More Results On 3-Step Hamiltonicity Of Graphs
And Its Line Graphs*

Noor A’lawiah Abd Aziz†, Roslan Hasni‡, Hailiza Kamarulhaili§,
Gee-Choon Lau¶, Sin-Min Lee∥

Received 22 January 2018

Abstract

Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. A (p,q)-graph $G = (V,E)$ is said to be $AL(k)$-traversal if there exists a sequence of vertices (v_1,v_2,\ldots,v_p) such that for each $i = 1, 2, \ldots, p - 1$, the distance between v_i and v_{i+1} is k. We call a graph G a k-step Hamiltonian graph (or say it admits a k-step Hamiltonian cycle) if it has an $AL(k)$-traversal in G and $d(v_p,v_1) = k$. In this paper, we give several construction of some families of graphs and its line graphs which admit a 3-step Hamiltonian cycle.

1 Introduction

Throughout this paper, we will consider only simple undirected graph $G = (V(G), E(G))$. The distance between two vertices u and v in G denoted by $d(u,v)$ is the length of a shortest u,v-path in G. The line graph $L(G)$ of a graph G has $E(G)$ as its vertex set and two vertices are adjacent in $L(G)$ if and only if they are adjacent as edges in G. A matching in a graph G is a set $M \subseteq E(G)$ such that no edges in M have common endpoints. For a vertex $u \in V(G)$, we say u is saturated by a matching M if u is the endpoint of an edge of M, otherwise u is unsaturated by M. A matching M is called a perfect matching in a graph G if M saturates each vertex of G. For terminologies and notations which are not explained here, please refer West [8].

A graph G is said to be Hamiltonian if it contains a Hamiltonian cycle, i.e a spanning cycle that traverses each vertex of G exactly once. Determining whether such cycle exists in a given graph is one of the major classical problems in graph theory. There is no exact characterization to check the existence and non-existence of Hamiltonian cycle for a given graph. A good reference for recent development and open problems related to Hamiltonicity of graphs, please see [2]. This concept of Hamiltonicity is then

*Mathematics Subject Classifications: 05C78, 05C25.
†School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
‡School of Informatics and Applied Mathematics, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
§Same postal address as the first author
¶Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 85009 Segamat, Johor, Malaysia
∥34803, Hollyhock Street, Union City, CA94587, USA
extended by Lau et al. in [3] to k-step Hamiltonicity. They introduced the concept of $AL(k)$-traversal and k-step Hamiltonian graph as follows: For an integer $k \geq 1$, a (p,q)-graph G with p vertices and q edges is said to admit an $AL(k)$-traversal if the p vertices of G can be arranged as v_1, v_2, \ldots, v_p such that $d(v_i, v_{i+1}) = k$ for each $i = 1, 2, \ldots, p-1$. A graph G is k-step Hamiltonian (or just k-SH) if G admits an $AL(k)$-traversal and $d(v_1, v_p) = k$. The sequence of vertices $v_1, v_2, \ldots, v_p, v_1$ is then called a k-SH cycle of G. Clearly, 1-SH graphs are Hamiltonian. The distance-k graph, $D_k(G)$, is a graph generated from a graph G such that $V(D_k(G)) = V(G)$ and $uv \in E(D_k(G))$ if and only if $d(u, v) = k$ in G. The following important results obtained by Lau et al. in [3] will be needed in our results.

LEMMA 1. A graph G is k-SH or admits an $AL(k)$-traversal if and only if $D_k(G)$ is Hamiltonian or has a Hamiltonian path, respectively.

LEMMA 2. A bipartite graph does not admit a k-SH cycle for even $k \geq 2$.

Lau et al. in [4] obtained the following necessary and sufficient condition for cycles C_n to be k-SH.

THEOREM 1. The cycle graph C_n, $n \geq 3$ admits a k-SH cycle for $k \geq 2$ if and only if $n \geq 2k + 1$ and gcd$(n, k) = 1$.

Several classes of k-SH graphs including trees, tripartite graphs, cycles, grid graphs, cubic graphs and subdivision of cycles, have been studied, see [3, 4, 5, 6, 7]. In [1], the authors investigated some families of graphs and its line graphs which admit a 3-SH cycle. In this paper, we extend the results in [1] and give new construction of some families of graphs and its line graphs which admit a 3-SH cycle.

2 Main Results

In [3], we know that the complete bipartite graph $K_{m,n}$ is not k-SH for all m,n and $k \geq 2$. Note that the line graph of complete bipartite graph $K_{m,n}$ is a graph obtained from a grid graph $P_m \times P_n$ such that vertices of the same horizontal (respectively vertical) path are also adjacent to each other. We denote (a,b) as the vertex on row a and column b of $P_m \times P_n$ for $1 \leq a \leq m, 1 \leq b \leq n$. Two vertices (a,b) and (c,d) in $L(K_{m,n})$ are of distance 2 if $a \neq c$ and $b \neq d$. Otherwise, they are of distance 1. Therefore, we conclude that $L(K_{m,n})$ is not k-SH for all $k \geq 3$.

