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ON PRICING AMERICAN AND ASIAN OPTIONS WITH PDE
METHODS

G. H. MEYER

Abstract. The influence of the analytical properties of the Black-Scholes PDE
formulation for American and Asian options on the quality of the numerical solution
is discussed. It appears that numerical methods for PDEs are quite robust even
when the mathematical formulation is not well posed.

1. Introduction

It is now well known that time continuous models for pricing financial options with
early exercise lead to optimal stopping problems which are equivalent to parabolic
free boundary problems. For example, the standard formulation for an American
put (the right to sell an asset between now and T for a specified price K) leads to
the Black Scholes equation for the value P (S, t) of the option

(1)
1
2
σ2S2PSS + rSPS − rP + Pt = 0

subject to the boundary data

lim
S→∞

P (S, t) = 0

P (S(t), t) = K − S(t)

PS(S(t), t) = −1

Here S is the value of the underlying asset and t is time. The coefficients in (1)
are assumed known from market data. Not known a priori is the early exercise
boundary S(t) which needs to be found together with the option value P (S, t).
However, at maturity T the value of the option and the exercise boundary are
known with certainty

P (S, T ) = max{(K − S), 0},
S(T ) = K.

This is a final time condition for the backward diffusion equation (1) and it is
readily seen that this free boundary problem is a standard parabolic obstacle
problem and thus amenable to analysis in this framework [7]. There is, however,
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no known analytical solution of this nonlinear problem so one has to resort to
numerical techniques to price options.

The numerical solution of one-dimensional parabolic free boundary problems
was a topic of considerable interest twenty and more years ago when the one-
dimensional phase change (Stefan) problem was still considered a “difficult” prob-
lem. Many of the algorithms developed then for Stefan like problems and varia-
tional inequalities are, in principle, immediately applicable to the Black Scholes
equation of American options. However, in view of the demands of this application
for speed of computation and accuracy not all feasible methods are practical and re-
search into efficient numerical and approximate methods continues unabated (see,
e.g. [5]). Our comments below are meant to identify some points which indicate
why the numerical solution of the Black Scholes equation remains a challenging
problem.

2. The American Put

One of the numerical problems hidden in the above Black Scholes formulation is
the infinite speed of propagation of the free boundary at maturity T . In fact, it
has been shown [2] that the analytic solution s(t) satisfies

(2) K − s(t) = O
(√

(T − t)| ln(T − t)|
)

as t → T . However, it appears difficult to recover this speed of propagation
with standard numerical methods. For example, if the time continuous problem
is approximated at tN−1 = T − ∆t with an implicit Euler method then the free
boundary problem

1
2
σ2x2u′′ + rxu′ − (r + 1/∆t)u = −max{1 − x, 0}/∆t(3)

lim
x→∞u(x) = 0

u(sN−1) = 1 − sN−1

u′(sN−1) = −1(4)

has to be solved where, for convenience, we have set x = S/K, u = P/K. Because
the source term in (3) is piecewise linear we can solve this problem analytically.
The solution uN−1(x) has the representation

uN−1(x) =

{
c1x

γ1 + c2x
γ2 + 1/(1 + r∆t) − x, sN−1 < x < 1

d1x
γ1 , x > 1

where γ1 and γ2 are the negative and positive roots of

(5)
1
2
σ2γ(γ − 1) + rγ − (r + 1/∆t) = 0

and where the coefficients c1, c2 and d1 and the free boundary sN−1 are determined
such that u and u′, and hence u′′, are continuous at x = 1 and such that u(sN−1) =
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1−sN−1 and u′(sN−1) = −1. The early exercise boundary sN−1 can be computed
explicitly as

(6) sN−1 =
( −γ1r∆t

1 + r∆t− γ1r∆t

)1/γ2

From (5) follows that γ1,2 = ∓√
2/(σ

√
∆t) + B(∆t) where B(∆t) = O(1) as

∆t → 0 which implies that the free boundary of the time discrete problem satisfies

1 − sN−1 =
σ
√

∆t√
2

∣∣∣ln√
∆t

∣∣∣ + C(∆t)
√

∆t

where C(∆t) = O(1) as ∆t → 0. Since limt→0

√
t ln

√
t = o(t.5−ε) and

limt→0

√
t| ln t| = o(t.5−ε) for ε > 0 it follows that for arbitrary ε > 0

|sN−1 − s(T − ∆t)| = o(∆t.5−ε)

On the other hand,

1 − s(T − ∆t)
1 − sN−1

=
O

(√| ln ∆t|
)

σ√
2

∣∣∣ln√
∆t

∣∣∣ = o(1)

as ∆t → 0. Hence the time discrete approximation yields a reasonable approxi-
mation to the location, but not the speed, of the free boundary near expiry. We
remark that any numerical solution of the problem at tN−1 would also introduce a
spatial discretization error, but if the method of [11] is used then a comparison of
the numerical and the above analytic solution (5) show that both free boundary
locations are virtually identical at the first time step.

