HYPERSURFACES OF A RIEMANNIAN MANIFOLD WITH A RICCI-QUARTER SYMMETRIC METRIC CONNECTION

HÜLYA BAĞDATLI YILMAZ

Abstract. In this paper we study hypersurfaces of a Riemannian manifold endowed with a Ricci-quarter symmetric metric connection. We prove that the induced connection is also a Ricci-quarter symmetric metric connection. We consider the total geodesicness, the total umbilicity and the minimality of a hypersurface of a Riemannian manifold endowed with the Ricci-quarter symmetric metric connection. We obtain the Gauss, Weingarten and Codazzi equations with respect to the Ricci-quarter symmetric metric connection. The relation between the sectional curvatures of M^n and $M^{(n+1)}$ with respect to the Ricci-quarter symmetric metric connection has been also given.

1. Introduction

In 1975, Golab [5] introduced the notion of a quarter-symmetric linear connection in a differentiable manifold. Later Misra and Pandey [7] considered a quarter symmetric F-connection and studied some of its properties. They considered especially the case of Kaehlerian structure and introduced the notion of a Ricci-quarter symmetric metric connection. Kamilya and De [6] studied some properties of a Ricci-quarter symmetric metric connection. In [4], Quasi Einstein manifolds admitting a Ricci-quarter symmetric metric connection were considered. In 1982, Yano and Imai [10] studied some curvature conditions for quarter symmetric metric connections in Riemannian, Hermitian and Kaehlerian manifolds. In [3], De and Mondal considered hypersurfaces of Kenmotsu manifolds with a quarter symmetric non-metric connection. In [1], Ahmad, Jun and Haseeb investigated some properties of invariant hypersurfaces of almost r-paracontact Riemannian manifold endowed with a quarter symmetric metric connection.

2020 Mathematics Subject Classification. 53C05, 53C07, 53C40, 53B05.

Key words and phrases. Ricci-quarter symmetric metric connection, totally geodesic, totally umbilical, Gauss equation, Weingarten equation, Codazzi equation, sectional curvature.

This research was supported by BAPKO at Marmara University, Grant No: FEN-D-250416-0194.
In the present paper, we have studied hypersurfaces of a Riemannian manifold endowed with a Ricci-quarter symmetric metric connection. The paper is organized as follows: In Section 2, we have given some properties of the Ricci-quarter symmetric metric connection; in Section 3, some necessary information about a hypersurface of a Riemannian manifold endowed with the Ricci-quarter symmetric metric connection has been given and we have proved that the induced connection is also a Ricci-quarter symmetric metric connection. We have also considered the total geodesicness, the total umbilicity and the minimality of a hypersurface of a Riemannian manifold endowed with the Ricci-quarter symmetric metric connection. In Section 4, we have obtained the Gauss, Weingarten, and Codazzi equations with respect to the Ricci-quarter symmetric metric connection. The relation between the sectional curvatures of M^n and $M^{(n+1)}$ with respect to the Ricci-quarter symmetric metric connection has been also found.

2. Preliminaries

Let M be an $(n+1)$ dimensional Riemannian manifold with a Riemannian metric g, and let ∇ be a linear connection on M. The linear connection ∇ in Riemannian manifold M is said to be a quarter symmetric connection if its torsion tensor T satisfies \[(1) \quad T(X,Y) = w(Y)LX - w(X)LY, \]
where w is a 1-form associated with a non-zero vector field ρ by $w(X) = g(X, \rho)$ and L is a tensor field of type $(1, 1)$.

