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ADDITIVE STRUCTURE OF THE GROUP OF UNITS MOD pk,
WITH CORE AND CARRY CONCEPTS

FOR EXTENSION TO INTEGERS

N. F. BENSCHOP

Abstract. The additive structure of multiplicative semigroup Zpk = Z(·) mod pk is analysed for prime p > 2. Order

(p−1)pk−1 of cyclic group Gk of units mod pk implies product Gk ≡ AkBk , with cyclic ’core’ Ak of order p−1 so np ≡ n
for core elements, and ’extension subgroup’ Bk of order pk−1 consisting of all units n ≡ 1 mod p, generated by p+1.
The p-th power residues np mod pk in Gk form an order |Gk|/p subgroup Fk, with |Fk|/|Ak| = pk−2, so Fk properly
contains core Ak for k ≥ 3.

The additive structure of subgroups Ak, Fk and Gk is derived by successor function S(n) = n+1, and by considering
the two arithmetic symmetries C(n) = −n and I(n) = n−1 as functions, with commuting IC = CI, where S does not

commute with I nor C. The four distinct compositions SCI, CIS, CSI, ISC all have period 3 upon iteration. This yields

a triplet structure in Gk of three inverse pairs (ni, n−1
i ) with ni + 1 ≡ −(ni+1)−1 for i = 0, 1, 2 where n0 · n1 · n2 ≡ 1

mod pk, generalizing the cubic root solution n + 1 ≡ −n−1 ≡ −n2 mod pk (p ≡ 1 mod 6).
Any solution in core: (x + y)p ≡ x + y ≡ xp + yp mod pk>1 has exponent p distributing over a sum, shown to imply

the known FLT inequality for integers. In such equivalence mod pk (FLT case1) the three terms can be interpreted
as naturals n < pk, so np < pkp, and the (p − 1)k produced carries cause FLT inequality. In fact, inequivalence mod

p3k+1 is derived for the cubic roots of 1 mod pk(p≡ 1 mod 6).
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The commutative semigroup Zpk(·) of multiplication mod pk (prime p >2) has for all k > 0 just two idempo-
tents: 12 ≡ 1 and 02 ≡ 0, and is the disjoint union of the corresponding maximal subsemigroups (Archimedian
components [4], [8]). Namely the group Gk of units (ni ≡ 1 mod pk for some i > 0) which are all relative prime
to p, and maximal ideal Nk as nilpotent subsemigroup of all pk−1 multiples of p (ni ≡ 0 mod pk for some i > 0).
Notice that, since the analysis holds for any odd prime p, the index p in Gk and Nk is omitted for brevity of
notation. Order |Gk| = (p − 1)pk−1 has two coprime factors, so that Gk ≡ AkBk, with ’core‘ Ak and ’extension
group‘ Bk of orders p− 1 and pk−1 respectively. Residues of np form a subgroup Fk ⊂ Gk of order |Fk| = |Gk|/p,
to be analysed for its additive structure. Each n ∈ Ak has np ≡ n mod pk denoted as FSTk , since this is related
to Fermat’s Small Theorem where k = 1.

Notation: Base p number representation is used, which is useful for computer experiments, as reported in
Tables 1 and 2. This models residue arithmetic mod pk by considering only the k less significant digits, and
ignoring the more significant digits. Congruence class [n] mod pk is represented by natural number n < pk, en-
coded by k digits (base p). Class [n] consists of all integers with the same least significant k digits as n. As usual,
concatenation of operands indicates multiplication.

Define the 0-extension of residue n mod pk as the natural number n < pk with the same k-digit representation
(base p), and all more significant digits (at pm, m ≥ k) set to 0.

Signed residue −n is only a convenient notation for the complement pk−n of n, which are both positive. C[n]
is a cyclic group of order n, such as Zpk(+) ∼= C[pk]. Units mod p form a cyclic group G1 = C[p − 1], and
Gk of order (p − 1)pk−1 is also cyclic for k > 1 [1]. Finite semigroup structure is applied, and digit analysis of
prime-base residue arithmetic, to study the combination of (+) and (·) mod pk, especially the additive properties
of multiplicative subgroups of ring Zpk(+, ·)

Elementary residue arithmetic, cyclic groups, and (associative) function composition will be used, starting at
the known cyclic (one generator) nature [1] of the group Gk of units mod pk. The direct product structure of
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Gk (Lemma 1.1 and Corollary 1.2) on the pk−2 extensions of np mod p2 to cover all p-th power residues mod pk

for k > 2 are known, but they are derived for completeness. Results beyond Section 1 are believed to be new.
The two symmetries of residue arithmetic mod pk, defined as automorphisms of order 2, are complement −n

under (+) and inverse n−1 under (·). Their role as functions C(n) = −n and I(n) = n−1, in the triplet additive
structure of Z(·) mod pk (Lemma 3.1 and Theorem 3.1) is essential.
Symbols and Definitions (odd prime p)
Zpk(.) multiplicative semigroup mod pk (k-digit arithmetic base p)
C[m] cyclic group of order m: e.g. Zpk(+) ∼= C[pk]
x ∈ Zpk(.) unique product x = gi pk−j mod pk (gi ∈ Gj coprime to p)
0-extension X of residue x mod pk: the smallest non-negative integer

X ≡ x mod pk

(finite) extensionU of x mod pk: any integer U ≡ x mod pk

Gk ≡ Ak ·Bk group of units n: ni ≡ 1 mod pk (some i >0),
|Gk| ≡ (p− 1)pk−1

Ak core of Gk, |Ak| = p− 1 (np ≡ n mod pk for n ∈ Ak)
Bk ≡ (p + 1)∗ extension group of all n ≡ 1 mod p, |Bk| = pk−1