It is interesting to know about the k-step Hamiltonicity of the complete bipartite graph $K_{m,n}$ if some edges are deleted. But, from Lemma 2, we know that the graph, say G obtained from $K_{m,n}$ by deleting some edges is not k-SH for even $k \geq 2$ and the k-step Hamiltonicity of G for odd $k \geq 3$ is not studied yet.

We now check the 3-step Hamiltonicity of some graphs obtained from the complete bipartite graph $K_{m,n}$ by deleting two disjoint perfect matchings S and T. But here, we will consider only $K_{n,n}$, $n \geq 2$ since $K_{m,n}$ for $m \neq n$ does not have perfect matching. Let $V = \{a_1, a_2, \ldots, a_n\}$ and $W = \{a_1^*, a_2^*, \ldots, a_n^*\}$ be the partite sets of $K_{n,n}$ such.
that $E(K_{n,n}) = \{a_i a^*_j : 1 \leq j \leq n\}$. We then obtain the following results. Note that all subscripts are to be read modulo n.

LEMMA 3. For $S = \{a_i a^*_i : 1 \leq i \leq n\}$ and $T = \{a_i a^*_{i+1} : 1 \leq i \leq n\}$, the graph $G = K_{n,n} - \{S,T\}$ is 3-SH if and only if $n \geq 4$.

PROOF. It is obvious that G is disconnected when $n = 2$ and $n = 3$ so that G does not admit a 3-SH cycle. For $n \geq 4$, observe that $d(a^*_i, a_{i+1}) = d(a_i, a^*_{i+2}) = 1$ and $d(a_i, a_{i-1}) = d(a^*_i, a^*_{i-1}) = 2$ for $1 \leq i \leq n$. Since a^*_i is not adjacent to a_i and a_i is not adjacent to a^*_i, we have $d(a^*_i, a_i) = d(a_i, a^*_{i+1}) = 3$. Therefore, the sequence $a^*_1, a_1, a^*_2, a_2, \ldots, a^*_n, a_n, a^*_1$ is a possible 3-SH cycle of G.

LEMMA 4. For $S = \{a_i a^*_{i+1} : 1 \leq i \leq n\}$ and $T = \{a_i a^*_{i-1} : 1 \leq i \leq n\}$, the graph $G = K_{n,n} - \{S,T\}$ is 3-SH if and only if $n \geq 5$ is odd.

PROOF. We need $n \geq 3$ because when $n = 2$, we have $S = T$. For $n = 3$ and $n = 4$, graph G is disconnected and thus is not 3-SH. For $n \geq 5$ is even, $D_3(G)$ consists of 2 components each of size n so that $D_3(G)$ is not Hamiltonian. By Lemma 1, G is not 3-SH.

Now, consider odd $n \geq 5$. Note that for $1 \leq i \leq n$, $d(a_i, a^*_i) = 1$ and $d(a^*_i, a^*_{i+1}) = d(a_i, a_{i+1}) = 2$. Since a_i is not adjacent to a^*_i, a^*_{i+1} and a^*_i is not adjacent to a_{i+1}, we have $d(a_i, a^*_{i+1}) = d(a^*_i, a_{i+1}) = 3$. A 3-SH cycle is then given by $a_1, a^*_2, a_3, a^*_4, \ldots, a^*_n, a_n, a^*_1, a_2, a^*_3, \ldots, a^*_n, a_n, a^*_1$.

LEMMA 5. For $S = \{a_i a^*_i : 1 \leq i \leq n\}$ and $T = \{a_i a^*_{i+3} : 1 \leq i \leq n\}$, the graph $G = K_{n,n} - \{S,T\}$ is 3-SH if and only if $n \geq 4$, $n \not\equiv 0 \pmod{3}$.

PROOF. We consider only $n = 2$ and $n \geq 4$ because when $n = 3$, we have $S = T$. It is obvious that G is disconnected when $n = 2$ and thus G is not 3-SH. Suppose $n \geq 6$, $n \equiv 0 \pmod{3}$. We can observe that $D_3(G)$ consists of 3 components each of size $\frac{2n}{3}$ and so $D_3(G)$ is not Hamiltonian. By Lemma 1, G is not 3-SH. Suppose now $n \geq 4$, $n \not\equiv 0 \pmod{3}$. Note that $d(a^*_i, a_{i+1}) = d(a_i, a_{i+2}) = 1$ and $d(a_i, a_{i-1}) = d(a^*_i, a^*_{i+2}) = 2$ for $1 \leq i \leq n$. Since a^*_i is not adjacent to a_i and a_i is not adjacent to a^*_{i+3}, we have $d(a^*_i, a_i) = d(a_i, a^*_{i+3}) = 3$. Then, G is 3-SH by choosing the sequence $a^*_1, a_1, a^*_2, a_4, \ldots, a^*_n, a_{n-3}, a_{n-3}, a_n, a^*_n, a_{n-3}, a^*_n, a_{n-3}, a_{n-2}, a_{n-2}, a^*_1$ for $n \equiv 1 \pmod{3}$ and the sequence $a^*_1, a_1, a^*_2, a_4, \ldots, a^*_n, a_{n-3}, a_n, a^*_n, a_{n-3}, a_{n-2}, a_{n-2}, a^*_1, a_{n-3}, a_{n-3}, a^*_n, a_{n-3}, a^*_n, a_{n-3}, a^*_n, a_{n-3}, a_{n-2}, a_{n-2}, a^*_1$ for $n \equiv 2 \pmod{3}$ as the 3-SH cycle.