A linear connection ∇ is called a metric connection if \[\nabla g = 0. \]

In (1), if a tensor field L is a $(1, 1)$-Ricci tensor of a Riemannian manifold M, then the linear connection ∇ of a Riemannian manifold M is called a Ricci-quarter symmetric connection. Such a connection together with the metric condition is said to be a Ricci-quarter symmetric metric connection \[(2) \quad \nabla_X Y = \nabla^*_X Y + w(Y)LX - S^*(X,Y)\rho, \]
where L is a Ricci tensor of type $(1, 1)$ defined by $S^*(X,Y) = g(LX,Y)$, where S^* is the Ricci tensor of M.
We denote the curvature tensor of M with respect to the Ricci-quarter symmetric metric connection ∇ by R. So we have

$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]}Z$$

$$= R^*(X,Y)Z - M(Y,Z)LX + M(X,Z)LY$$

$$- S^*(Y,Z)QX + S^*(X,Z)QY + \pi(Z)[(\nabla_X L)(Y) - (\nabla_Y L)(X)]$$

$$- [(\nabla_X S^*) (Y, Z) - (\nabla_Y S^*)(X, Z)] \rho,$$

where

$$R^*(X,Y)Z = \nabla^*_X \nabla^*_Y Z - \nabla^*_Y \nabla^*_X Z - \nabla^*_{[X,Y]}Z$$

is the curvature tensor of the manifold with respect to the Levi-Civita connection ∇^* and M is a tensor of type $(0,2)$ defined by

$$M(X,Y) = g(QX,Y) = (\nabla_X w)(Y) - w(Y)w(LX) + \frac{1}{2} w(\rho)S^*(X,Y),$$

and Q is a tensor field of type $(2,1)$ defined by [7]

$$QX = \nabla_X \rho - w(LX)\rho + \frac{1}{2} w(\rho)LX.$$

3. Hypersurfaces

Let \overline{M} be an n dimensional hypersurface immersed in M by the immersion $i : \overline{M} \to M$. If B denotes the derivative of i, then any vector field $\overline{X} \in T(\overline{M})$ implies $B\overline{X} \in T(M)$. We denote the objects belonging to \overline{M} by \overline{X}, \overline{L}, etc.

Let N be an oriented unit normal vector field on \overline{M}. Then the induced \overline{g} on \overline{M} is $\overline{g}(\overline{X}, \overline{Y}) = g(\overline{X}, \overline{Y})$. Then we have [2]

$$g(\overline{X}, N) = 0 \quad \text{and} \quad g(N, N) = 1.$$

Let $\overline{\nabla}^*$ be the induced connection on a hypersurface from ∇^* with respect to the unit normal N, then the Gauss equation is given by

$$\nabla^*_X \overline{Y} = \overline{\nabla}_X \overline{Y} + h(\overline{X}, \overline{Y})N,$$

where h is the second fundamental tensor

$$h(\overline{X}, \overline{Y}) = h(\overline{Y}, \overline{X}) = \overline{g}(H\overline{X}, \overline{Y}),$$

and H is a tensor field of type $(1,1)$ of \overline{M}.

If $\overline{\nabla}$ is the induced connection on the hypersurface from the Ricci-quarter symmetric metric connection ∇ with respect to the unit normal N, then we have

$$\nabla_X \overline{Y} = \overline{\nabla}_X \overline{Y} + m(\overline{X}, \overline{Y})N.$$

Now every vector field X on M is decomposed as

$$X = \overline{X} + l(X)N,$$
where \(l \) is a 1-form on \(M \). For any tangent vector field \(\overline{X} \) on \(\overline{M} \) and normal \(N \) we have

\[
\begin{align*}
LN &= \overline{N} + KN, \\
L\overline{X} &= \overline{L} \overline{X} + b(\overline{X})N, \\
\rho &= \overline{\rho} + \lambda N,
\end{align*}
\]

where \(\overline{L} \) is a Ricci tensor field of type \((1,1)\) on the hypersurface \(\overline{M} \), \(b \) is a 1-form, \(K \) and \(\lambda \) are scalar functions on \(\overline{M} \).