Fk subgroup of all p-th power residues in Gk, |Fk| = |Gk|/p
Ak ⊂ Fk ⊂ Gk proper inclusions only for k ≥ 3 (A2 ≡ F2 ⊂ G2)
d(n) core increment A(n + 1)−A(n) of core func’n A(n) ≡ nq,

q = |Bk|
FSTk core Ak (p− 1 residues) extends FST (np ≡ n mod p)

to mod pk>1

solution in core xp + yp ≡ zp mod pk with x, y, z in core Ak.
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Symbols and Definitions (odd prime p)
period of n ∈ Gk order |n∗| of subgroup generated by n in Gk(·)
normation divide xp + yp ≡ zp mod pk by one term (in Fk)

to yield one term ±1
complement −n unique in Zpk(+): −n + n ≡ 0 mod pk

inverse n−1 unique in Gk(·): n−1 · n ≡ 1 mod pk

1-complement pair pair {m,n} in Zpk(+): m + n ≡ −1 mod pk

inverse-pair pair {a, a−1} of inverses in Gk

triplet 3 inv. pairs: a + b−1 ≡ b + c−1 ≡ c + a−1 ≡ −1,
(abc ≡ 1 mod pk)

tripletp a triplet of p-th power residues in subgroup Fk

symmetry mod pk −n and n−1: order 2 automorphism of Zpk(+) resp. Gk(·)
EDS property Exponent Distributes over a Sum:

(a + b)p ≡ ap + bp mod pk

1. Structure of the group Gk of units

Lemma 1.1. Gk
∼= A′

k × B′
k
∼= C[p − 1] · C[pk−1] and Z(·) mod pk has a sub-semigroup isomorphic to Z(·)

mod p.
Proof. Cyclic group Gk of units n (ni ≡ 1 for some i > 0) has order (p−1)pk−1, namely pk minus pk−1 multiples

of p. Then Gk = A′
k ×B′

k, the direct product of two relative prime cycles, with corresponding subgroups Ak and
Bk, so that Gk ≡ Ak Bk where:
extension group Bk = C[ pk−1 ] consists of all pk−1 residues mod pk that are 1 mod p, and
core Ak = C[p− 1], so Zpk(·) contains sub-semigroup Ak ∪ 0 ∼= Zp(·) �
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Core Ak, as p − 1 cycle mod pk, is Fermat’s Small Theorem np ≡ n mod p extended to k >1 for p residues
(including 0), to be denoted as FSTk.
Recall that np−1 ≡ 1 mod p for n ≡/ 0 mod p (FST ), then Lemma 1.1 implies:

Corollary 1.1. With |B| = pk−1 = q and |A| = p−1, core Ak = {nq} mod pk (n = 1, . . . , p−1) extends FST
for k > 1, and Bk = {np−1} mod pk consists of all pk−1 residues 1 mod p in Gk.

Subgroup Fk ≡ {np} mod pk of all p-th power residues in Gk, with Fk ⊇ Ak (only F2 ≡ A2) and order
|Fk| = |Gk|/p = (p− 1)pk−2, consists of all pk−2 extensions mod pk of the p− 1 p-th power residues in G2, which
has order (p− 1)p. Consequently:

Corollary 1.2. Each extension of np mod p2 (in F2) is a p-th power residue (in Fk).

Core generation: The p− 1 residues nq mod pk (q = pk−1) define core Ak for 0< n < p. Cores Ak for successive
k are produced as the p-th power of each n0 < p recursively

(n0)p ≡ n1, (n1)p ≡ n2, (n2)p ≡ n3, . . .

where ni has i + 1 digits (base p). In more detail:

Lemma 1.2. For non-negative digits ai < p the p− 1 naturals a0 < p define core

Ak(a0) ≡ (a0)pk−1
≡ a0 +

k−1∑
i=1

aip
i mod pk,

and
Ak+1(a0) ≡ [ Ak(a0) ]p mod pk+1.

Proof. Let a = a0 + mp < p2 be in core A2, so ap ≡ a mod p2. Then

ap = (mp + a0)p ≡ ap−1
0 mp2 + ap

0 ≡ mp2 + ap
0 mod p3,
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by FST . Core digit a1 of weight p is not found in this way as function of a0, requiring actual computation, except
for a ≡ p± 1 as in (1) and (1′). It depends on the carries produced in computing the p-th power of a0. Similarly,
the next more significant digit in core Ak+1(n) is found by computing, with k+1 digit precision, the p-th power
ap of 0-extension a < pk in core Ak, leaving core Ak fixed, because ap ≡ a mod pk. �

Notice (p2 ± 1)p ≡ p3 ± 1 mod p5, and (p + 1)p ≡ p2 + 1 mod p3 yields by induction on m:

(p + 1)pm

≡ pm+1 + 1 mod pm+2(1)

(p− 1)pm

≡ pm+1 − 1 mod pm+2(1′)

Lemma 1.3. Extension group Bk is generated by p + 1 mod pk, with |Bk| = pk−1, and each subgroup S ⊆
Bk, |S| = |Bk|/ps has sum ∑

S ≡ |S| mod pk 6≡ 0 mod pk.

Proof. For the smallest x with (p + 1)x ≡ 1 mod pk, the period of p + 1, (1) implies m + 1 = k. So m = k − 1,
thus period pk−1. No smaller x generates 1 mod pk since |Bk| has only divisors ps.

Bk consists of all pk−1 residues which are 1 mod p. The order of each subgroup S ⊂ Bk must divide |Bk|, so that
|S| = |Bk|/ps (0 ≤ s < k) and S = {1+m ·ps+1} (m = 0, . . . , |S|−1). Then

∑
S = |S|+ps+1 · |S|(|S|−1)/2 mod

pk, where ps+1 · |S| = p · |Bk| = pk, so that
∑

S = |S| = pk−1−s mod pk. Hence no subgroup of Bk sums to 0
mod pk. �

Corollary 1.3. For core Ak ≡ g∗, each unit n ∈ Gk ≡ AkBk has the form:

n ≡ gi(p + 1)j mod pk

for a unique pair of non-negative exponents i < |Ak| and j < |Bk|.