Since the initial condition for (1) has a discontinuous ux at x = 1 it is not clear
how one can devise a purely numerical method which tracks the free boundary at
the first time step with sufficient accuracy to give the correct speed. Higher order
difference schemes do not apply because of lack of smoothness while an extrapola-
tion of results for different ∆t is doubtful because of the strong nonlinearity of the
problem near t = T . It is probable that the correct asymptotic results as t → T
will have to come from an analytic approximation.

Additional numerical complications arise throughout the life of the option be-
cause the early exercise boundary does not necessarily depend continuously on the
data of the problem. To see this problem in context we recall that front tracking
methods for the classical one phase Stefan problem are stable in the sense that if
the free boundary has moved off its correct position because the temperature was
found incorrectly then the fluxes and hence the boundary velocity are slowed or
increased to move it back toward the right position. In contrast the free boundary
s(t) of the option problem is defined implicitly and encoded only in the solution
u(x, t). As a consequence s(t) may change discontinuously with arbitrarily small
changes of u(x, t). For example, suppose the asset pays a one-time dividend D at
time tn, then the Black Scholes equation must be solved over [0, tn] subject to the
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initial condition

u(x, tn) = u

(
x− D

K
, tn+

)
where u(x, tn+) is the solution found over [tn, T ] (see, e.g. [9]). For any D > 0,
no matter how small, the initial value u(x, tn) lifts off the obstacle and the free
boundary jumps from s(tn+) � 0 to (essentially) s(tn) = 0 and then fails to exist
over a time interval [t∗, tn] given by

tn − t∗ = 1/r ln(1 + D/K)

before it (spontaneously?) reappears. Hence the free boundary moves discon-
tinuously with respect to perturbations of the data at the preceding time level.
(For a numerical simulation of American options with discrete dividends and the
behavior of the early exercise boundary see [12]).

An additional demand is placed on numerical methods for the Black Scholes
equation by the requirement that numerical values for ux and uxx are expected
for hedging purposes. Moreover, a recent asymptotic stochastic volatility model
for European and American options [6] requires the solution of an additional one-
dimensional Black Scholes equation whose source term depends on uxxx which
again increases the demand on the order of approximation and accuracy of the
numerical Black Scholes solver.

Nonetheless, in spite of these complications the numerical solutions for a given
problem appear to be quite stable with respect to refinements of the space and
time steps so that in practice any American option problem described by a one-
dimensional diffusion equation is relatively straightforward to solve numerically.
To illustrate the robustness of a time implicit tracking of the early exercise bound-
ary near expiry we show in Table 1 the computed scaled free boundary and option
value at time t = T − .001 found for three different time steps when ut is approx-
imated by

ut(x, T − ∆t) =
u(x, T ) − u(x, T − ∆t)

∆t
for the first time step (yielding the free boundary (6) and by the second order
formula

ut(x, n∆t)

= −
[

3
2
u(x, T − n∆t) − u(x, (n + 1)∆t)

∆t
− 1

2
u(x, (n + 1)∆t) − u(x, (n + 2)∆t)

∆t

]
for all subsequent time steps.

The results were obtained with the front tracking algorithm of [11]. They are
highly resolved with respect to x so that Table 1 may be assumed to show the
influence of ∆t only.

To show the reliability of computations for a discontinuous early exercise bound-
ary we show in Fig. 1 the computed free boundary for an American put on an
option where the underlying pays dividends of known size at two dates ta and tb.
Fig. 2 contains the normalized price and its first three derivatives at t = 0. The
curves for u0, u′

0 and u′′
0 are the linear interpolants between computed values on
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t s(T − .001) u(1, T − .001)

.001/10 .98491 .0024846

.001/100 .98486 .0024882

.001/200 .98482 .0024885

r = .1, continuous dividend rate ρ = .02, σ = .2

Table 1. Stability of the numerical solution near expiry for an American put with respect to ∆t.

a fixed mesh found with the algorithm of [12]. The curve for u′′′
0 is obtained from

a central finite difference approximation applied to u′′
0 .