Using (2), (6), and (7), we have

\[
\nabla_X Y = \nabla^*_{\overline{X}} Y + w(Y) \{ \overline{L} X + b(\overline{X})N \} - S^*(\overline{X}, Y) \{ \overline{\rho} + \lambda N \},
\]

where \(w(Y) = \overline{w}(Y) \). Using (3) and (4) in (8) yields

\[
\begin{align*}
\nabla_X Y + m(X,Y)N &= \nabla^*_{\overline{X}} Y + h(\overline{X},Y)N + w(Y) \{ \overline{L} X + b(\overline{X})N \} \\
&\quad - S^*(\overline{X}, Y) \{ \overline{\rho} + \lambda N \}.
\end{align*}
\]

Now taking tangential and normal parts from both sides, we have

\[
\begin{align*}
\overline{\nabla}_X \overline{Y} &= \overline{\nabla}^*_{\overline{X}} \overline{Y} + w(\overline{Y}) \overline{L} \overline{X} - S^*(\overline{X}, \overline{Y}) \overline{\rho} \\
\text{and} \\
m(\overline{X}, \overline{Y}) &= h(\overline{X}, \overline{Y}) + w(\overline{Y}) b(\overline{X}) - \lambda S^*(\overline{X}, \overline{Y}).
\end{align*}
\]

From (9), it follows that

\[
\overline{T}(\overline{X}, \overline{Y}) = w(\overline{Y}) \overline{L} \overline{X} - w(\overline{X}) \overline{L} \overline{Y},
\]

and also using (4), we have

\[
(\overline{\nabla}_{\overline{X}} g)(\overline{Y}, \overline{Z}) = (\overline{\nabla}_{\overline{Y}} g)(\overline{Y}, \overline{Z}).
\]

Thus we get the following.

Theorem 1. The connection induced on a hypersurface of a Riemannian manifold with a Ricci-quarter symmetric metric connection is also a Ricci-quarter symmetric metric connection.

3.1. Totally geodesic and totally umbilic hypersurfaces

Let \(\{ \overline{E}_1, \ldots, \overline{E}_n \} \) be \(n \) orthonormal vector fields in \(\overline{M} \). Then the function

\[
\frac{1}{n} \sum_{i=1}^{n} h(\overline{E}_i, \overline{E}_i)
\]

is the mean curvature of \(\overline{M} \) with respect to the Levi-Civita connection \(\overline{\nabla}^* \) and

\[
\frac{1}{n} \sum_{i=1}^{n} m(\overline{E}_i, \overline{E}_i)
\]

is called the mean curvature of \(\overline{M} \) with respect to the Ricci-quarter symmetric metric connection \(\overline{\nabla} \).

From this we have the following definitions.
Definition 1. If \(h \) vanishes, we call \(\overline{M} \) a totally geodesic hypersurface of \(M \) with respect to the Levi-Civita connection \(\nabla^* \).

Definition 2. The hypersurface \(\overline{M} \) is called totally umbilical with respect to the connection \(\nabla^* \) if \(h \) is proportional to the metric tensor \(g \).

If we replace \(h \) by \(m \) in the above definitions we get a totally geodesic hypersurface and a totally umbilical hypersurface with respect to the Ricci-quarter symmetric connection \(\nabla \).

Thus we get the following theorem.

Theorem 2. In order that the mean curvature of \(\overline{M} \) with respect to \(\nabla^* \) coincides with that of \(\overline{M} \) with respect to \(\nabla \), it is necessary and sufficient that \(\rho \) and \(L\overline{X} \) are tangent to \(M \). Hence \(\overline{M} \) is minimal with respect to the Levi-Civita connection if and only if it is minimal with respect to the Ricci-quarter symmetric metric connection.

Proof. In view of (10), we get
\[
m(E_i, \overline{E}_i) = h(E_i, \overline{E}_i) + w(E_i)b(\overline{E}_i) - \lambda S^*(E_i, \overline{E}_i),
\]
summing up for \(i = 1, 2, \ldots, n \) and dividing by \(n \), we obtain that
\[
\frac{1}{n} \sum_{i=1}^{n} m(E_i, \overline{E}_i) = \frac{1}{n} \sum_{i=1}^{n} h(E_i, \overline{E}_i)
\]
if and only if \(\lambda = 0 \) and \(b = 0 \). Hence, from (6) and (7), it follows that
\[
\rho = \overline{\rho} \quad \text{and} \quad L\overline{X} = \overline{L} \overline{X}.
\]

Thus \(\rho \) and \(L\overline{X} \) are in a tangent space of \(M \). Moreover, it is clear from (11) that \(\overline{M} \) is minimal with respect to the Levi-Civita connection if and only if it is minimal with respect to the Ricci-quarter symmetric metric connection. \(\square \)

Theorem 3. Let \(\rho \) and \(L\overline{X} \) be tangent to \(M \). Then the hypersurface \(\overline{M} \) is totally umbilical with respect to the Levi-Civita connection \(\nabla^* \) if and only if it is totally umbilical with respect to the Ricci-quarter symmetric metric connection \(\nabla \).