Pair (i, j) are the exponents in the core- and extension- component of unit n. In case p = 2, the most interesting
prime for computer engineering purposes, the next binary number representation is readily verified [3], [7]:
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Lemma 1.4. For p = 2: p + 1 = 3 is a semi-primitive root of 1 mod 2k for k > 2.

In other words, for base p = 2 and precision k > 2: each odd residue mod 2k is a unique signed power of 3.
Hence an efficient k-bit binary number code is

n = ±3i · 2j mod 2k,

for all integers 0 ≤ n < 2k, with unique non-negative index pair i < 2k−2 and j ≤ k.
Clearly, this allows a dual-base (2, 3) binary logarithmetic code, which reduces multiplication to addition of the
two indices, and XOR (add mod 2) of the involved signs (see US-patent [7]).

Theorem 1.1. Each subgroup S ⊃ 1 of core Ak sums to 0 mod pk (k > 0).

Proof. For even |S|: −1 in S implies pairwise zero-sums. In general: c ·S = S for all c in S, and c
∑

S =
∑

S,
so S · x = x, writing x for

∑
S. Now for any g in Gk: |S · g| = |S| so that |S · x|=1 implies x not in Gk, hence

x = g · pe for some g in Gk and 0 < e < k or x = 0 (e = k). Then S · x = S(g · pe) = (S · g)pe with |S · g| = |S| if
e < k. So |S · x|=1 yields e=k and x =

∑
S=0. �

Consider the normation of an additive equivalence a + b ≡ c mod pk in units group Gk, by multiplying all
terms with the inverse of one of these terms, to yield rhs −1 as right hand side:

1-complement form: a + b ≡ −1 mod pk in Gk,(2)

(digitwise sum p− 1, no carry).

For instance the well known p-th power residue equivalence: xp + yp ≡ zp in Fk yields:

normal form: ap + bp ≡ −1 mod pk in Gk,(2′)
with a special case in core Ak, considered next.
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2. The cubic root solution in core, and core symmetries

Lemma 2.1. Cubic roots a3 ≡ 1 mod pk (p ≡ 1 mod 6, k > 1) are p-th power residues in core Ak, and
a + a−1 ≡ −1 mod pk (a 6≡ −1) has no corresponding integers as p-th powers < pkp.

Proof. If p ≡ 1 mod 6 then 3 divides p − 1, implying a core subgroup S = {a, a2, 1} of three p-th powers:
the cubic roots a3 ≡ 1 in Gk, with sum 0 mod pk (Theorem 1.1). Now a3 − 1 = (a − 1)(a2 + a + 1), so for
a 6= 1 : a2 + a + 1 ≡ 0, hence a + a−1 ≡ −1 solves the normed (2′), being a root-pair of inverses with a2 ≡ a−1.
Subgroup S ⊂ Ak consists of p-th power residues with np ≡ n mod pk.

Write b for a−1, then ap+bp ≡ −1 and a+b ≡ −1, hence ap+bp ≡ (a+b)p mod pk. The “exponent p distributes
over a sum” (EDS) property implies Ap + Bp < (A + B)p for the corresponding 0-extensions A, B, A + B of
residues a, b, a + b mod pk. �

1. Successive powers gi of generator g of Gk produce |Gk| points (k-digit residues) counter clockwise on a unit circle
(Figures 1, 2). Inverse pairs (a, a−1) are connected vertically, complements (a, −a) diagonally, and pairs (a, −a−1)
horizontally, representing functions I, C and IC = CI respectively (Theorem 3.1).

2. Scaling any equation, such as a + 1 ≡ −b−1, by a factor s ≡ gi ∈ Gk ≡ g∗, yields s(a + 1) ≡ −s/b mod pk,
represented by a rotation counter clockwise over i positions.

2.1. Another derivation of the cubic roots of 1 mod pk

The cubic root solution was derived, for 3 dividing p − 1, via subgroup S ⊂ Ak of order 3 (Theorem 1.1). For
completeness a derivation using elementary arithmetic follows.

Notice a + b ≡ −1 to yield a2 + b2 ≡ (a + b)2 − 2ab ≡ 1− 2ab, and:

a3 + b3 ≡ (a + b)3 − 3(a + b)ab ≡ −1 + 3ab.
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The combined sum is ab− 1:
3∑

i=1

(ai + bi) ≡
3∑

i=1

ai +
3∑

i=1

bi ≡ ab− 1 mod pk.

Find a, b for ab ≡ 1 mod pk.

Core A = (43)∗ = 43 42 66 24 25 01 (mod 72)
Cubic rootpair: 42 + 24 ≡ 66 ≡ −1

42 + 1 ≡ −(42)−1

−a−1 ≡ a + 1

Complement C(n) = −n
Inverse I(n) = n−1

Succesor S(n) = n + 1

423 ≡ 1 mod 72

Symmetries:
−n (diagonal) C
n−1 (vertical) I
−n−1 (horizontal) IC=CI

Figure 1. Core A2 mod 72 (6-cycle), Cubic roots {42, 24, 01} (3-cycle) in core.
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Now
n2 + n + 1 = (n3 − 1)/(n− 1)=0 for n3 ≡ 1 (n 6= 1),

hence ab ≡ 1 mod pk, (k > 0) if a3 ≡ b3 ≡ 1 mod pk, with 3 dividing p− 1 (p ≡ 1 mod 6). Cubic roots a3 ≡ 1
mod pk exist for any prime p ≡ 1 mod 6 at any precision k > 0.