We note that the quality of the numerical solution can be monitored a posteriori
at the free boundary. It is reasonable to infer from the regularity results of [7]
that for t ≤ tf < T all terms in the Black-Scholes equation have bounded limits
as x ↘ s(t). The boundary conditions

u(s(t), t) = 1 − s(t)

and

ux(s(t), t) = −1

imply that ut(s(t), t) = 0 and uxx(s(t), t)s′(t) + uxt(s(t), t) = 0. It follows from
the Black Scholes equation and its derivative that, at least formally,

(7) uxx(s(t), t) =
2r

σ2s2(t)

and

(8) uxxx(s(t), t) =
4r(s′(t) − (r + σ2)s)

(σs(t))4
.

For the calculation of Fig. 2 the early exercise boundary and its speed, computed
at t = 0 from

s′(0) = −
[

3
2∆t

(s0 − s1) − 1
2∆t

(s1 − s2)
]
,

are found to be

s(0) = .648113

s′(0) = 1.050
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Figure 1. Early exercise boundary for an American put on an asset paying a (scaled) dividend
of D = .015 at ta = .15 and D = .02 at tb = .4.

r = .12, σ = .4, T = .5, ∆t = .1/200, ∆x = .001.

The formulas (7) and (8) predict

uxx(s(0), 0) = 3.570

and

uxxx(s(0), 0) = −130.9.

The values found numerically for the above parameters are

u′′
0(s0) = 3.43

and

u′′′
0 (x∗) = −129.5

where x∗ = .64875 is the second regular mesh point beyond s0 whence u′′′ is
available from a central difference. We need to point out, however, that the results
for u′′ and u′′′ for a smaller ∆t begin to degrade. We suspect that the discontinuity
of u′′

0 at s0 is the cause. u, u′, and s do not change noticeably.
In the phase change setting once the one-dimensional problem was understood

and could be solved reliably attention turned to multi-dimensional problems. The
same development is taking place in quantitative and numerical finance.
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Figure 2. Option and Greeks at t = 0 for the put of Fig. 1.

3. Asian Options

One broad area which can be modeled with a higher dimensional diffusion equation
is the pricing of certain path dependent options depending on average values of
the underlying asset, the so called Asian options. The analog of the Black Scholes
equation for this case is a degenerate two dimensional diffusion equation whose
structure imposes special conditions on the admissible boundary data in order to
have a well posed problem. This aspect appears to have been somewhat ignored in
the financial literature. In fact, we found only one source [3] addressing the issue
of degeneracy but the problems considered there are set on infinite domains while
numerical work in general requires finite domains. Yet conditions for the existence,
uniqueness and continuous dependence of solutions for degenerate parabolic and
elliptic equations can be found in the mathematical literature. We shall examine
here what they imply for Asian options.

We shall focus on the fixed strike Asian call with payoff at maturity T . A
Black-Scholes type model was introduced in [8] together with completely defined
boundary conditions. It is known that this model can be transformed to a one-
dimensional diffusion equation on the real line [1]; however, the model is character-
istic for a number of Asian options so that the conclusions below transfer readily
to cases where such a transformation is not possible, such as the fixed strike call
with early exercise.
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For simplicity let us assume that the averaging period is the same as the life
of the option. The value of the call u(x, a, t), normalized by the strike price K, is
the solution of

(9)
1
2
σ2x2uxx + rxux +

x

T
ua − ru + ut = 0

Here x = S/K and

a =
1
T

∫ t

0

x(t) dt.

We note that if instead the definition

a =
1
t

∫ t

0

x(t) dt

is used then the pricing equation (9) becomes

(10)
1
2
σ2x2uxx + rxux +

1
t
(x− a)ua − ru + ut = 0

which is suggested in [15] for a finite element solution of the fixed strike Asian
option. In either case payoff at maturity T is

u(x, a, T ) = max{a− 1, 0}.
Let us now turn to the boundary conditions for (9). At x = 0 we have the

condition
u(0, a, t) = max{(a− 1)e−r(T−t), 0}

because x(t∗) = 0 implies x(t) = 0 for t > t∗.
The boundary condition at X as X → ∞ is not known with certainty but will

be approximated by

ux(X, t) =
1 − e−r(T−t)

rT
which is consistent with the analytic solution of (9) derived in [8] for a > 1 and
which represents an upper bound on the delta of the option [1].

Since only a first derivative with respect to a occurs in (9) it is generally agreed
that only one additional boundary condition can be imposed. In [8] the boundary
condition is placed at a = 1. The boundary conditions used in [15] for the solution
of (10) are not specifically identified but implied by the numerical upwinding
scheme for ∂u/∂a. In contrast, the finite element code of [14] for (10) proceeds
without any boundary conditions as x → ∞, a → ∞ and x = a = 0. So the
question is: What is required to make the boundary value problem for (9) well
posed?

