On The Asymptotic Expansion Of A Generalized Smith’s Determinant*

Mehdi Hassani†

Received 6 April 2020

Abstract

In this paper we study the generalized Smith’s determinant \(\Delta_s(n) := \det [(\gcd(i,j))^s]_{1 \leq i,j \leq n} \), where \(s \neq 0 \) is fixed real. For large values of \(n \) we obtain asymptotic expansions of \(\log |\Delta_s(n)| \), and for \(s > 1 \) we obtain Stirling type approximations for \(\Delta_s(n) \). Furthermore, we prove that for \(s < 0 \) the sign of \(\Delta_s(n) \) is independent of \(s \), and is same as the sign of \((-1)^{\eta_n} \), where \(\eta_n \) denotes the number of integers \(m \in [1,n] \) having odd number of distinct prime divisors.

1 Introduction

In 1875 Smith [8] considered the determinant of the matrix \([a_{ij}]_{1 \leq i,j \leq n} \) with elements given by \(a_{ij} = \gcd(i,j) \), greatest common divisor of \(i \) and \(j \). He proved that

\[
\det [\gcd(i,j)]_{1 \leq i,j \leq n} = \prod_{m=1}^{n} \varphi(m),
\]

where \(\varphi(m) \) denotes the Euler function of \(m \), counting the number of positive integers not exceeding \(m \) and coprime to \(m \). The above determinant is known as Smith’s determinant. Since Smith’s work this field has been studied extensively. For a recent account of the theory of gcd-matrices we refer the reader to [4] and the references given there. Also, see [2, p. 123] for some classical generalizations of Smith’s determinant, including the assertion that if \(f \) is an arithmetic function then

\[
\det [f(\gcd(i,j))]_{1 \leq i,j \leq n} = \prod_{m=1}^{n} \sum_{d|m} \mu(d) f \left(\frac{m}{d} \right),
\]

where \(\mu(d) \) denotes the Möbius function of \(d \), which is 1 if \(d = 1 \), is \((-1)^k\) if \(d \) is equal to the product of \(k \) distinct primes, and is 0 otherwise. In this paper we are motivated by the asymptotic growth of generalized Smith’s determinant (1) for \(f(n) = n^s \). The exponent \(s \) is an arbitrary non-zero real. For the case \(s > 0 \) we prove the following result.

Theorem 1 Let \(s > 0 \) be fixed real and

\[
\Delta_s^+(n) = \det [(\gcd(i,j))^s]_{1 \leq i,j \leq n},
\]

Define the absolute constant \(\alpha_s \) by

\[
\alpha_s = \sum_p \frac{1}{p} \log \left(1 - \frac{1}{p^s} \right),
\]

*Mathematics Subject Classifications: 15A15, 11A25.
†Department of Mathematics, University of Zanjan, University Blvd., 45371-38791, Zanjan, Iran
where p runs over all primes. Then, as $n \to \infty$,
\[
\log \Delta_s^+(n) = \begin{cases}
\alpha_s - s)n + O(n^{1-s}) & (0 < s < 1), \\
\alpha_s - s)n + \frac{1}{2} \log n + O(\log \log n) & (s = 1), \\
\alpha_s - s)n + \frac{1}{2} \log n + s \log \sqrt{2\pi} + O\left(\frac{1}{n^{1-s}}\right) & (1 < s \leq 2).
\end{cases}
\]

Also, for each $s > 2$ the following approximation holds
\[
\log \Delta_s^+(n) = sn \log n + (\alpha_s - s)n + \frac{s}{2} \log n + s \log \sqrt{2\pi} + \sum_{1 \leq j \leq n^{1/2}} \frac{B_{2j}}{(2j)(2j - 1)n^{2j - 1}} + O\left(\frac{1}{n^{s-1}}\right),
\]
where B_i denotes the i-th Bernoulli number.

A more sophisticated argument, similar to that used in our paper [3], enables us to consider the case of negative values of exponent.