In the next section other solutions of
∑3

i=1 ai +
∑3

i=1 bi ≡ 0 mod pk will be shown, depending not only on p
but also on k, with ab ≡ 1 mod p2 but ab ≡/ 1 mod p3, for some primes p ≥ 59.

2.2. Core increment symmetry mod p2k+1 and asymmetry mod p3k+1

Consider:
core function Ak(n) = nq (q = |Bk| = pk−1) as natural monomial,
core increment dk(n) = Ak(n + 1)−Ak(n) = (n + 1)q − nq (even degree q − 1),
natural core Ck(n) < pk with Ak(n) ≡ Ck(n) mod pk,
integer core increment Dk+1(n) = [Ck(n + 1)]p − [Ck(n)]p, with absolute value less than pkp.

Recall: for natural n < p the p-th power residues [Ak(n)]p mod pk+1 form core Ak+1 (Lemma 1.2). For any
core element a ∈ Ck: ap−1 ≡ 1 mod pk. By FST: Ck(n) ≡ n mod p, so Dk(n) ≡ 1 mod p, and Dk(n) is called
core increment, although in general Dk(n) ≡/ 1 mod pk for k > 2. Core naturals Ck(n) < pk are considered in
order to study natural p-th power sums.

For example consider p = 7 (Figure 1). The cubic roots in core A2 are {42, 24, 01} mod 72, with 7-th powers
{642, 024, 001} in core A3. In full 14 digits (base 7):

427 + 247= 0 14 24 06 25 00 66 6 (k=2) versus 667= 6 02 62 04 64 00 66 6

which are equivalent mod 72k+1 = 75, but differ mod 76 hence also mod 73·2+1 = 77. Cubic roots {3642, 3024}
in core A4, as 7-th powers of cubic roots in A3 (k=3), have increment 1 mod 77 with increment symmetry mod
72k+1 = 77, and asymmetry mod p3k+1 = 710. See also Table 1. This core- and carry effect is generalized for
integers as follows.
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n core C_k core C_[k+1]==(C_k)^p Core_incr. p=7 (base 7)
C_1 v C_2 v v <---- mod p^3

1. 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 2 4 1
2. 0 0 0 0 0 0 0 2 0 0 0 0 0 2 4 2 0 0 0 0 6.0 0 1 /\
3. 0 0 0 0 0 0 0 3 0 0 0 0 6 2 4 3 0 0 0 5 6 2 5 1 sym
4. 0 0 0 0 0 0 0 4 0 0 0 6 5 5 2 4 0 0 3 4 5.0 0 1 \/
5. 0 0 0 0 0 0 0 5 0 0 4 4 3 5 2 5 0 1 5 0 0 2 4 1
6. 0 0 0 0 0 0 0 6 0 2 2 4 4 0 6 6 6 4 4 2 2 6 0 1

C_2 v v C_3 v v v <-------- mod p^5
1. 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 4 6 6 3 4 6 4 1
2. 0 0 0 0 0 0 4 2 4 6 6 3 4 6 4 2 5 4 3.0 0 0 0 1 /\
3. 0 0 0 0 0 0 4 3 3 4 2 3 4 6 4 3 4 5 2 6 5 0 5 1 sym
4. 0 0 0 0 0 0 2 4 1 2 5 3 3 0 2 4 6 0 0.0 0 0 0 1 \/
5. 0 0 0 0 0 0 2 5 0 2 5 3 3 0 2 5 4 3 5 3 4 6 4 1
6. 0 0 0 0 0 0 6 6 4 6 4 0 0 6 6 6 2 0 2 6 6 0 0 1

C_3 v v v C_4 v v v v <------------ mod p^7
1. 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 6 4 1 4 3 6 4 1
2. 0 0 0 0 0 6 4 2 6 4 1 4 3 6 4 2 136.0 0 0 0 0 0 1 /\
3. 0 0 0 0 0 6 4 3 5 4 1 4 3 6 4 3 2 5 3 5 6 0 5 1 sym
4. 0 0 0 0 0 0 2 4 1 2 5 3 3 0 2 4 666.0 0 0 0 0 0 1 \/
5. 0 0 0 0 0 0 2 5 0 2 5 3 3 0 2 5 3 4 1 4 3 6 4 1
6. 0 0 0 0 0 6 6 6 4 0 0 0 6 6 6 6 2 6 6 6 0 0 0 1

Table 1. Cores C1..C3, increment symmetry mod p[2k+1] of C2..C4. For cubic roots of 1 mod pk: asymmetry mod p[3k+1] in
C2..C4..

Lemma 2.2 (Core increment symmetry and asymmetry). For q = |Bk| = pk−1 (k ≥ 1) and natural m, n < p:
(a) Core residues Ak(n) ≡ nq mod pk and increments dk(n) ≡ Ak(n + 1)−Ak(n) mod pk have period p in

n.
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(b) If m + n = p then Ak(p− n) ≡ Ak(−n) ≡ −Ak(n) mod pk (odd symm.).
(c) If m + n = p− 1 then Dk+1(m) ≡ Dk+1(n) mod p2k+1 (even symm.).
(d) If m+n = p−1 and natural cubic roots Ck(m)+Ck(n) = pk−1 then Dk+1(m) ≡/ Dk+1(n) mod p3k+1 (asym-

metry)

Proof. (a) Core function Ak(n) ≡ nq mod pk (q = pk−1, n ≡/ 0 mod p) has just p − 1 distinct residues with
(nq)p ≡ nq mod pk, and Ak(n) ≡ n mod p (FST). Include non-core Ak(0) ≡ 0 then Ak(n) mod pk is periodic
in n with period p, so Ak(n + p) ≡ Ak(n) mod pk. Hence difference dk(n) mod pk of two functions of period p
also has period p.