In the terminology of [13] the above equation is a degenerate second order
equation with nonnegative characteristic form (as is the standard Black Scholes
equation for vanilla puts and calls). The general form of such an equation is

(11) Lu ≡
n∑

i,j=1

aij(x)uxixj +
n∑

i=1

bi(x)uxi + c(x)u = 0
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where the matrix A(x) = (aij(x)) is positive semi-definite on the closure of an
open bounded domain D ⊂ Rn. As developed in [13] the well-posedness of the
Dirichlet problem for (11) depends essentially on the algebraic sign of the so called
Fichera function

b(x) ≡
n∑

i=1


bi(x) −

n∑
j=1

(aij(x))xj


ni

defined on the boundary ∂D with inward unit normal #n = (n1, . . . , nn). Specifi-
cally, the part of the boundary where

n∑
i,j=1

aij(x)ninj = 0

is decomposed into disjoint arcs Σ0, Σ1 and Σ2 where

Σ0 = {x : b(x) = 0}
Σ1 = {x : b(x) > 0}
Σ2 = {x : b(x) < 0}.

We note that in heat and fluid flow the Fichera function describes the direction
of the convective flow on ∂D. For example, on Σ2 convection into the region D is
given. The remainder of the boundary is denoted by

Σ3 = ∂D −
3⋃

i=1

∂Σi.

The existence and uniqueness of a suitably defined weak solution is then proved
(see [13, p. 30]) provided we have Dirichlet data

u = g on Σ2 ∪ Σ3.

The proof is based on adding ε∆u to the degenerate equation, extending the
boundary data to ∂D and using standard elliptic theory to obtain a priori estimates
on the solution which are independent of ε and which allow passage to the limit.

If we agree to solve (9) on the domain D = {(x, a, t), 0 < x < X , 0 < a < 1,
0 < t < T } then the hypotheses of the existence theorem require Dirichlet data
on x = X , a = 1, t = T , and no data on the remainder of the boundary. However,
if the boundary x = 0 is replaced by a down and out barrier at x0 � 1, as is
often suggested for numerical work then the line x = x0 belongs to Σ3 so that
Dirichlet data there are consistent with the theory. If the theory is applied to the
equation (10) then Dirichlet data are required only on x > a along the boundary
a = constant.

We note that the Neumann condition on x = X does not fit the framework of
the theory. We do not know of a source where the results on degenerate equations
are extended to mixed Dirichlet/Neumann boundary conditions, but numerical
evidence shown below suggests that the problem (9) remains well posed.

The Asian option problem with European pay-off (9) can be readily solved by
reducing it to a sequence of coupled Black Scholes type equations and applying a
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standard numerical Black Scholes pde solver. We discretize time and the averaging
variable a by writing

∆a = 1/M, am = m∆a, m = 0, . . . ,M

∆t = T/N, tn = n∆t, n = 0, . . . , N

and replace (9) along the line a = am with the semi-discrete method of lines
approximation

(12)
1
2
σ2x2u′′

mn + rxu′
mn +

x

T
∇aumn − rumn + ∇tumn = 0

where
umn = u(x, am, tn)

and where ∇a and ∇t denote finite difference approximations to ∂u(x, a, t)/∂a and
∂u/∂t. To be specific we shall now consider the first order differences

(13) ∇aumn =
um+1n − umn

∆a
∇tumn =

umn+1 − umn

∆t
.

The equation (12) is solved at time tn for m = 0, 1, . . . ,M − 1, i.e. at each time
level we solve M coupled Black-Scholes type problems. Once {umn(x)} are found
then tn is decreased by ∆t to tn−1. The first order difference quotient (13) for ∇a

is attractive because it corresponds to upwinding the convection term which makes
the boundary value problem (12) coercive much like a non-degenerate problem. In
particular, this structure allows a convergent line iteration by assuming an initial
guess {u0

mn} and for k = 1, 2, . . . cycling forward from m = 0 to m = M − 1 until
the iterates {uk

mn} no longer change. Convergence of this method at a given time
level can be proven a priori as in the elliptic case considered in [10]. However,
numerical simulations of the call price for (9) suggest that a single backward pass
from m = M − 1 to m = 0 yields the same result as an iterative forward solution
which on average requires six iterations per time step and hence takes six times
as long per time step as the backward pass.