LEMMA 6. For $S = \{a_i a^*_i : 1 \leq i \leq n\}$ and $T = \{a_i a^*_{i+4} : 1 \leq i \leq n\}$, the graph $G = K_{n,n} - \{S,T\}$ is 3-SH if and only if $n \geq 5$ is odd.

PROOF. We consider only $n = 3$ and $n \geq 5$ because when $n = 2$ and $n = 4$, we have $S = T$. It is also obvious that G is disconnected when $n = 3$ so that G is not 3-SH. Suppose $n \geq 6$ is even. Observe that for $n \equiv 0 \pmod{4}$, $D_3(G)$ consists of 4 components each of size $\frac{n}{2}$ and for $n \equiv 2 \pmod{4}$, $D_3(G)$ consists of 2 components each
of size n. Therefore, for each case $D_3(G)$ is not Hamiltonian and thus by Lemma 1, G is not 3-SH. Suppose now $n \geq 5$ is odd. In Figure 1 and Figure 2, we give a labeling of Hamiltonian cycle for graph $D_3(G)$ when $n = 7$ and $n = 9$, respectively. Note that for all odd $n \geq 5$ such that $n \equiv 1 \pmod{4}$, a Hamiltonian cycle of $D_3(G)$ can be obtained in a similar way to the labeling in Figure 2 and for all odd $n \geq 7$ such that $n \equiv 3 \pmod{4}$, a labeling for Hamiltonian cycle follows those in Figure 1. By Lemma 1, we know that all these graphs G are 3-SH such that the Hamiltonian cycle in $D_3(G)$ is a 3-SH cycle of G.

As we can see from these 4 lemmas, we can get a 3-SH graph from the complete bipartite graph $K_{n,n}$ by deleting a set of edges. It is difficult to solve the 3-step Hamiltonicity of $G = K_{n,n} - \{S, T\}$ in general because there are $n!$ perfect matchings of $K_{n,n}$. There are a lot more cases that should be considered. We then propose the following problems.

PROBLEM 1. Solve the 3-step Hamiltonicity of $G = K_{n,n} - \{S, T\}$ for all cases of S and T.

PROBLEM 2. Study the 3-step Hamiltonicity of complete bipartite graph $K_{m,n}$ with more edges deleted.

Next, consider a graph G with n vertices. The corona product of G and any graph H, denoted by $G \circ H$, is a graph obtained by taking one copy of G and n copies H_1, H_2, \ldots, H_n of H, and then joining the i-th vertex of G to every vertex in H_i.

Suppose G is a graph of order n that admits a Hamiltonian cycle given by the sequence $u_1, u_2, \ldots, u_n, u_1$ and 3-SH cycle given by $v_1, v_2, \ldots, v_n, v_1$ such that $v_1 = u_1$.
and $v_n = u_{n-2}$.

THEOREM 2. The corona product of graph G described above and empty graph O_m of order m is 3-SH for all $m \geq 1$.

PROOF. We know that the graph $G \odot O_m$ is obtained from G by adding nm more vertices and nm more edges. Without loss of generality, we let the nm pendant vertices be $u_{i,1}, u_{i,2}, \ldots, u_{i,m}$ such that the added edges are $u_i u_{i,1}, u_i u_{i,2}, \ldots, u_i u_{i,m}$ for $i = 1, \ldots, n$. We can see that the sequence $v_1 = u_1, v_2, \ldots, v_n = u_{n-2}, u_{n-1,1}, u_{1,1}, u_{2,1}, \ldots, u_{n-1,1}, u_{n,2}, u_{1,2}, u_{2,2}, \ldots, u_{n-1,2}, u_{n,3}, \ldots, u_{n,m}, u_{1,m}, u_{2,m}, \ldots, u_{n-1,m}, u_1$ is a 3-SH cycle of $G \odot O_m$.

The corona product $C_n \odot K_1$, in particular, is the graph consisting of a cycle C_n, $n \geq 3$ (with edges $u_1 u_2, u_2 u_3, \ldots, u_{n-1} u_n, u_n u_1$), n more pendant vertices v_1, v_2, \ldots, v_n and n more edges $u_i v_i$ for $i = 1, 2, \ldots, n$. We call this graph the sun graph S_n.