Proof. The proof follows easily from (10). \(\square \)

4. Gauss, Weingarten, and Codazzi equations with respect to Ricci-quarter symmetric metric connection

In this section we shall obtain the Gauss, Weingarten, and Codazzi equations with respect to the Ricci-quarter symmetric metric connection. For the Levi-Civita connection \(\nabla^* \), the Weingarten equations are given by
\[
\nabla^*_X N = -H\overline{X}
\]
for any vector field in \overline{M}, where H has the meaning already stated. In view of
the equation (2), we get
\begin{equation}
\nabla_X N = \nabla^*_X N + \lambda L \overline{X} - S^*(\overline{X},N) \rho,
\end{equation}
where $\lambda = w(N)$. From (6), (7) and (13), it follows that
\begin{equation}
\nabla_X N = \nabla^*_X N + \lambda L \overline{X} - b(\overline{X}) \rho.
\end{equation}

Thus, from (12) and (14), we get
\begin{equation}
\nabla_X N = -H \overline{X} + \lambda L \overline{X} - b(\overline{X}) \rho,
\end{equation}
which is the equation of Weingarten with respect to the Ricci-quarter symmetric metric connection.

Let us denote the curvature tensor of \overline{M} with respect to $\overline{\nabla}$ by \overline{R}. Then
\begin{equation}
\overline{R}(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z.
\end{equation}
Using (4) and (14) in $R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z$, we get
\begin{equation}
\overline{R}(X,Y)Z = \overline{R}(X,Y)Z + m(Y,Z) \{ -H \overline{X} + \lambda L \overline{X} - b(\overline{X}) \rho \}
\end{equation}
\begin{equation}
- m(\overline{X},Z) \{ -H \overline{Y} + \lambda L \overline{Y} - b(\overline{Y}) \rho \}
\end{equation}
\begin{equation}
+ \{ (\nabla_X m)(Y,Z) - (\nabla_Y m)(\overline{X},Z) - m(w(Y) L \overline{X} - w(\overline{X}) L \overline{Y},Z) \} N.
\end{equation}
From (10), it follows that
\begin{equation}
R(X,Y,Z,W) = \overline{R}(X,Y,Z,W) + m(\overline{X},Z)m(Y,W) - m(Y,Z)m(\overline{X},\overline{W}),
\end{equation}
where
\begin{equation}
R(X,Y,Z,W) = g(R(X,Y)Z,W), \quad \overline{R}(X,Y,Z,W) = g(\overline{R}(X,Y)Z,W)
\end{equation}
and \overline{W} is a tangent vector field on \overline{M}. The equation (16) is the equation of Gauss with respect to the Ricci-quarter symmetric metric connection.

From (15), the normal component of $R(X,Y)Z$ is given by
\begin{equation}
(R(X,Y)Z)^\perp = (\nabla_X m)(Y,Z) - (\nabla_Y m)(\overline{X},Z) - m(w(Y) L \overline{X} - w(\overline{X}) L \overline{Y},Z).
\end{equation}

The equation (17) is the equation of Codazzi with respect to the Ricci-quarter symmetric metric connection.

Theorem 4. A totally umbilical hypersurface \overline{M} of M with vanishing curvature tensor with respect to the Ricci-quarter symmetric metric connection is of constant curvature.
Proof. Since \overline{M} is a totally umbilical hypersurface, $m = k\overline{g}$ where k is a scalar. If we put $R = 0$ and $m = k\overline{g}$ in the equation (16), we obtain

$$R(X, Y, Z, W) = k^2 [\overline{g}(Y, Z)\overline{g}(X, W) - \overline{g}(X, Z)\overline{g}(Y, W)].$$

Hence such a hypersurface \overline{M} is of constant curvature. □

We assume that M is a space of constant curvature and \overline{M} is a conformally flat hypersurface. Since M is of constant curvature, hence it is an Einstein manifold and conformally flat.