Corollary 1 Let $\Delta_s^+(n)$ be the determinant defined by (2). Then, as $n \to \infty$,
\[
\Delta_s^+(n) = \begin{cases}
\left(\frac{n}{e}\right)^s \beta_s^n \sqrt{(2\pi)n^s} \left(1 + O\left(\frac{1}{n^{1-s}}\right)\right) & (1 < s < 2), \\
\left(\frac{n}{e}\right)^s \beta_s^n \sqrt{(2\pi)n^s} \left(1 + O\left(\frac{1}{n}\right)\right) & (s \geq 2),
\end{cases}
\]

where β_s is an absolute constant defined by
\[
\beta_s = \prod_p \left(1 - \frac{1}{p^s}\right)^{\frac{1}{p}},
\]
and p runs over all primes.

Furthermore, the sign of $\Delta_s^+(n)$ is independent of s, and is same as the sign of $(-1)^{\eta_n}$, where η_n denotes the number of integers $m \in [1, n]$ having odd number of distinct prime divisors.

Theorem 2 Let $s > 0$ be fixed real and
\[
\Delta_s^-(n) = \det \left((\gcd(i, j))^{-s}\right)_{1 \leq i, j \leq n}.
\]

Then, for any positive integer r there exist computable constants c_1, \ldots, c_r such that as $n \to \infty$,
\[
\log |\Delta_s^-(n)| = (\alpha_s + \gamma + E) + s \sum_{j=1}^r \frac{c_j n}{\log^r n} + O\left(\frac{n}{\log^{r+1} n}\right),
\]
where α_s is defined by (3), γ is Euler’s constant, and E is the constant in Mertens’ approximation given by
\[
E = \lim_{x \to \infty} \sum_{p \leq x} \frac{\log p}{p} - \log x.
\]

Furthermore, the sign of $\Delta_s^-(n)$ is independent of s, and is same as the sign of $(-1)^{\eta_n}$, where η_n denotes the number of integers $m \in [1, n]$ having odd number of distinct prime divisors.
2 Proof of Theorem 1

Proof. For \(f(n) = n^s \), we conclude from (1) that

\[
\Delta^+_n(n) = \prod_{m=1}^{n} m^s g_s(m) = n!^s \prod_{m=1}^{n} g_s(m),
\]

where \(g_s(m) = \sum_{d|m} \mu(d)d^{-s} \). Since \(g_s \) is multiplicative, we get

\[
g_s(m) = \prod_{p^a|m} g_s(p^a) = \prod_{p^a|m} \left(1 - \frac{1}{p^a}\right) = \prod_{p|n} \left(1 - \frac{1}{p^a}\right).
\]

Thus,

\[
\Delta^+_n(n) = n!^s \prod_{m=1}^{n} \prod_{p|m} \left(1 - \frac{1}{p^a}\right),
\]

and

\[
\log \Delta^+_n(n) = s \log n! + \sum_{m=1}^{n} \sum_{p|m} \log \left(1 - \frac{1}{p^a}\right). \quad (5)
\]

Stirling’s approximation [7, p. 294] for \(\log n! \) asserts that given any positive integer \(r \), as \(n \to \infty \),

\[
\log n! = n \log n - n + \frac{1}{2} \log n + \log \sqrt{2\pi} + \sum_{j=1}^{r} \frac{B_{2j}}{(2j)(2j-1)n^{2j-1}} + O\left(\frac{1}{n^{2r+1}}\right). \quad (6)
\]

To approximate the double sum in (5), we change the order of summations. Thus,

\[
\sum_{m=1}^{n} \sum_{p|m} \log \left(1 - \frac{1}{p^a}\right) = \sum_{p \leq n} \log \left(1 - \frac{1}{p^a}\right) \sum_{m \leq n} \log \left(1 - \frac{1}{p^a}\right) \left\lfloor \frac{n}{p} \right\rfloor
\]

\[
= \sum_{p \leq n} \log \left(1 - \frac{1}{p^a}\right) \left(\frac{n}{p} + O(1)\right)
\]

\[
= n \sum_{p \leq n} \frac{1}{p} \log \left(1 - \frac{1}{p^a}\right) + O \left(\sum_{p \leq n} \log \left(1 - \frac{1}{p^a}\right)\right)
\]

\[
= \alpha_s n + n \sum_{p > n} \frac{1}{p} \log \left(1 - \frac{1}{p^a}\right) + O \left(\sum_{p \leq n} \log \left(1 - \frac{1}{p^a}\right)\right).
\]