(b) (−n)q = −nq, odd q = pk−1, yields odd symmetry

Ak(p− n) ≡ Ak(−n) ≡ −Ak(n) mod pk

(c) Difference polynomial dk(n) has leading term q nq−1. Even degree q − 1 results in even symmetry

dk(n− 1) = nq − (n− 1)q = −(−n)q + (−n + 1)q = dk(−n).

Now Ck(n) = pk − Ck(p− n) < pk, hence for m + n = p− 1, Ck(m + 1) = pk − Ck(n), so

Dk+1(m) = [pk − Ck(n)]p − [Ck(m)]p and Dk+1(n) = [pk − Ck(m)]p − [Ck(n)]p.

Briefly denote naturals Ck(m) = a, Ck(n) = b, and h = (p− 1)/2 then

Dk+1(m)−Dk+1(n) = [(pk − b)p + bp]− [(pk − a)p + ap]

≡ −h[ bp−2 − ap−2 ] p2k+1 + [ bp−1 − ap−1 ] pk+1 mod p3k+1(*)

≡ 0 mod p2k+1,

because by FST: ap−1 ≡ bp−1 ≡ 1 mod pk.
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(d) Carry difference (bp−1 − ap−1)/pk ≡/ h(bp−2 − ap−2) mod pk is required, to avoid cancellation in (*). It
suffices to show this for k = 1 and 0-extensions 1 < a, b < p of cubic roots of 1 mod p. Using b ≡ a2 ≡ a−1,
bp−2 − ap−2 ≡ −(b− a) mod p , and h = (p− 1)/2 ≡ −1/2 mod p the carry difference must satisfy (cd)

(bp−1 − ap−1)
p

≡/ (b− a)
2

mod p.(cd)

Let a3 ≡ cp+1 mod p2 with some carry c, then for m > 0: a3m ≡ mcp+1 mod p2. So ap−1 ≡ [(p− 1)/3]cp+1
mod p2, and similarly for cubic root power b3. In other words, in extension group B2 ≡ {xp + 1} ≡ (p + 1)x

mod p2 the coefficient of p is proportional to the exponent. For ap−1 versus a3 the ratio is (p− 1)/3. However in
(cd), adapted for third powers a3, b3 it is (p− 1)/(3/2) = 2(p− 1)/3, hence the (cd) inequivalence holds.

So for the cubic roots of 1 mod pk, with a + b = Ck(m) + Ck(n) = pk − 1 core increment has asymmetry

Dk+1(m) ≡/ Dk+1(n) mod p3k+1. �

Corollary 2.1. Let prime p ≡ 1 mod 6, and any precision k > 0. For x3 ≡ y3 ≡ 1 mod pk (cubic roots
x, y ≡/ 1) 0-extensions X, Y < pk of x, y have Xp, Y p mod pk+1 in core Ak+1 with Xp + Y p ≡ −1 mod pk+1

and Xp + Y p ≡/ (pk − 1)p mod p3k+1.

3. Symmetries as functions yield ’triplets’

Any solution of (2’): ap + bp = −1 mod pk has at least one term (−1) in core, and at most all three terms in core
Ak. To characterize such solution by the number of terms in core Ak, quadratic analysis (mod p3) is essential
since proper inclusion Ak ⊂ Fk requires k ≥ 3. The cubic root solution, involving one inverse pair (Lemma 2.1)
has all three terms in core Ak (k > 1). However, a computer search (Table 2) reveals another type of solution of
(2’) mod p2 for some p ≥ 59, namely three inverse pairs of p-th power residues, denoted tripletp, in core A2.

Lemma 3.1. A tripletp of three inverse-pairs of p-th power residues in Fk satisfies
(3a) a + b−1 ≡ −1 mod pk
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(3b) b + c−1 ≡ −1 mod pk

(3c) c + a−1 ≡ −1 mod pk with abc ≡ 1 mod pk.

Proof. Multiplying by b, c, a resp. maps (3a) to (3b) if ab ≡ c−1, and (3b) to (3c) if bc ≡ a−1, and (3c) to (3a)
if ac ≡ b−1. All three conditions imply abc ≡ 1 mod pk. �

Table 2 shows all normed solutions of (2′) mod p2 for p < 200, with a tripletp at p = 59, 79, 83, 179, 193. The
cubic roots, indicated by C3, occur only at p ≡ 1 mod 6, while a tripletp can occur for either prime type ±1
mod 6. More than one tripletp can occur per prime: two at p = 59, three at 1093 (dec) = [1111111] base 3 (one
of the two known Wieferich primes [9], [6], and four at 36847, each the first occurrence of such multiple tripletp).
There are primes for which both root forms occur, e.g. p = 79 has a cubic root solution as well as a tripletp.

Such loop of inverse-pairs in residue ring Z mod pk cannot have a length beyond 3, seen as follows. Consider
the successor S(n) = n+1 and the two symmetries: complement C(n) = −n and inverse I(n) = n−1, as functions
which compose associatively.

Theorem 3.1 (Two basic solution types). Each normed solution of (2′) is (an extension of) a tripletp or an
inverse-pair.