THEOREM 3. The sun graph S_n is 3-SH if and only if $n \geq 5$.

PROOF. Observe that all u_i are isolated in $D_3(S_n)$ if $n = 3$ and of degree 1 if $n = 4$ so that $D_3(S_n)$ cannot be Hamiltonian and thus S_3 and S_4 are not 3-SH. Suppose $n \geq 5$. We consider 2 cases.

Case 1. $n \equiv 0 \pmod{3}$.
A 3-SH cycle is given by the sequence $v_1, u_3, u_6, \ldots, u_n, v_2, u_4, u_7, \ldots, u_{n-2}, u_1, v_3, u_5, u_8, \ldots, u_{n-1}, u_2, v_4, v_5, \ldots, v_n, v_1$. In Figure 3, we give a 3-SH cycle for S_9.

![Figure 3: A 3-step Hamiltonian cycle for S_9.](image)

Case 2. $n \not\equiv 0 \pmod{3}$.
If $n = 5$, the sequence of vertices $v_1, u_3, v_5, u_2, v_4, u_1, v_3, u_5, v_2, u_4, v_1$ is a possible 3-SH cycle in S_5. For $n \geq 7$, since cycle C_n is 3-SH by Theorem 1, a possible 3-SH cycle in S_n is given in the proof of Theorem 2.

This completes the proof.
THEOREM 4. The line graph of S_n is 3-SH if and only if $n \geq 6$.

PROOF. We denote the vertices of $G = L(S_n)$ by $u_1, u_2, \ldots, u_n, v_1, v_2, \ldots, v_n$. Then, the edge set is $\{u_iu_{i+1}, u_nv_1 : i = 1, \ldots, n-1\} \cup \{u_iv_i : i = 1, \ldots, n\} \cup \{v_iv_{i+1}, v_nv_1 : i = 1, \ldots, n-1\}$. See Figure 4 for graph $L(S_n)$.

Clearly, if $n = 3$, every vertex of G is a distance at most 2 from each other so that G is not 3-SH. Note that for $n = 4$ and $n = 5$, there exist isolated or pendant vertices in $D_3(G)$. Hence $D_3(G)$ is not Hamiltonian and thus G is not 3-SH. Next we assume $n \geq 6$. We consider 2 cases.

Case 1. n is odd. We consider 2 subcases.

(i) $n \equiv 0 \pmod{3}$.

A 3-SH cycle is given by $v_1, v_3, \ldots, v_{n-2}, u_1, u_4, \ldots, u_{n-2}, v_n, u_3, u_6, \ldots, u_n, v_2, u_5, u_8, \ldots, u_{n-1}, u_2, v_4, v_6, \ldots, v_{n-1}, v_1$.

(ii) $n \not\equiv 0 \pmod{3}$.

A 3-SH cycle is given by $v_1, v_3, v_5, \ldots, v_n, v_2, v_4, \ldots, v_{n-1}$ followed by $u_2, u_5, \ldots, u_{n-1}$ such that $\{2, 5, 8, \ldots, n-1\} \pmod{n}$ is a set of distinct integers and it is clear that u_{n-1} is a distance 3 to v_1.

Case 2. n is even. We consider 3 subcases.

(i) $n \equiv 0 \pmod{3}$.

A 3-SH cycle is given by $v_1, v_3, \ldots, v_{n-3}, u_n, v_2, v_4, \ldots, v_{n-2}, u_1, u_4, \ldots, u_{n-2}, v_n, u_3, u_6, \ldots, u_{n-3}, u_{n-1}, u_2, u_5, \ldots, u_{n-1}, v_1$. Figure 5 shows the graph $L(S_6)$ with a 3-SH labeling in it.

(ii) $n \equiv 1 \pmod{3}$.

A 3-SH cycle is given by $v_1, v_3, \ldots, v_{n-1}, u_2, u_5, \ldots, u_{n-2}, u_1, u_4, \ldots, u_n, v_2, v_4, \ldots, v_n, u_3, u_6, \ldots, u_{n-1}, v_1$.

(iii) $n \equiv 2 \pmod{3}$.

A 3-SH cycle is given by $v_1, v_3, \ldots, v_{n-1}, u_2, u_5, \ldots, u_{n-2}, u_1, u_4, \ldots, u_n, v_2, v_4, \ldots, v_n, u_3, u_6, \ldots, u_{n-2}, u_1, u_4, \ldots, u_{n-1}, v_1$.
Figure 5: A 3-step Hamiltonian cycle for $L(S_6)$.

This completes the proof.

THEOREM 5. The corona product $C_n \odot P_2$ is 3-SH if and only if $n \geq 4$.