Since \(-\log(1-t) \sim t \) as \(t \to 0 \), we get

\[
\sum_{p > n} \frac{1}{p} \log \left(1 - \frac{1}{p^a}\right)^{-1} \ll \sum_{p > n} \frac{1}{p^{s+1}} \ll \int_{n}^{\infty} \frac{dx}{x^{s+1}} \ll \frac{1}{n^s}.
\]

Also, by using the approximation \(\sum_{p \leq n} \frac{1}{p} \ll \log \log n \) we obtain

\[
\sum_{p \leq n} \log \left(1 - \frac{1}{p^a}\right) \ll \sum_{p \leq n} \frac{1}{p^a} \ll \begin{cases} \int_{2}^{n} \frac{dx}{x^a} \ll \frac{1}{n^{s+1}} & (s \neq 1), \\ \log \log n & (s = 1). \end{cases}
\]
Hence,
\[\sum_{m=1}^{n} \sum_{p|m} \log \left(1 - \frac{1}{p^s} \right) = \alpha_s n + O \left(\left\{ \begin{array}{c} n^{1-s} \log \log n \quad (s \neq 1) \\ s \quad (s = 1) \end{array} \right. \right). \]
(7)

We let \(r = [s] \) in (6). Note that \(2[s] + 1 \geq s - 1 \). Therefore, by considering (5) and (7) we conclude the proof.

3 Proof of Theorem 2

Proof. Let \(s > 0 \). We conclude from (1) that
\[\Delta_s^-(n) = \prod_{m=1}^{n} m^{-s} h_s(m) = n^{1-s} \prod_{m=1}^{n} h_s(m), \]
where \(h_s(m) = \sum_{d|m} \mu(d)d^s \). Since \(h_s \) is multiplicative, we get
\[
\begin{align*}
\prod_{p^a|m} h_s(p^a) &= \prod_{p^a|m} \left(1 - \frac{1}{p^a} \right) \\
&= (-1)^{\omega(m)} \prod_{p|m} (p^s - 1) = (-1)^{\omega(m)} \kappa(m)^s \prod_{p|m} \left(1 - \frac{1}{p^s} \right),
\end{align*}
\]
where \(\omega(m) \) counts the number of distinct prime factors of \(m \), and \(\kappa(m) \) denotes the product of distinct prime factors of \(m \). Thus,
\[\Delta_s^-(n) = (-1)^{\sum_{m=1}^{n} \omega(m)} n^{1-s} \prod_{m=1}^{n} \kappa(m)^s \prod_{m=1}^{n} \prod_{p|m} \left(1 - \frac{1}{p^s} \right). \]
(8)

This relation implies that the sign of \(\Delta_s^-(n) \) depends on the value of \(\sum_{m=1}^{n} \omega(m) \), which is independent of \(s \). Moreover, the sign of \(\Delta_s^-(n) \) is same as the sign of \((-1)^{\eta_n} \), where
\[\eta_n = \sum_{\substack{1 \leq m \leq n \\ \omega(m) \text{ is odd}}} 1. \]
denoting the number of integers \(m \in [1, n] \) which have odd number of distinct prime divisors. Furthermore, we conclude from (8) that
\[\log |\Delta_s^-(n)| = -s \log n! + s \sum_{m=1}^{n} \log \kappa(m) + \sum_{m=1}^{n} \sum_{p|m} \log \left(1 - \frac{1}{p^s} \right). \]

To approximate \(\sum_{m=1}^{n} \log \kappa(m) \) we recall the notion of the index of composition of \(n \), which is defined by
\[\lambda(n) = \frac{\log n}{\log \kappa(n)}, \]
for each integer \(n \geq 2 \). Note that \(\lambda(n) \) “somehow” measures how much the integer \(n \geq 2 \) is composite! For \(n \) square-free it takes the value \(\lambda(n) = 1 \), and for integers \(n \) having square factors in heart, it takes the value \(\lambda(n) > 1 \). De Koninck and Kátai [1] proved that given any positive integer \(r \), there exist computable constants \(d_1, \ldots, d_r \) such that
\[v(x) := \sum_{k \leq x} \frac{1}{\lambda(k)} = x + \sum_{j=1}^{r} d_j \frac{x}{\log^j x} + O \left(\frac{x}{\log^{r+1} x} \right). \]
(9)
By using Abel summation we get
\[\sum_{k=1}^{n} \log \kappa(k) = \sum_{k=2}^{n} \frac{1}{\lambda(k)} \log k = v(n) \log n - v(2) \log 2 - \int_{2}^{n} \frac{v(t)}{t} \, dt. \]