Proof. Assume that r equations 1 − n−1
i ≡ ni+1 form a loop of length r (indices mod r). Consider function

ICS(n) ≡ 1 − n−1, composed of the three elementary functions: Inverse, Complement and Successor, in that
sequence. Let E(n) ≡ n be the identity function, and n 6= 0, 1,−1 to prevent division by zero, then under function
composition the third iteration [ICS]3 = E, since [ICS]2(n) ≡ −1/(n− 1)→ [ICS]3(n) ≡ n (repeat substituting
1 − n−1 for n). Since C and I commute, IC=CI, the 3! = 6 permutations of {I, C, S} yield only four distinct
dual-folded-successor “dfs” functions:

ICS(n) = 1− n−1, SCI(n) = −(1 + n)−1,

CSI(n) = (1− n)−1, ISC(n) = −(1 + n−1).
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Find a+b = -1 mod p^2 (in A=F < G): Core A={n^p=n}, F={n^p} =A if k=2.
G(p^2)=g*, log-code: log(a)=i, log(b)=j; a.b=1 --> i+j=0 (mod p-1)

TRIPLET^p: a+ 1/b= b+ 1/c= c+ 1/a=-1; a.b.c=1; (p= 59 79 83 179 193 ...
^^^^^^

Root-Pair: a+ 1/a=-1; a^3=1 (’C3’) <--> p=6m+1 (Cubic rootpair of 1)
^^^^^^^^^
p:6m+-1 g=generator; p < 2000: two triplets at p= 59, 701, 1811

5:- 2 three triplets at p= 1093
7:+ 3 C3 11:- 2

13:+ 2 C3 17:- 3
19:+ 2 C3 23:- 5 29:- 2
31:+ 3 C3
37:+ 2 C3 41:- 6
43:+ 3 C3 47:- 5
53:- 2 log lin mod p^2
59:- 2 ------ ------------

-2,-25( 40 15, 18 43) 25, 23( 35 11, 23 47) -23, 2( 53 54, 5 4)
-- -- -- -- -- --

27, 19( 18 44, 40 14) -19, 8( 13 38, 45 20) -8,-27( 5 3, 53 55)
61:+ 2 C3
67:+ 2 C3 71:- 7
73:+ 5 C3
79:+ 3 C3

30, 20( 40 46, 38 32) -20, 10( 36 42, 42 36) -10,-30( 77 11, 1 67)
83:- 2

21, 3( 9 74, 73 8) -3, 18( 54 52, 28 30) -18,-21( 13 36, 69 46)
89:- 3
97:+ 5 C3 101:- 2
103:+ 5 C3 107:- 2
109:+ 6 C3 113:- 3
127:+ 3 C3 131:- 2 137:- 3
139:+ 2 C3 149:- 2
151:+ 6 C3
157:+ 5 C3
163:+ 2 C3 167:- 5 173:- 2
179:- 2
19, 1( 78 176,100 2) -1, 18( 64 90,114 88) -18,-19( 88 59, 90 119)
181:+ 2 C3 191:- 19
193:+ 5 C3

-81, 58( 64 106,128 86) -58, 53( 4 101,188 91) -53, 81(188 70, 4 122)
197:- 2
199:+ 3 C3

Table 2. FLT2 root: inv-pair (C3) & tripletp (for p < 200).
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By inspection each of these has [dfs]3 = E, referred to as loop length 3. For a cubic rootpair dfs = E, and
2-loops do not occur since there are no duplets (see Section 3.1 note 2). Hence solutions of (2′) have only dfs
function loops of length 1 and 3: inverse pair and tripletp. �

A special tripletp occurs if one of a, b, c equals 1, say a ≡ 1. Then bc ≡ 1 since abc ≡ 1, while (3a) and (3c)
yield b−1 ≡ c ≡ −2, so b ≡ c−1 ≡ −2−1. Although triplet (a, b, c) ≡ (1,−2,−2−1) satisfies conditions (3), 2 is not
in core Ak (k > 2), and by symmetry a, b, c ≡/ 1 for any tripletp of form (3).

If 2p ≡/ 2 mod p2 then 2 is not a p-th power residue, so triplet (1,−2,−2−1) is not a tripletp for such primes,
that is: at least all primes p < 4 · 1012 [6], except the two Wieferich primes [9]: 1093 (dec) = [1111111] base 3,
and 3511 (dec) = [6667] base 8.

3.1. A triplet for each unit n in Gk

Notice the proof of Theorem 3.1 does not require p-th power residues. So any n ∈ Gk generates a triplet by
iteration of one of the four dfs functions, yielding the main triplet structure of Gk

Corollary 3.1. Each unit n in Gk (k > 0) generates a triplet of three inverse pairs, except if n3 ≡ 1 and
n ≡/ 1 mod pk (p ≡ 1 mod 6), which involves one inverse pair.

Starting at n0 ∈ Gk six triplet residues are generated upon iteration of e.g. SCI(n): ni+1 ≡ −(ni + 1)−1

(indices mod 3), or another dfs function to prevent a non-invertable residue. Less than 6 residues are involved if
3 or 4 divides p− 1

If 3|(p− 1) then a cubic root of 1 (a3 ≡ 1, a ≡/ 1) generates just 3 residues: a + 1 ≡ −a−1 – together with its
complement this yields a subgroup (a + 1)∗ ≡ C6 (Figure 1, p = 7).

If 4 divides p − 1 then an x on the vertical axis has x2 ≡ −1 so x ≡ −x−1, so the three inverse pairs involve
then only five residues (Figure 2, p = 5).

1. It is no coincidence that the period 3 of each dfs composition exceeds by one the number of symmetries of finite ring Z(+, ·)
mod pk.
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2. No duplet occurs: multiply a + b−1 ≡ −1, b + a−1 ≡ −1 by b resp. a. Then ab + 1 ≡ −b and ab + 1 ≡ −a, so that −b ≡ −a
and a ≡ b.

3. Basic triplet mod 32: G2 ≡ 2∗ ≡ {2, 4, 8, 7, 5, 1} is a 6-cycle of residues mod 9. Iterate SCI(1)∗ : −(1 + 1)−1 ≡ 4,

−(4 + 1)−1 ≡ 7, −(7 + 1)−1 ≡ 1, and abc ≡ 1 · 4 · 7 ≡ 1 mod 9.

