)^{1-\alpha}} \sum_{j=1}^{2k-1} \left| f \left(x + \frac{2j}{2k+1} \right) - f \left(x + \frac{2j+1}{2k+1} \right) \right|
\]

\[= III_{1} + III_{2}. \tag{3}\]
Let $\varepsilon_k := \alpha p_k < 1$, $s_k := \frac{p(k)}{\varepsilon_k}$, $\frac{1}{s_k} + \frac{1}{t_k} = 1$. Then using Hölder’s inequality for III_2 we can write

$$III_2 = \frac{1}{(2^k - 1)^{1-\alpha}} \sum_{j=1}^{2^k-1} \left| f \left(x \oplus \frac{2j}{2^{k+1}} \right) - f \left(x \oplus \frac{2j+1}{2^{k+1}} \right) \left(1-\varepsilon_k \right)^{\frac{1}{k}} \right|$$

$$\leq \frac{c(\alpha)}{2k(1-\alpha)} \left(\sum_{j=1}^{2^k-1} \left| f \left(x \oplus \frac{2j}{2^{k+1}} \right) - f \left(x \oplus \frac{2j+1}{2^{k+1}} \right) \right| \left(\frac{1}{s_k} \right)^{1-\varepsilon_k} \right)$$

$$\leq \frac{c(\alpha)}{2k(1-\alpha)} \left(BO \left(f, p(k) \uparrow \frac{1}{\alpha} \right) \left(\frac{1}{s_k} \right)^{1-\varepsilon_k} \right)$$

$$\leq c(\alpha) \left(BO \left(f, p(k) \uparrow \frac{1}{\alpha} \right) \right)^{\varepsilon_k} \left(\frac{1}{s_k} \right)^{1-\varepsilon_k} \left(\frac{1}{2^k} \right)^{k(\alpha - \frac{1}{\alpha})}$$

$$\leq c(\alpha) \left(BO \left(f, p(k) \uparrow \frac{1}{\alpha} \right) \right)^{\varepsilon_k} \left(\frac{1}{s_k} \right)^{1-\varepsilon_k} \left(\frac{1}{2^k} \right)^{k(\alpha - \frac{1}{\alpha})}$$

as $k \to \infty$.

Fix $m_0(k)$ and define it later

$$III_1 \leq c(\alpha) \sum_{j=1}^{m_0(k)} \frac{1}{j^{2-\alpha}} \sum_{l=1}^{j} \left| f \left(x \oplus \frac{2l}{2^{k+1}} \right) - f \left(x \oplus \frac{2l+1}{2^{k+1}} \right) \right|$$

$$+ \sum_{j=m_0(k)+1}^{2^k-1} \frac{1}{j^{2-\alpha}} \sum_{l=1}^{j} \left| f \left(x \oplus \frac{2l}{2^{k+1}} \right) - f \left(x \oplus \frac{2l+1}{2^{k+1}} \right) \right|$$

$$\leq c(\alpha) \left\{ \sum_{j=1}^{m_0(k)} \frac{1}{j^{2-\alpha}} \left[\frac{1}{2^k}, f \right] \right\}$$

$$+ \sum_{j=m_0(k)+1}^{2^k-1} \frac{1}{j^{1+1/p(k)-\alpha}} \sum_{l=1}^{j} \left| f \left(x \oplus \frac{2l}{2^{k+1}} \right) - f \left(x \oplus \frac{2l+1}{2^{k+1}} \right) \right| \left(\frac{1}{p(k)} \right)^{\frac{1}{p(k)}}$$

$$\leq c(\alpha) \left\{ \left(m_0(k) \right)^{\alpha} \left(\frac{1}{2^k}, f \right) + \frac{m_0(k)^{\alpha-\frac{1}{p(k)}}}{p(k) - \alpha} BO \left(f, p(k) \uparrow \frac{1}{\alpha} \right) \right\}.$$
Then we have

\[III_1 \leq c(\alpha) \left\{ \omega \left(\frac{1}{2^k}, f \right)^{1-\alpha p(k)} + \frac{\omega \left(\frac{1}{2^k}, f \right)^{1-\alpha p(k)}}{1 - \alpha p(k)} \right\} \leq c(\alpha) \frac{\omega \left(\frac{1}{2^k}, f \right)^{1-\alpha p(k)}}{1 - \alpha p(k)}. \]

Combining (3) – (4) we have

\[|III| \leq c(\alpha) \frac{\omega \left(\frac{1}{2^k}, f \right)^{1-\alpha p(k)}}{1 - \alpha p(k)}. \]

Analogously we can prove that

\[|II| \leq c(\alpha) \frac{\omega \left(\frac{1}{2^k}, f \right)^{1-\alpha p(k)}}{1 - \alpha p(k)}. \]

Combining (1), (2), (5) and (6) we complete the proof of Theorem 3. \(\square\)

References

Received August 18, 2014.

G. Shavardenidze
Department of Mathematics,
Faculty of Exact and Natural Sciences,
Ivane Javakhishvili Tbilisi State University,
Chavchavadze str. 1, Tbilisi 0128, Georgia
Email address: shavardenidzegvantsa@gmail.com

M. Totladze
Department of Mathematics
Faculty of Exact and Natural Sciences,
Ivane Javakhishvili Tbilisi State University,
Chavchavadze str. 1, Tbilisi 0128, Georgia
Email address: totladzemariam@gmail.com