To deal with the last integral, we study the functions \(L_j(t) \) defined for each integer \(j \geq 1 \) by the following anti-derivative
\[L_j(t) := \int \frac{dt}{\log^j t}. \]

Note that \(L_1(t) \) is the logarithmic integral function, which admits the following expansion
\[L_1(t) = \text{li}(t) = \sum_{i=1}^{r} (i - 1)! \frac{t}{\log^i t} + O\left(\frac{t}{\log^{r+1} t}\right). \] (10)

Integrating by parts gives
\[L_{j-1}(t) = \int \left(\frac{1}{\log^{j-1} t} \right) (dt) = \frac{t}{\log^{j-1} t} + (j - 1) \int \frac{dt}{\log^j t}. \]

Hence, for \(j \geq 2 \) the functions \(L_j(t) \) satisfy the recurrence
\[L_j(t) = \frac{1}{j - 1} L_{j-1}(t) - \frac{t}{(j - 1) \log^{j-1} t}. \]

By repeated using this recurrence we deduce that
\[(j - 1)! L_j(t) = \text{li}(t) - \sum_{i=1}^{j-1} (i - 1)! \frac{t}{\log^i t}. \]

Hence, by using the expansion (10), for \(1 \leq j \leq r \) we obtain
\[L_j(t) = \sum_{i=j}^{r} \frac{(i - 1)!}{(j - 1)! \log^i t} + O\left(\frac{t}{\log^{r+1} t}\right). \] (11)

We deduce from the expansion (9) that
\[\int_{2}^{n} \frac{v(t)}{t} \, dt = \int_{2}^{n} \left(1 + \sum_{j=1}^{r} d_j \frac{1}{\log^j t} + O\left(\frac{1}{\log^{r+1} t}\right) \right) \, dt \]
\[= n + \sum_{j=1}^{r} d_j L_j(n) - \left(2 + \sum_{j=1}^{r} d_j L_j(2) \right) + O\left(\frac{n}{\log^{r+1} n}\right). \]

With \(r \) replaced by \(r + 1 \) in (9), we obtain
\[v(n) \log n = n \log n + d_1 n + \sum_{j=1}^{r} d_{j+1} \frac{n}{\log^j n} + O\left(\frac{n}{\log^{r+1} n}\right). \]

Combining the above expansions, we obtain
\[\sum_{k=1}^{n} \log \kappa(k) = n \log n + (d_1 - 1)n + \sum_{j=1}^{r} \left(d_{j+1} \frac{n}{\log^j n} - d_j L_j(n) \right) - C_r + O\left(\frac{n}{\log^{r+1} n}\right), \]
where

\[C_r = 2 + v(2^-) \log 2 + \sum_{j=1}^{r} d_j L_j(2) \]

is a constant depending only on \(r \). Thus, \(C_r = O_r(1) \). Moreover, we deduce from the expansion (11) that

\[\sum_{j=1}^{r} \left(d_{j+1} \frac{n}{\log^j n} - d_j L_j(n) \right) = \sum_{j=1}^{r} \left(d_{j+1} \frac{n}{\log^j n} - \sum_{i=j}^{r} d_j (i-1)! \frac{n}{(j-1)! \log^i n} \right) + O\left(\frac{n}{\log^{r+1} n} \right). \]

Note that

\[\sum_{j=1}^{r} \left(d_{j+1} \frac{n}{\log^j n} - \sum_{i=j}^{r} d_j (i-1)! \frac{n}{(j-1)! \log^i n} \right) = \sum_{j=1}^{r} c_j \frac{n}{\log^j n} + O\left(\frac{n}{\log^{r+1} n} \right), \]

where \(c_j \)'s are computable constants in terms of \(d_j \)'s. Thus, letting \(c_0 = d_1 - 1 \), we obtain

\[\sum_{m=1}^{n} \log \kappa(m) = n \log n + c_0 n + \sum_{j=1}^{r} c_j \frac{n}{\log^j n} + O\left(\frac{n}{\log^{r+1} n} \right). \]