Figure 2. G = A ·B = g∗ (mod 52), Cycle in the plane.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

3.2. The EDS argument extended to non-core triplets

The EDS argument for the cubic root solution CR (Lemma 2.1), with all three terms in core, also holds for any
tripletp mod p2. Because A2 ≡ F2 mod p2, so all three terms are in core for some linear transform (5). Then
for each of the three equivalences (3a) – (3c) holds the EDS property: (x + y)p ≡ xp + yp, and thus no finite
(equality preserving) extension exists, yielding inequality for the corresponding integers for all k > 1, to be shown
next. A cubic root solution is a special tripletp for p ≡ 1 mod 6, with a ≡ b ≡ c in (3a) – (3c).

Denote the p− 1 core elements as residues of integer function Ak(n) = n|Bk| (0 < n < p), then for any k > 2
consider core increment form:

Ak(n + 1)−Ak(n) ≡ (rn)p mod pk, where (rn)p ≡ 1 mod p2.(4)

This tripletp rootform with two terms in core, and (rn)p ≡/ 1 mod p3, is useful for the additive analysis of subgroup
Fk of p-th power residues mod pk, in essence: the known Fermat’s Last Theorem FLT case1 for residues coprime
to p, discussed in the next section.

Any assumed FLT case1 solution (5) for integers less than pkp can be transformed to (4), in two equality
preserving steps. Namely first a multiplicative scaling by an integer p-th power factor sp that is 1 mod p2 (so
s ≡ 1 mod p), to yield as one lefthand term the core residue Ak(n + 1) mod pk. And secondly an additive
translation by integer term t which is 0 mod p2 applied to both sides, resulting in the other lefthand term −Ak(n)
mod pk, while preserving integer equality. Assuming, without loss, the normed form with zp ≡ 1 mod p2, such
linear transformation (s, t) yields:

xp + yp = zp ←→ (sx)p + (sy)p + t = (sz)p + t [integers],(5)

with sp ≡ Ak(n + 1)/xp, (sy)p + t ≡ −Ak(n) mod pk, so:

Ak(n + 1)−Ak(n) ≡ (sz)p + t mod pk, equivalent to 1 mod p2.(5′)
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With sp ≡ zp ≡ 1, t ≡ 0 mod p2 this yields an equivalence which is 1 mod p2, hence a p-th power residue, and
(5′) has two of the three terms in core, for k >2. All three terms of a tripletp mod p2 are in core (Corrolary 1.2).
In core increment form (4) for k > 2 this holds apparently only if the righthand side (rn)p ≡ 1 mod pk, yielding:

Corollary 3.2 (For precision k > 2 (base p)). Core increment form (4) with all three terms in core Ak is the
cubic root solution, and an FLT equivalence mod pk with three terms in core is a (scaled) cubic root solution.

Lemma 3.2. The p-th powers of 0-extended terms of a tripletp (mod pk) yield integer inequality.

Proof. In a tripletp for some odd prime p the core increment form (4) holds for three distinct values of n < p.
Consider each tripletp equivalence separately. To simplify notation let r be any of the three rn, and core residues
Ak(n + 1) ≡ xp ≡ x, −Ak(n) ≡ yp ≡ y mod pk. Then xp + yp ≡ x + y ≡ rp mod pk, where rp ≡ 1 mod p2, has
both summands in core, but rp ≡/ 1 mod pk for k > 2 is not in core: deviation d ≡ r − rp ≡/ 0 mod pk.

Hence r ≡ rp +d ≡ (x+y)+d mod pk (with d ≡ 0 mod pk in the cubic root case), and xp +yp ≡ x+y ≡ (x+
y+d)p mod pk. The corresponding 0-extensions yield integer p-th power inequality: Xp+Y p < (X+Y +D)p. �

In the case of cubic roots in core Ak, less than full pk digit precision (base p), namely mod p3k+1 suffices to
yield the FLT inequality (Corollary 2.1). For any tripletp mod p2, necessarily in core A2 (Corollary 1.2), and for
cubic roots of 1 mod pk (any k > 0), there holds (x + y)p ≡ x + y ≡ xp + yp, where exponent p distributes over
a sum. By binomial expansion the sum of mixed terms yields integer (X + Y )p − (Xp + Y p) 6= 0 of precision kp,
which is 0 mod p2 for any tripletp.

For any tripletp mod pk (k > 2), say in core increment form (5′), it is conjectured that there is a least precision
m(k) (base p), not exceeding that for cubic roots, which implies inequivalence Xp − Y p ≡/ Zp mod pm (Zp ≡ 1
mod p2) for successive core 0-extensions X, Y < pk.

Conjecture. The 0-extensions X, Y, Z < pk of terms in any tripletp mod pk equivalence in core increment
form (5′) with X − Y = Z ≡ 1 mod p2 yield: Xp − Y p ≡/ Zp mod p3k+1.
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4. Relation to Fermat’s Small and Last Theorem

Core Ak as FST extension mod pk (k > 1), the additive zero-sum property of its subgroups (Theorem 1.1), and
the triplet structure of units group Gk (Theorem 3.1), allow a direct approach to Fermat’s Last Theorem:

(6) xp + yp = zp (prime p > 2) has no solution for positive integers x, y, z

with case1: xyz ≡/ 0 mod p, and case2: p divides one of x, y, z.

Usually (6) mentions exponent n > 2, but it suffices to show inequality for primes p > 2, because composite
exponent m = p · q yields apq = (ap)q = (aq)p. In case2: p divides just one term, because if p divides two terms
then it also divides the third, and all terms can be divided by pp.

A finite integer FLT solution of (6) has three p-th powers, each less than pm for some finite fixed m = kp,
with x, y, z < pk, so (6) holds mod pm, yet with no carry beyond pm−1, 0-extending all terms.

The present approach needs only a simple form of Hensel’s lemma [5] (in the general p-adic number theory),
which is a direct consequence of Corollary 1.2, extend digit-wise the normed 1-complement form (2′) such that
the i-th digit of weight pi in ap and bp sum to p − 1 (0 ≤ i < k), with p choices per extra digit. Thus to each
normed solution of (2′) mod p2 there correspond pk−2 solutions mod pk.