A serious drawback of the first order approximation (13) is its slow convergence
as ∆a and ∆t → 0. We shall discuss improving the approximation with respect to
∂u/∂a first. From a practical point of view we need a second order approximation
for ∂u/∂a. In view of the success of a three level level scheme for a standard Black
Scholes model [11], and in view of the fact that an analytic solution is available for
a > 1 we have opted for a three level backward approximation of ∂u/∂a. Hence it
is suggested that at time tn for m = 0, . . . ,M we solve (12) with

(14) ∇aumn = −
[

3
2
umn − um+1n

∆a
− 1

2
um+1n − um+2n

∆a

]
.

Since u(x, a, t) is known for a > 1 the source term for m = M − 1 is known. If
u(x, a, t) were not known the two-level scheme (13) can be used to compute uM−1n

before switching to (14). The computing speed of the direct forward or iterative
backward method was unchanged when using a three level rather than a two level
scheme but convergence as ∆a → 0 was markedly improved.
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Even more important is the order of approximation of the time derivative.
Again, one can go to a three level scheme as in [11], but now the calculation at
t = T −∆t requires u at T + ∆t which is not available. Hence in general equation
(12) with the first order implicit difference quotient (13) would have to be used at
T −∆t. However, since the European call for Asian options is linear a Richardson
extrapolation is an attractive, and often practiced, alternative. The solution of
(12) with (13) can be expected to be correct to order ∆t. Hence if at a given time
we have two numerical solutions u∆t(x, a) and u2∆t(x, a) obtained for time steps
∆t and 2∆t, resp., then the extrapolated solution is

u∗(x, a) = 2u∆t(x, a) − u2∆t(x, a).

The solution u∗ may be assumed to be second order accurate in ∆t. Higher order
corrections may also be used but are not considered here.

Table 2 illustrates the influence of the three level scheme for ∂u/∂a and the
Richardson extrapolation with respect to time for a typical Asian call with arith-
metic averaging and European pay-off. It may be observed that for a given time
step the data obtained with the second order approximation for ∂u/∂a change
little with the size of ∆a and that the Richardson extrapolation yields quite con-
sistent values for the call at the money, its delta and its gamma, whereas without
extrapolation very (i.e., infeasibly) small time steps must be chosen.

Value of the option

N

∖
M 100 100 200 200 400 400

extrap.∗ extrap. extrap.
200 6.4366 6.4358 6.4362
400 6.0880 5.7394 6.0856 5.7354 6.0857 5.7352
800 5.9057 5.7234 5.9021 5.7186 5.9020 5.7183
1600 5.8125 5.7193 5.8081 5.7141 5.8078 5.7136
3200 5.7653 5.7181 5.7605 5.7129 5.7601 5.7124

Value of the delta u′
00(1)

N

∖
M 100 200 400 400

extrap.
200 0.5577 0.5544 0.5536
400 0.5605 0.5566 0.5557 0.5578
800 0.5625 0.5583 0.5572 0.5587
1600 0.5637 0.5593 0.5581 0.5590
3200 0.5644 0.5598 0.5586 0.5591
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Value of the gamma u′′
00(1)

N

∖
M 100 200 400 400

extrap.
200 2.6656 2.6697 2.6698
400 2.8368 2.8451 2.8457 3.0216
800 2.9340 2.9456 2.9467 3.0477
1600 2.9857 2.9995 3.0010 3.0553
3200 3.0123 3.0274 3.0292 3.0574
r = .1, sigma = .4, X = 3, ∆x = .01, ∆a = 1/M , T = .3, ∆t = T/N
∗the extrapolated values are computed from the values for N and N/2

in the column immediately to the left

Table 2. Fixed strike Asian call u00(1) with European pay-off.

We remark that for this linear problem one may also use (13) and extrapolation
with respect to ∆a instead of the second order scheme (14). Indeed, if the entries
of Table 2 for, say, N = 400 and M = 200 and M = 400 are computed with (13)
and extrapolation is applied, the following values are obtained

M 200 400 extrapolated value
call 6.7537 6.4298 6.1059
delta 0.5555 0.5555 0.5555
gamma 2.5252 2.6711 2.8170

These values are quite consistent with the entries of Table 2 for M = N = 400. One
may infer from the numerical experiments of [4] that extrapolation can remain an
effective tool even for the nonlinear problem of American options with its dissimilar
convergence rates for the option price and the early exercise boundary. However,
the theoretical foundation of this approach requires knowledge of the convergence
rates which are generally not known in this setting. Hence we prefer a formally
second order discretization (14) over the extrapolation method for a first order
discretization.
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