PROOF. Let the vertex set and edge set of $C_n \odot P_2$ be $\{u_1, u_{i,1}, u_{i,2} : 1 \leq i \leq n\}$ and $\{u_1 u_n, u_i u_{i+1} : 1 \leq i \leq n-1\} \cup \{u_{i,1} u_{i,2}, u_i u_{i-1}, u_{i,2} u_i : 1 \leq i \leq n\}$, respectively. If $n = 3$, it is obvious that all u_i are a distance at most 2 from all other vertices of $C_n \odot P_2$ so that $C_n \odot P_2$ is not 3-SH. We now assume that $n \geq 4$. In Figure 6, we give a 3-SH labeling for graphs $C_4 \odot P_2$ and $C_5 \odot P_2$. For $n \geq 6$, we consider 2 cases:

Case 1. $n \equiv 0(\text{mod } 3)$.
A sequence of vertices $u_{1,1}, u_{2,1}, \ldots, u_{n,1}, u_2, u_5, \ldots, u_{n-1}, u_{1,2}, u_3, u_6, \ldots, u_n, u_{2,2}, u_4, u_7, \ldots, u_{n-2}, u_{1}, u_{3,2}, u_{4,2}, \ldots, u_{n,2}, u_{1,1}$ is a 3-SH cycle of graph $C_n \odot P_2$.

Case 2. $n \not\equiv 0(\text{mod } 3)$.
A possible 3-SH cycle is given by $u_{1,1}, u_{2,1}, \ldots, u_{n,1}, u_{1,2}, u_{2,2}, \ldots, u_{n,2}$ followed by $u_2, u_5, u_8, \ldots, u_{n-1}$ such that $\{2, 5, 8, \ldots, n-1\}(\text{mod } n)$ is a set of distinct integers and we can see that $d(u_{1,1}, u_{n-1}) = 3$.

This completes the proof.
THEOREM 6. The line graph of the corona product $C_n \odot P_2$ is 3-SH if and only if $n \geq 5$.

PROOF. Let $G = L(C_n \odot P_2)$ with $V(G) = \{u_i, u_{i,j} : 1 \leq i \leq n, 1 \leq j \leq 3\}$ and $E(G) = \{u_1u_n, u_{i,j}u_{i+1} : 1 \leq i \leq n - 1\} \cup \{u_{i,j}u_{i,j+1}, u_{i,1}u_{i,3} : 1 \leq i \leq n, 1 \leq j \leq 2\} \cup \{u_iu_{i+1}, u_{i+1}u_{i+1}, u_{i+1}u_{i,3}, u_{i+1}u_{i,3} : 1 \leq i \leq n \text{ and } i+1 \text{ is taken modulo } n\}$. See Figure 7 for graph $L(C_3 \odot P_2)$. We consider 2 cases:

Case 1. n is odd.

For $n = 3$, note that all u_i are of degree 1 in $D_3(G)$ so that $D_3(G)$ is not Hamiltonian and thus G is not 3-SH. For $n = 5$, a 3-SH cycle is given by the sequence $u_1, u_2, u_3, u_4, u_5, u_6, u_7, u_8, u_9, u_{10}$. A 3-SH cycle is given by the sequence $u_{1,1}, u_{1,2}, u_{1,3}, u_{2,1}, u_{2,2}, u_{2,3}, u_{3,1}, u_{3,2}, u_{3,3}, u_{4,1}, u_{4,2}, u_{4,3}, u_{5,1}, u_{5,2}, u_{5,3}, u_{6,1}, u_{6,2}, u_{6,3}, u_{7,1}, u_{7,2}, u_{7,3}, u_{8,1}, u_{8,2}, u_{8,3}, u_{9,1}, u_{9,2}, u_{9,3}, u_{10,1}$. We then completed the 3-SH cycle by traversing the vertices of cycle C_n in the sequence $u_3, u_6, u_9, \ldots, u_n$ such that $\{3, 6, 9, \ldots, n\}(\mod n)$ is a set of distinct integers. Clearly the last vertex u_n is a distance 3 from $u_{1,2}$.

Case 2. n is even.

For $n = 4$, observe that all vertices in $\{u_i, u_{i,2} : 1 \leq i \leq 4\}$ are of degree 2 in $D_3(G)$, which by themselves forming a non-spanning cycle C_5, a contradiction. Hence, $D_3(G)$ is not Hamiltonian and thus G is not 3-SH. For $n \geq 6$, we consider 3 subcases:

Subcase 2.1. $n \equiv 0(\mod 3)$.