Corollary 4.1 (1-complement extension). For k > 2, a normed FLTk root is an extended FLT2 root.

4.1. Proof of the FLT inequality

Regarding FLT case1, cubic root of 1 and tripletp are the only (normed) FLTk roots (Theorem 3.1). Any assumed
integer case1 solution has a corresponding equivalent core increment form (4) with two terms in core, which by
Lemma 3.2 has no integer extension, contradicting the assumption, as follows :

Theorem 4.1 (FLT case1). For prime p > 2 and integers x, y, z > 0 coprime to p equation xp + yp = zp has
no solution.
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Proof. An FLTk (k > 1) solution is a linear transformed extension of an FLT2 root in core A2 = F2 (Corol-
lary 4.1). By Lemma 3.2 it has no finite p-th power extension, yielding the theorem. �

In FLT case2 just one of x, y, z is a multiple of p, hence pp divides one of the three p-th powers in xp +yp = zp.
Again, any assumed case2 equality can be transformed to an equivalence mod pp with two terms in core Ap,
having no integer extension, contra the assumption.

Theorem 4.2 (FLT case2). For prime p > 2 and positive integers x, y, z, if p divides only one of x, y, z then
xp + yp = zp has no solution.

Proof. In a case2 solution p divides a lefthand term, x = cp or y = cp (c >0), or the right hand side z = cp.
Bring the multiple of p to the right hand side, for instance if y = cp then zp − xp = (cp)p, while otherwise
xp + yp = (cp)p. So the sum or difference of two p-th powers coprime to p must be shown not to yield a p-th
power (cp)p for any c > 0 :

xp ± yp = (cp)p has no solution for integers x, y, c > 0.(7)

Notice that core increment form (4) does not apply here. However, by FST the two lefthand terms, coprime to
p, are either complementary or equivalent mod p, depending on their sum or difference being (cp)p. Scaling by
sp for some s ≡ 1 mod p, so sp ≡ 1 mod p2, transforms one lefthand term into a core residue Ap(n) mod pp,
with n ≡ x mod p. And translation by adding t ≡ 0 mod p2 yields the other term Ap(n) or −Ap(n) mod pp,
respectively. The right hand side then becomes sp(cp)p + t, equivalent to t mod pp. So the assumed equality (7)
yields, by two equality preserving tansformations, the next equivalence (8), where Ap(n) ≡ u ≡ up mod pp (u in
core Ap for 0 < n < p with x ≡ n mod p) and s ≡ 1, t ≡ 0 mod p2

(8) up ± up ≡ u± u ≡ t mod pp (u ∈ Ap), with u ≡ (sx)p,

± u ≡ ±(sy)p + t mod pp.
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Equivalence (8) does not extend to integers, because Up +Up > U +U , and Up−Up = 0 6= T , where U, T are the
0-extensions of u, t mod pp, respectively. But this contradicts assumed equalities (7), which consequently must
be false. �

Note. From a practical point of view the FLT integer inequality with terms less than ppk of a 0-extended
FLTk root (case1) is caused by the carries beyond pk, amounting to a multiple of the modulus pk, produced in the
arithmetic (base p). In the expansion of (a + b)p, the mixed terms can vanish mod pk for some a, b, p. Ignoring
the carries yields (a + b)p ≡ ap + bp mod pk, and the EDS’ property is as it were the syntactical expression
of ignoring the carry (overflow) in residue arithmetic. In other words, in terms of p-adic number theory, this
means ’breaking the Hensel lift’: the residue equivalence of an FLTk root mod pk, although it holds for all k >0,
does imply inequality for integer p-th powers less than ppk due to its special triplet structure, where exponent p
distributes over a sum.

1. The two symmetries −n, n−1 determine FLTk roots, which are necessary for an FLT integer solution.
However, these symmetries (automorphisms) do not exist for positive integers.

2. Another proof of FLT case1 might use product 1 mod pk of FLTk root terms: ab ≡ 1 or abc ≡ 1, which
is impossible for integers > 1. The p-th power of a k-digit natural requires upto pk digits. Arithmetic
mod pk ignores carries of weight pk and beyond. Interpreting a given FLTk equivalence in naturals less
than pk, their p-th powers produce for p > 2 carries that cause inequality.

3. Core Ak ⊂ Gk as extension of FST to mod pk k > 1, and the zero-sum of its subgroups (Theorem 1.1)
yielding the cubic FLT root (Lemma 2.1), initiated this work. The triplets were found by analysing a
computer listing (Table 2) of the FLT roots mod p2 for primes p < 200.

4. Linear analysis (mod p2) suffices for root existence (Hensel, Corollary 4.1), but tripletp core increment
form (4) with two successor terms in core requires quadratic analysis (mod p3). Similarly, FLT case1

inequivalence mod p3k+1 holds for increments of Ck+1 ≡ (Ck)p for 0-extended core Ak.
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5. “FLT eqn(1) has no finite solution” and “[ICS]3 has no finite fixed point” are equivalent (Theorem 3.1),
yet each n ∈ Gk is a fixed point of [ICS]3 mod pk (re: FLT2 roots imply all roots for k > 2, yet no
0-extension to integers).

6. Crucial in finding the arithmetic triplet structure were extensive computer experiments, and the appli-
cation of associative function composition, the essence of semi-groups, to the three elementary functions
(Theorem 3.1): successor S(n) = n+1, complement C(n) = −n and inverse I(n) = n−1, with period 3 for
SCI(n) = −(n+1)−1 and the other three such compositions. In this sense FLT is not a purely arithmetic
problem, but essentially requires non-commutative and associative function composition for its proof.
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