To compute the precise value of \(c_0 \) we write

\[\sum_{m=1}^{n} \log \kappa(m) = \sum_{m=1}^{n} \log \prod_{p|n} p = \sum_{m=1}^{n} \sum_{p|n} \left\{ \frac{n}{p} \right\} \log p = n \mathcal{M}(n) - \mathcal{R}(n), \]

where

\[\mathcal{M}(n) := \sum_{p \leq n} \frac{\log p}{p}, \]

and

\[\mathcal{R}(n) := \sum_{p \leq n} \left\{ \frac{n}{p} \right\} \log p. \]

It is known due to Landau \([5, \text{p. } 198] \) that

\[\mathcal{M}(n) = \log n + E + O\left(\frac{1}{\log n} \right), \]

where \(E \) is the constant given by (4). To estimate \(\mathcal{R}(n) \) we let

\[\mathcal{S}(n) = \sum_{p \leq n} \left\{ \frac{n}{p} \right\}, \]

and

\[\mathcal{L}(n) = \sum_{p^\alpha \leq n} \left\{ \frac{n}{p^\alpha} \right\}. \]

It is known due to Lee \([6]\) that

\[\mathcal{L}(n) = (1 - \gamma) \frac{n}{\log n} + O\left(\frac{n}{\log^2 n} \right). \]

We observe that although the summation \(\mathcal{L}(n) \) has the summation \(\mathcal{S}(n) \) in heart, but their difference is not too large in comparison the true size of \(\mathcal{L}(n) \). More precisely,

\[\mathcal{L}(n) - \mathcal{S}(n) = \sum_{p^\alpha \leq n} \left\{ \frac{n}{p^\alpha} \right\} < \sum_{p^\alpha \leq n} 1 = \sum_{p \leq n} 1 = \sum_{2 \leq \alpha \leq \log n} \pi\left(\frac{n}{\alpha} \right) \]

\[\ll \sum_{2 \leq \alpha \leq \log n} \frac{n^{1/2}}{\log n^{1/2}} \leq n^{1/2} \sum_{2 \leq \alpha \leq \log n} \alpha \ll \sqrt{n} \log n, \]
where $\pi(t)$ denotes the number of primes p not exceeding t, and we use the simple estimate $\pi(t) \ll \frac{t}{\log t}$ in the above argument. Hence,

$$S(n) = (1 - \gamma) \frac{n}{\log n} + O\left(\frac{n}{\log^2 n}\right). \quad (14)$$

Let $\varpi(k)$ to be 1 when k is prime and 0 otherwise. By using Abel summation we get

$$R(n) = \sum_{k=2}^{n} \left\{ \frac{n}{k} \right\} \varpi(k) \log k = S(n) \log n - S(2^{-}) \log 2 - \int_{2}^{n} \frac{F_n(t)}{t} \, dt,$$

where

$$F_n(t) = \sum_{p \leq t} \left\{ \frac{n}{p} \right\}.$$

Since $0 \leq F_n(t) \leq \pi(t) \ll \frac{t}{\log t}$, by using the approximation (14) we deduce that

$$R(n) = (1 - \gamma)n + O\left(\frac{n}{\log n}\right) - \int_{2}^{n} O\left(\frac{t}{\log t}\right) \frac{dt}{t} = (1 - \gamma)n + O\left(\frac{n}{\log n}\right).$$

Thus, by substituting (13) and the last approximation in (12) we obtain the truncated approximation

$$\sum_{m=1}^{n} \log \kappa(m) = n \log n + (\gamma + E - 1)n + O\left(\frac{n}{\log n}\right),$$

implying that $c_0 = \gamma + E - 1$. Hence, given any positive integer r, there exist computable constants c_1, \ldots, c_r such that

$$\sum_{m=1}^{n} \log \kappa(m) = n \log n + (\gamma + E - 1)n + \sum_{j=1}^{r} c_j \frac{n}{\log^{j+1} n} + O\left(\frac{n}{\log^{r+1} n}\right).$$

By using this approximation and the relations (6) and (7) we conclude the proof. \blacksquare

References