A 3-SH cycle is given by the sequence $u_{1,1}, u_{1,2}, u_{1,3}, u_{2,1}, u_{2,2}, u_{2,3}, u_{3,1}, u_{3,2}, u_{3,3}, u_{4,1}, u_{4,2}, u_{4,3}, u_{5,1}, u_{5,2}, u_{5,3}, u_{6,1}, u_{6,2}, u_{6,3}, u_{7,1}, u_{7,2}, u_{7,3}, u_{8,1}, u_{8,2}, u_{8,3}, u_{9,1}, u_{9,2}, u_{9,3}, u_{10,1}, u_{11,1}$. We then completed the 3-SH cycle by traversing the vertices of cycle C_n in the sequence $u_3, u_6, u_9, \ldots, u_n$ such that $\{3, 6, 9, \ldots, n\}(\mod n)$ is a set of distinct integers. Clearly the last vertex u_n is a distance 3 from $u_{1,2}$.

Subcase 2.2. $n \equiv 1(\mod 3)$.

A possible 3-SH cycle is started with subsequence $u_{1,1}, u_{1,2}, u_{1,3}, u_{2,1}, u_{2,2}, u_{2,3}, u_{3,1}, u_{3,2}, u_{3,3}, u_{4,1}, u_{4,2}, u_{4,3}, u_{5,1}, u_{5,2}, u_{5,3}, u_{6,1}, u_{6,2}, u_{6,3}, u_{7,1}, u_{7,2}, u_{7,3}, u_{8,1}, u_{8,2}, u_{8,3}, u_{9,1}, u_{9,2}, u_{9,3}, u_{10,1}$. We then completed the 3-SH cycle by traversing the vertices of cycle C_n in the sequence $u_3, u_6, u_9, \ldots, u_n$ such that $\{3, 6, 9, \ldots, n\}(\mod n)$ is a set of distinct integers. Clearly the last vertex u_n is a distance 3 from $u_{1,2}$.
Figure 8: A 3-SH cycle for $L(C_6 \odot P_2)$.

$u_3, 3, u_5, 3, \ldots, u_{n-1}, 3, u_2, u_4, 3, u_6, 3, \ldots, u_{n-2}, 3, u_n, 3, u_1, 2$. In Figure 8, we give a 3-SH labeling for $L(C_6 \odot P_2)$.

Subcase 2.2. $n \equiv 1 \pmod{3}$.

A 3-SH cycle is given by the sequence $u_{1,2}, u_{2,1}, u_{3,2}, u_{4,1}, \ldots, u_{n-1,2}, u_{n,1}, u_{2,3}, u_{4,3}, u_{6,3}, \ldots, u_{n,3}, u_6, \ldots, u_{n-2,2}, u_{n-1,1}, u_2, u_5, \ldots, u_{n-2}, u_1, u_3, 3, u_5, 3, u_7, 3, \ldots, u_{n-1,3}, u_1, 3, u_4, u_7, \ldots, u_n, u_1, 2$.

Subcase 2.3. $n \equiv 2 \pmod{3}$.

A 3-SH cycle is given by the sequence $u_{1,2}, u_{2,1}, u_{3,2}, u_{4,1}, \ldots, u_{n-1,2}, u_{n,1}, u_{2,3}, u_{4,3}, u_6, \ldots, u_{n,3}, u_3, u_6, \ldots, u_{n-2}, u_1, u_2, 2, u_3, 1, u_4, 2, u_5, 1, \ldots, u_{n-1,1}, u_{n-2,2}, u_{n-1,1}, u_1, u_4, u_7, \ldots, u_{n-1,1}, u_2, u_5, \ldots, u_{n-3,3}, u_{n-3,3}, u_{n-1,3}, u_{n-1,3}, u_1, 3, u_3, 3, u_5, 3, \ldots, u_{n-3,3}, u_n, u_1, 2$.

This completes the proof.

Let G be a graph and $G_1, G_2, \ldots, G_n, n \geq 2$ be n copies of graph G. Then, the graph obtained by adding an edge from G_i to G_{i+1}, $i = 1, 2, \ldots, n-1$ is called path union of G such that the added edges connecting the same pair of vertices from G_i to G_{i+1}. We denote path union of n copies of G by $P(G; n)$.

We now consider n copies of cycle C_m, $m \geq 3$ with $C_{i,m} = (u_{i,1}, u_{i,2}, \ldots, u_{i,m})$ be the i-th copy of C_m for $1 \leq i \leq n$. The path union of n copies of C_m denoted by $P(C_m; n)$, $n \geq 2$ is obtained by joining the first vertex of the i-th copy of C_m to the last vertex of the $(i+1)$-th copy of C_m for $i = 1, 2, \ldots, n-1$. See Figure 9 for graph $P(C_6; 2)$.

Aziz et al. 9
THEOREM 7. For any \(m \geq 3 \) and \(n \geq 2 \), \(P(C_m; n) \) is not 3-SH.

PROOF. Obviously the vertex set of \(P(C_m; n) \) is \(\bigcup_{i=1}^{n} V(C_{i,m}) \) and the edge set is

\[
\bigcup_{i=1}^{n} E(C_{i,m}) \cup \{u_{i,1}u_{i+1,m} : 1 \leq i \leq n-1\}.
\]

Suppose \(m = 3 \). Note that for all \(n \geq 2 \), any possible 3-SH cycle in \(P(C_m; n) \) must contain the sequence \(u_{1,2}, u_{2,2}, u_{1,3}, u_{2,1}, u_{1,2} \), a contradiction. Thus, \(P(C_m; n) \) is not 3-SH.