Theorem 5. [8] If V_n is a conformally flat hypersurface of a conformally flat space V_{n+1} and V_n is a quasi-umbilical hypersurface, that is, there exists a non-zero vector field v_i such that the second fundamental tensor h_{ji} is given in the form $h_{ji} = \alpha g_{ji} + \beta v_j v_i$ for some functions α and β on V_n, where α is differentiable.

Using the above theorem, we have

$$h(\overline{X}, \overline{Y}) = \alpha \overline{g}(\overline{X}, \overline{Y}) + \beta \overline{w}(\overline{X})\overline{w}(\overline{Y}),$$

where α and β are some functions on \overline{M} such that α is differentiable. From (10) and (18), it follows that

$$m(\overline{X}, \overline{Y}) = \gamma \overline{g}(\overline{X}, \overline{Y}) + \beta \overline{w}(\overline{X})\overline{w}(\overline{Y}) + \overline{w}(\overline{Y})b(\overline{X}),$$

where $\gamma = \alpha - \frac{r}{n+1}\lambda$ if and only if $b = 0$. Then we get

$$m(\overline{X}, \overline{Y}) = \gamma \overline{g}(\overline{X}, \overline{Y}) + \beta \overline{w}(\overline{X})\overline{w}(\overline{Y}).$$

Thus we obtain the following.

Theorem 6. Let \overline{M} be a quasi-umbilical hypersurface of a conformally flat manifold M with respect to the Levi-Civita connection ∇^*. Then \overline{M} is a quasi-umbilical hypersurface of a conformally flat manifold M with respect to the Ricci-quarter symmetric metric connection ∇ if and only if $L\overline{X}$ is tangent to M.

Now let \overline{X} and \overline{Y} be orthogonal unit tangent vector fields on \overline{M} and π be a subspace of the tangent space spanned by the orthonormal base $\{\overline{X}, \overline{Y}\}$. Then in view of (16) we can write

$$R(\overline{X}, \overline{Y}, \overline{Y}, \overline{X}) = R(\overline{X}, \overline{Y}, \overline{Y}, \overline{X}) + m(\overline{X}, \overline{Y})m(\overline{Y}, \overline{X}) - m(\overline{Y}, \overline{Y})m(\overline{X}, \overline{X}).$$

Let $K(\pi)$ and $\overline{K}(\pi)$ be the sectional curvatures of M and \overline{M} at a point $p \in M$, respectively, with respect to the Ricci-quarter symmetric metric connection. Then we get

$$K(\pi) = \overline{K}(\pi) + m(\overline{X}, \overline{Y})m(\overline{Y}, \overline{X}) - m(\overline{Y}, \overline{Y})m(\overline{X}, \overline{X}).$$

Let γ be a geodesic in M which lies in \overline{M} and \overline{T} be a unit tangent vector field of γ in \overline{M}. Then $h(\overline{T}, \overline{T}) = 0$ and from (10), it follows that

$$m(\overline{T}, \overline{T}) = w(\overline{T})b(\overline{T}) - \lambda S^*(\overline{T}, \overline{T}).$$
Let π be the subspace of the tangent space spanned by X and T, and let ρ and LX be tangent to M. Then from (10), it follows that $m(T, T) = 0$. Thus using (19), we have
\[K(\pi) = K(\pi) + m(X, T)m(T, X). \]

Hence we have the following theorem.

Theorem 7. Let γ be a geodesic in M which lies in \overline{M} and T be a unit tangent vector field of γ in \overline{M}. Let π be a subspace of the tangent space spanned by X and T. If ρ and LX are tangent to M, then $K(\pi) \leq K(\pi)$ along γ.

References

Received December 05, 2016.

HÜLYA BA˘GDATLI YILMAZ
MARMARA UNIVERSITY,
FACULTY OF SCIENCES AND LETTERS,
DEPARTMENT OF MATHEMATICS
Email address: hbagdatli@marmara.edu.tr