Suppose \(4 \leq m \leq 6 \). Observe that, in \(D_3(P(C_m; n)) \), there exist 2 or 4 pendant vertices so that it does not have any Hamiltonian cycle and thus \(P(C_m; n) \) is not 3-SH.

Suppose \(m \geq 7 \). We consider 2 cases:

\textbf{Case 1.} \(m \equiv 0 \pmod{3} \).

Note that the vertices \(u_{1,4}, u_{1,7}, \ldots, u_{1,n-2} \) and \(u_{n,3}, u_{n,6}, \ldots, u_{n,m-3} \) are of degree 2 in \(D_3(P(C_m; n)) \) so that any possible Hamiltonian cycle in \(D_3(P(C_m; n)) \) necessarily contains the edges \(u_{1,1}u_{1,4}, u_{1,4}u_{1,7}, \ldots, u_{1,n-5}u_{1,n-2}, u_{1,n-2}u_{1,1} \) and \(u_{n,3}u_{n,6}, u_{n,6}u_{n,9}, \ldots, u_{n,m-3}u_{n,m}, u_{n,m}u_{n,3} \), forming 2 different cycles which is a contradiction. So we conclude that \(D_3(P(C_m; n)) \) is not Hamiltonian and thus \(P(C_m; n) \) is not 3-SH.

\textbf{Case 2.} \(m \not\equiv 0 \pmod{3} \).

For all \(n \geq 2 \), the following observations hold:

(i) All the vertices in the sets \(\{u_{1,4}, u_{1,7}, \ldots, u_{1,n-2}\} \), \(\{u_{n,3}, u_{n,6}, \ldots, u_{n,m-3}\} \) and \(\{u_{i,4}, u_{i,5}, \ldots, u_{i,m-3} : i \neq 1, n\} \) (when \(n \geq 3 \)) are of degree 2 in \(D_3(P(C_m; n)) \).

(ii) The vertices \(u_{1,3}, 1 \leq i \leq n-1 \) and \(u_{m-1} \) are of degree 3 in \(D_3(P(C_m; n)) \) with \(u_{1,3} \) and \(u_{m-1} \) having a common neighbor \(u_{2,m} \).

(iii) In any possible Hamiltonian cycle of \(D_3(P(C_m; n)) \), \(u_{1,1} \) and \(u_{m} \) have been traversed and no more visits available. Moreover, in \(D_3(P(C_m; n)) \), each \(u_{i,m} \), \(1 \leq i \leq n-1 \), is adjacent to both \(u_{i,m} \) (which has one more visit available in any Hamiltonian cycle of \(D_3(P(C_m; n)) \)) and \(u_{i+1,m} \).

From (i), (ii) and (iii), it is clear that \(u_{n,m} \) is not available for \(u_{n-1,3} \) so that the remaining 2 edges incident with \(u_{n-1,3} \) are required to form Hamiltonian cycle in \(D_3(P(C_m; n)) \). The same result is then continuously applied to all other \(u_{i,3} \), \(i = n-2, n-3, \ldots, 1 \). Finally, as vertex \(u_{2,m} \) is no more available for \(u_{1,m-1} \), any possible Hamiltonian cycle in \(D_3(P(C_m; n)) \) must necessarily contain a non-spanning cycle \(u_{1,2}, u_{1,5}, u_{1,8}, \ldots, u_{1,m-2}, u_{1,1}, u_{1,4}, \ldots, u_{1,m}, u_{1,3}, u_{1,6}, \ldots, u_{1,m-1}, u_{1,2} \) for every \(m \equiv 1 \pmod{3} \), or a cycle \(u_{1,2}, u_{1,5}, u_{1,8}, \ldots, u_{1,m}, u_{1,3}, u_{1,6}, \ldots, u_{1,m-2}, u_{1,1}, u_{1,4}, \ldots, u_{1,m-1}, u_{1,2} \) for every \(m \equiv 2 \pmod{3} \), a contradiction. Therefore, \(D_3(P(C_m; n)) \) is not Hamil-
tonian and thus \(P(C_m; n) \) is not 3-SH.

This completes the proof.

From Theorem 1, we know that the cycle \(C_m \), when \(m \not\equiv 0 \pmod{3} \) admits a 3-SH cycle. Therefore, Case 2 in the above theorem shows that the path union of any \(n \) (\(n \geq 2 \)) copies of 3-SH graph is not necessarily 3-SH. But, we can construct a 3-SH graph from two graphs as follows: Suppose \(H_1 \) (respectively \(H_2 \)) is a graph of order \(n \) (respectively \(m \)) with an AL(3)-traversal given by \(u_1, u_2, \ldots, u_n \) (respectively \(v_1, v_2, \ldots, v_m \)) such that \(d(u_1, u_n) = d(v_1, v_m) = 2 \). We join the vertex \(u_1 \) to \(v_1 \) to form a 3-SH graph with the vertex sequence \(u_1, u_2, \ldots, u_n, v_1, v_2, \ldots, v_m, u_1 \) as the 3-SH cycle.

THEOREM 8. Let \(G \) be a graph of order \(n \) with an AL(3)-traversal \(u_1, u_2, \ldots, u_n \) such that \(d(u_1, u_n) = 2 \). Then, there exists a path union of two copies of \(G \), \(P(G; 2) \) which admits a 3-SH cycle.

Suppose \(G \) is a graph of order \(p \) with a 3-SH cycle given by \(u_1, u_2, \ldots, u_p, u_1 \) and \(H \) is a graph of order \(q \) with an AL(3)-traversal \(v_1, v_2, \ldots, v_q \) such that \(d(v_1, v_q) = 1 \). Since \(G \) is 3-SH, there exists a \(u_p - u_1 \) path of length 3, say \(u_p, a, b, u_1 \). Denote by \(G_{av_q} \) the graph obtained from \(G \) and \(H \) by joining the vertex \(a \) to \(v_q \).

THEOREM 9. The graph \(G_{av_q} \) of order \(p + q \) is 3-SH.

PROOF. Observe that \(d(u_p, v_1) = d(v_q, u_1) = 3 \) and thus the vertex sequence \(u_1, u_2, \ldots, u_p, v_1, v_2, \ldots, v_q, u_1 \) is a 3-SH cycle of \(G_{av_q} \).

THEOREM 10. Let \(G \) be the line graph of \(P(C_m; n) \), then

(i) \(G \) is not 3-SH for \(3 \leq m \leq 5 \) and all \(n \geq 2 \);

(ii) \(G \) is not 3-SH for \(m \geq 6 \), \(m \equiv 0 \pmod{3} \) and \(n = 2 \);

(iii) \(G \) is 3-SH for \(m \geq 7 \), \(m \not\equiv 0 \pmod{3} \) and \(n \geq 3 \).

PROOF. Let \(V(G) = \{u_i, v_j : 1 \leq i \leq n, 1 \leq j \leq n - 1 \} \cup \{u_i, j : 1 \leq i \leq n, 1 \leq j \leq m - 1 \} \) and \(E(G) = \{u_i u_{i+1}, u_i j u_{j+1}, u_i u_{i+m-1} : 1 \leq i \leq n, 1 \leq j \leq m - 2 \} \cup \{v_i, v_{i+1} : 1 \leq i \leq n - 1 \} \cup \{v_i u_{i+1}, v_{i+1} u_{i+m-1} : 1 \leq i \leq n - 1 \} \) Figure 10 shows the line graph \(L(P(C_4; 3)) \).

(i) Suppose \(m = 3 \). Clearly for \(n = 2 \), vertex \(v_1 \) is a distance at most 2 to all other vertices of \(G \) so that \(G \) is not 3-SH. For all \(n \geq 3 \), any possible 3-SH cycle in \(G \) must consist of the subcycle \(u_{1,1}, v_2, u_1, u_{2,1}, u_{1,1} \), a contradiction. Thus, \(G \) is not 3-SH. Suppose \(m = 4 \). For all \(n \geq 2 \), observe that the set of vertices \(\{u_{1,3}, u_2, u_1, u_{2,3}\} \) induce a cycle in any possible 3-SH cycle of \(G \) so that \(G \) is not 3-SH. Suppose \(m = 5 \). For all \(n \geq 2 \), there exist exactly 2 pendant vertices in \(D_3(G) \), from the first and last copy of \(C_m \), respectively. Hence, \(D_3(G) \) is not Hamiltonian and thus \(G \) is not 3-SH.
More Results On Hamiltonicity of Graphs and Its Line Graphs

(ii) Observe that v_1 is a cut-vertex in $D_3(G)$ so that it is not Hamiltonian. Hence, G is not 3-SH.

(iii) A 3-SH labeling for $L(P(C_8; 5))$ and $L(P(C_7; 6))$ are given in Figure 11 and in Figure 12, respectively. For $m \geq 7$ and odd $n \geq 3$, a 3-SH cycle can be constructed in a way similar to that in $L(P(C_8; 5))$ whereas we can get a 3-SH labeling for $m \geq 7$ and even $n \geq 4$ by referring to the labeling pattern in $L(P(C_7; 6))$.

This completes the proof.

From Theorem 10, we pose the following open problem.

PROBLEM 3. Solve the 3-step Hamiltonicity of line graph of $P(C_m; n)$ for all $m \geq 3$ and $n \geq 2$.
Acknowledgment. The authors would like to thank the referee for his/her suggestions that improved the paper.

References

